Previous research demonstrated the dependence of the optical properties of aqueous L-methionine solutions on the concentration of zinc cations. Given that this phenomenon may offer a potential method for controlling the metabolism of active pharmaceutical ingredients, this article presents a detailed study of the optical activity of zinc complexes with L- and D-amino acids (AAs). In this study, we used automated polarimetry with automatic temperature correction via a Peltier system, dynamic laser light scattering, X-ray diffraction analysis, and biotesting on a cellular biosensor. Our results showed a dramatic difference in the dependence of optical activity on pH value for the aqueous solution of a zinc-chelate compound with L-aspartate compared to the free AA. X-ray diffraction analysis of tridentate dicarboxylic AA with Zn2+ revealed the formation of a crystallized polymer compound at pH values higher than 5.6. Zn2+ affects the chirality of aqueous solutions of bidentate monocarboxylic L- and D-AA: the rotation angle of the solutions increases for D-Val and decreases for L-Val ranging from –0.2 to +0.2 degrees, respectively. For tridentate tricarboxylic L- and D-AA, the effect of zinc on the chirality of the aqueous solution is just the opposite. The cellular biosensor of Spirostomum ambiguum is not sensitive to free AA but responds significantly to zinc complexes with L- and D-Asp. We hypothesize that chelation of L- and D-AA with zinc at pH 5.5–6.0 leads to the formation of complexes with a specific optical activity, which aligns well with the theory of predetermined chirality.
Tumasov VN, Marukhlenko AV, Hoang QTN, Novikov AP, Koldina AM, Morozova MA. Chiral properties of zinc complexes with bi- and tridentate ligands of L- and D-amino acids. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.209656
1. Gupta S, Brazier AKM, Lowe NM. Zinc deficiency in low- and middle-income countries: prevalence and approaches for mitigation. J Hum Nutr Diet. 2020 Oct;33(5):624–43. doi: https://doi.org/10.1111/ jhn.12791
2. Wessells KR, Jorgensen JM, Hess SY, Woodhouse LR, Peerson JM, Brown KH. Plasma zinc concentration responds rapidly to the initiation and discontinuation of short-term zinc supplementation in healthy men. J Nutr. 2010 Dec;140(12):2128–33. doi: https://doi.org/10.3945/jn.110.122812
3. Kim J, Paik HY, Joung H, Woodhouse LR, King JC. Plasma zinc but not the exchangeable zinc pool size differs between young and older Korean women. Biol Trace Elem Res. 2011 Aug;142(2):130–6. doi: https://doi.org/10.1007/s12011-010-8758-2
4. Foster M, Hancock D, Petocz P, Samman S. Zinc transporter genes are coordinately expressed in men and women independently of dietary or plasma zinc. J Nutr. 2011 Jun;141(6):1195–201. doi: https://doi.org/10.3945/jn.111.140053
5. Chasapis CT, Ntoupa PA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol. 2020 May;94(5):1443–60. doi: https://doi.org/10.1007/s00204-020- 02702-9
6. King JC. Zinc: an essential but elusive nutrient. Am J Clin Nutr. 2011 Aug;94(2):679S–84S. doi: https://doi.org/10.3945/ajcn.110.005744
7. Plum LM, Rink L, Haase H. The essential toxin: impact of zinc on human health. Int J Environ Res Public Health. 2010 Apr;7(4):1342– 65. doi: https://doi.org/10.3390/ijerph7041342
8. Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: an integrative review. J Res Med Sci. 2013 Feb;18(2):144–57.
9. Kim YR, Park JI, Lee EJ, Park SH, Seong NW, Kim JH, et al. Toxicity of 100 nm zinc oxide nanoparticles: a report of 90-day repeated oral administration in Sprague Dawley rats. Int J Nanomed. 2014 Dec 15;9(Suppl 2):109–26. doi: https://doi.org/10.2147/IJN.S57928
10. Chang Y, Wang K, Wen M, Wu B, Liu G, Zhao H, et al. Organic zinc glycine chelate is better than inorganic zinc in improving growth performance of cherry valley ducks by regulating intestinal morphology, barrier function, and the gut microbiome. J Anim Sci. 2023 Jan 3;101:skad279. doi: https://doi.org/10.1093/jas/skad279
11. Farhadi Javid S, Moravej H, Ghaffarzadeh M, Esfahani MB. Comparison of zinc sulfate and zinc threonine based on Zn bioavailability and performance of broiler chicks. Biol Trace Elem Res. 2021 Jun;199(6):2303–11. doi: https://doi.org/10.1007/s12011-020-02354-x
12. Chen X, He C, Zhang K, Wang J, Ding X, Zeng Q, et al. Comparison of zinc bioavailability in zinc-glycine and zinc-methionine chelates for broilers fed with a corn-soybean meal diet. Front Physiol. 2022 Nov 17;13:983954. doi: https://doi.org/10.3389/fphys.2022.983954
13. Boerboom GM, Busink R, Smits CH, Hendriks WH, Martín-Tereso J. Efficacy of l-glutamic acid, N,N-diacetic acid to improve the dietary trace mineral bioavailability in broilers. J Anim Sci. 2020 Dec 1;98(12):skaa369. doi: https://doi.org/10.1093/jas/skaa369
14. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis V, Azimonti G, Bastos ML, Christensen H, Dusemund B, et al. Safety and efficacy of zinc chelates of lysine and glutamic acid as feed additive for all animal species. EFSA J. 2019 Jul 25;17(7):e05782. doi: https://doi.org/10.2903/j. efsa.2019.5782
15. Marukhlenko AV, Morozova MA, Mbarga AMJ, Antipova NV, Syroeshkin AV, Podoprigora IV, et al. Chelation of zinc with biogenic amino acids: description of properties using Balaban index, assessment of biological activity on Spirostomum ambiguum cellular biosensor, influence on biofilms and direct antibacterial action. Pharmaceuticals (Basel). 2022 Aug 9;15(8):979. doi: https://doi.org/10.3390/ph15080979
16. Doti N, Mardirossian M, Sandomenico A, Ruvo M, Caporale A. Recent applications of retro-inverso peptides. Int J Mol Sci. 2021 Aug 12;22(16):8677. doi: https://doi.org/10.3390/ijms22168677
17. ?ižmáriková R, ?ižmárik J, Valentová J, Habala L, Markuliak M. Chiral aspects of local anesthetics. Molecules. 2020 Jun 12;25(12):2738. doi: https://doi.org/10.3390/molecules25122738
18. Favre HA, Powell WH. IUPAC recommendations and preferred names 2013. London, UK: Royal Society of Chemistry.
19. Knof U, von Zelewsky A. Predetermined chirality at metal centers. Angew Chem Int Ed Engl. 1999 Feb 1;38(3):302–22. doi: https://doi.org/10.1002/(SICI)1521-3773(19990201)38:3<302::AID-ANIE302>3.0.CO;2-G
20. Endo K, Liu Y, Ube H, Nagata K, Shionoya M. Asymmetric construction of tetrahedral chiral zinc with high configurational stability and catalytic activity. Nat Commun. 2020;11:6263. doi: https://doi.org/10.1038/s41467-020-20074-7
21. Li G, Zhao X, Wang L, Weisheng L. Chiral zinc complexes used as fluorescent sensor for natural amino acids. Inorg Chem. 2019;4:9317–21. doi: https://doi.org/10.1002/slct.20190213
22. Shirbate M, Nandhakumar R, Kim Y, Kim SJ, Kim SK, Kim K. Discrimination of the chirality of the α-amino acids in Zn(II) complexes of DPA-appended binaphthyl imine. Eur J Org Chem. 2018;2018:4959–64. doi: https://doi.org/10.1002/ejoc.201800321
23. Marukhlenko AV, Tumasov VN, Butusov LA, Shandryuk GA, Morozova MA. Comparative analysis of physical and chemical properties of differently obtained Zn—methionine chelate with proved antibiofilm properties (Part II). Pharmaceutics. 2023;15:590. doi: https://doi.org/10.3390/pharmaceutics15020590
24. Abendrot M, Ch?ci?ska L, Kusz J, Lisowska K, Zawadzka K, Felczak A, et al. Zinc(II) complexes with amino acids for potential use in dermatology: synthesis, crystal structures, and antibacterial activity. Molecules. 2020;25:951. doi: https://doi.org/10.3390/molecules25040951
25. Council of Europe. 01/2008:20511 complexometric titrations. In: The European pharmacopoeia. 8th edition. Strasbourg, France: Council of Europe; 2013. Volume 1.
26. Bruker AXS. SAINT, Version 8.40B. Madison, WI: Bruker AXS Inc. 2020.
27. Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J Appl Crystallogr. 2015;48:3–10. doi: https://doi.org/10.1107/S1600576714022985
28. Sheldrick GM. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Crystallogr. 2015;71:3–8. doi: https://doi.org/10.1107/S2053273314026370
29. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem. 2015;71:3–8. doi: https://doi.org/10.1107/S2053229614024218
30. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement, and analysis program. J Appl Crystallogr. 2009;42:339–41. doi: https://doi.org/10.1107/S0021889808042726
31. Levitskaya OV, Syroeshkin AV, Pleteneva TV. Arrhenius kinetics as a bioactivity assessment criterion for drug substances and excipients. Pharm Chem J. 2016;49:779–781. doi: https://doi.org/10.1007/s11094-016-1370-9
32. Goncharuk VV, Syroeshkin AV, Zlatskiy IA, Uspenskaya EV, Orekhova AV, Levitskaya OV, et al. Quasichemical description of the cell death kinetics of cellular biosensor Spirostomum ambiguum for testing the biological activity of aqueous solutions. J Water Chem Technol. 2017;39:178–87. doi: https://doi.org/10.3103/S1063455X17020072
33. Mercury 2024.1.0. Available from: https://www.ccdc.cam.ac.uk/solutions/software/free-mercury/
34. Council of Europe. 01/2008:20207 optical rotation. In: The European pharmacopoeia. 8th edition. Strasbourg, France: Council of Europe; 2013. Volume 1.
35. Clough G. The relationship between the optical rotatory powers and the relative configurations of optically active compounds. The influence of certain inorganic haloids on the optical rotatory powers of alpha-hydroxy-acids, alpha-amino-acids, and their derivatives. J Chem Soc Trans. 1918;113:526–54. doi: https://doi.org/10.1039/CT9181300526
36. Lutz O, Jirgensons B. Ueber eine neue Methode der Zuteilung optisch-aktiver alpha-amino-saeuren zur Rechts- oder Linksreihe (I. Mitteil.). Ber Dtsch Chem Ges[Abt] B: Abh. 1930;63:448–60.
37. Lutz O, Jirgensons B. Ueber eine neue Methode der Zuteilung optisch-aktiver alpha-amino-saeuren zur Rechts- oder Linksreihe (II. Mitteil.). Ber Dtsch Chem Ges[Abt] B: Abh. 1931;64:1221–32.
38. Syroeshkin AV, Pleteneva TV, Uspenskaya EV, Levitskaya OV, Tribot-laspiere MA, Zlatsky IA, et al. Polarimetric research of pharmaceutical substances in aqueous solutions with different water isotopologues ratio. Int J Appl Pharm. 2018;10:243.
39. Chernova SP, Trubachova LV. Potentiometric study of the behavior of Zn(II) in solutions of amino acids and komplexones. Analytics ?ontrol. 2006;10(3-4):336–41.
40. Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The Cambridge structural database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. 2016;72:171–9. doi: https://doi.org/10.1107/S2052520616003954
41. Larionov VA, Feringa BL, Belokon YN. Enantioselective “organocatalysis in disguise” by the ligand sphere of chiral metal-templated complexes. Chem Soc Rev. 2021 Sep 7;50(17):9715–40. doi: https://doi.org/10.1039/d0cs00806k
42. Crassous J. Chiral transfer in coordination complexes: towards molecular materials. Chem Soc Rev. 2009 Mar;38(3):830–45. doi: https://doi.org/10.1039/b806203j
43. Mamula O, von Zelewsky A, Bark T, Stoeckli-Evans H, Neels A, Bernardinelli G. Predetermined chirality at metal centers of various coordination geometries: a chiral cleft ligand for tetrahedral (T- 4), square-planar (SP-4), trigonal-bipyramidal (TB-5), square-pyramidal (SPY-5), and octahedral (OC-6) complexes. Chemistry. 2000 Oct 2;6(19):3575–85. doi: https://doi.org/10.1002/1521-3765(20001002)6:19<3575::aid-chem3575>3.3.co;2-r
44. Hayoz P, von Zelewsky A, Stoeckli-Evans H. Stereoselective synthesis of octahedral complexes with predetermined helical chirality. J Am Chem Soc. 1993;115(12):5111–4. doi: https://doi.org/10.1021/ja00065a023
45. Nagata Y, Nishikawa T, Suginome M. Abnormal sergeants-and-soldiers effects of poly(quinoxaline-2,3-diyl)s enabling discrimination of one-carbon homologous n-alkanes through a highly sensitive solvent-dependent helix inversion. Chem Commun (Camb). 2018 Jun 19;54(50):6867–70. doi: https://doi.org/10.1039/C8CC02836B
46. Nagata Y, Nishikawa T, Suginome M. Solvent effect on the sergeants-and-soldiers effect leading to bidirectional induction of single-handed helical sense of poly(quinoxaline-2,3-diyl)s copolymers in aromatic solvents. ACS Macro Lett. 2016 Apr 19;5(4):519–22. doi: https://doi.org/10.1021/acsmacrolett.6b00191
47. Ehnbom A, Ghosh SK, Lewis KG, Gladysz JA. Octahedral Werner complexes with substituted ethylenediamine ligands: a stereochemical primer for a historic series of compounds now emerging as a modern family of catalysts. Chem Soc Rev. 2016 Dec 21;45(24):6799–811. doi: https://doi.org/10.1039/c6cs00604c
48. Parada J, Larrazábal G, Aguirre P, Zolezzi S, Vega C, Garrido C. The stereoselective synthesis of the Werner complex with substoichiometric sugars. J Chil Chem Soc. 2008;53(1):1390–2. doi: https://doi.org/10.4067/S0717-97072008000100012
49. Werner A. Zur Kenntnis des asymmetrischen Kobalt atoms I. Ber Dtsch Chem Ges. 1911;44:1887–98.
50. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. NCBI taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford). 2020 Jan 1;2020:baaa062. doi: https://doi.org/10.1093/database/baaa062
51. Syroeshkin AV, Antipova NV, Zlatska AV, Zlatskiy IA, Skylska MD, Grebennikova TV, et al. The effect of the deuterium depleted water on the biological activity of the eukaryotic cells. J Trace Elem Med Biol. 2018 Dec;50:629–33. doi: https://doi.org/10.1016/j.jtemb.2018.05.004
52. Syroeshkin AV, Uspenskaya EV, Pleteneva TV, Morozova MA, Zlatskiy IA, Koldina AM, et al. Mechanical transformation of compounds leading to physical, chemical, and biological changes in pharmaceutical substances. Sci World J. 2018 Dec 13;2018(4):1–8. doi: https://doi.org/10.1155/2018/8905471
53. Uspenskaya EV, Pleteneva TV, Hanh P, Kazimova I. Assessment of biology activity of the peeling substances by the physicochemical approaches on the Spirostomum ambiguum cell model. Int J Pharm Pharm Sci. 2021 Jul;13(7):82–6. doi: https://doi.org/10.22159/ijpps.2021v13i7.41927
Year
Month