Considerations in excipient selection for colon-targeted dosage forms

Maxius Gunawan Delly Ramadon Kurnia Sari Setio Putri Raditya Iswandana   

Open Access   

Published:  Dec 12, 2024

DOI: 10.7324/JAPS.2025.203513
Abstract

The colon is a potential organ for drug delivery systems because it has several advantages, such as long transit time and neutral pH conditions. Moreover, colon targeting can avoid enzymatic reactions in the stomach and small intestine which increase the bioavailability of the drug. A colon-targeted drug delivery system (CDDS) requires excipients that have distinctive characteristics to prevent drug release in the upper gastrointestinal tract and enhance drug release in the colon. Polysaccharides are suitable in CDDS due to the degradation mechanism by colonic microflora enzymes. Furthermore, polysaccharides can swell when hydrated so that drugs can be released from the matrix system by diffusion and/or relaxation. Polysaccharides can swell when hydrated, which will form a gel-like matrix that enables drug release through diffusion, where the drug diffuses through the swollen matrix. Additionally, drug release can occur through a relaxation mechanism, where the polymer chains gradually unwind and erode, further facilitating the drug release. This degradation and swelling mechanism can lead to the release of the drug at the colon site. Some polysaccharides that can be utilized for CDDS are alginate, amylose, arabinoxylan, dextran, guar gum, inulin, carrageenan, chitosan, chondroitin sulfate, lactulose, locust bean gum, pectin, and cyclodextrin. Moreover, polymers can also be employed as excipients in CDDS due to conformation changes in different pH of the gastrointestinal tract. These pH-dependent properties can ensure that the drug is protected during transit through the stomach and small intestine and is only released when the dosage form reaches the colon. Some polymers that are potential for CDDS are cellulose derivatives, poly (acrylic acid) (PAA), poly (metha-acrylic acid) (PMAA), Eudragit®, poly (lactic-co-glycolic acid) (PLGA), Kollicoat®, and Shellac®. The combination and/or modification of these excipients can increase the effectiveness of CDDS and prevent the early release of drugs in the upper gastrointestinal tract which can lead to the drug release being more precisely controlled in the colonic site.


Keyword:     Colon-targeted drug delivery system excipients polysaccharides polymers


Citation:

Gunawan M, Ramadon D, Putri KSS, Iswandana R. Considerations in excipient selection for colon-targeted dosage forms. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.203513

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Chaubet F, Paris U. Pharmacology : drug delivery. Encyclopedia of biomedical engineering. Amsterdam, The Netherlands: Elsevier Inc.; 2017. pp 1-14.

2. Kaur G, Grewal J, Jyoti K, Jain UK, Chandra R, Madan J. Oral controlled and sustained drug delivery systems: concepts, advances, preclinical, and clinical status. Drug targeting and stimuli sensitive drug delivery systems. Amsterdam, The Netherlands: Elsevier Inc.; 2018. pp 567-626. https://doi.org/10.1016/B978-0-12-813689-8.00015-X

3. Kohrs NJ, Liyanage T, Venkatesan N, Najarzadeh A, Puleo DA, States U. Drug delivery systems and controlled release. Encyclopedia of biomedical engineering. Amsterdam, The Netherlands: Elsevier Inc.; 2018. pp 1-14 https://doi.org/10.1016/B978-0-12-801238-3.11037-2

4. Ray S. Advanced colon-specific delivery systems for treating local disorders. Polysaccharide carriers for drug delivery. Amsterdam, The Netherlands: Elsevier Ltd.; 2019. pp 737-62. https://doi.org/10.1016/B978-0-08-102553-6.00025-8

5. Lee SH, Bajracharya R, Min JY, Han J won, Park BJ. Strategic approaches for colon targeted drug delivery : an overview of recent advancements. Pharmaceutics 2020;12(1):68. https://doi.org/10.3390/pharmaceutics12010068

6. Ma Z, Ma R, Wang X, Gao J, Zheng Y, Sun Z. Enzyme and PH responsive 5-fl urouracil ( 5-FU ) loaded hydrogels based on olsalazine derivatives for colon-speci fi c drug delivery. Eur Polym J. 2019;118(November 2018):64-70. https://doi.org/10.1016/j.eurpolymj.2019.05.017

7. Iswandana R. Colon specific drug delivery systems: the importance. 2017;3-5.

8. Gaon D, Nagar S. A review on colon targeted drug delivery system. Int J Pharm Sci Res. 2019;10(1):47-56.

9. Patel MM. Colon targeting: an emerging frontier for oral insulin delivery. Expert Opin Drug Deliv. 2013;731-9. https://doi.org/10.1517/17425247.2013.782284

10. Morales-Burgos AM, Carvajal-millan E, Rascón-chu A, Martínez-lópez AL, Lizardi-mendoza J, López-franco YL, et al. Tailoring reversible insulin aggregates loaded in electrosprayed arabinoxylan microspheres intended for colon-targeted delivery. J Appl Polym Sci. 2019;47960:1-8. https://doi.org/10.1002/app.47960

11. Deb PK, Al-attraqchi O, Chandrasekaran B, Paradkar A, Tekade RK. Protein/peptide drug delivery systems : practical considerations in pharmaceutical product development. Basic fundamentals of drug delivery. Amsterdam, The Netherlands: Elsevier Inc.; 2019. pp 651-84. https://doi.org/10.1016/B978-0-12-817909-3.00016-9

12. Gadalla HH, Mohammed FA, El-Sayed AM, Soliman GM. Colon-targeting of progesterone using hybrid polymeric microspheres improves its bioavailability and in vivo biological e ffi cacy. Int J Pharm. 2020;577(November 2019):119070. https://doi.org/10.1016/j.ijpharm.2020.119070

13. Zhu J, Zhong L, Chen W, Song Y, Qian Z, Cao X, et al. Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride: a novel and simple colon targeted drug delivery system. Food Hydrocoll. 2019;95:562-70. https://doi.org/10.1016/j.foodhyd.2018.04.042

14. Wang R, Huang J, Chen J, Yang M, Wang H, Qiao H, et al. Enhanced anti-colon cancer efficacy of 5-fluorouracil by epigallocatechin-3-gallate co-loaded in wheat germ agglutinin-conjugated nanoparticles. Nanomedicine. 2019;21:102068. https://doi.org/10.1016/j.nano.2019.102068

15. El-hady SM, Aboughaly MHH, El-ashmoony MM, Helmy HS, El-gazayerly ON. Colon targeting of celecoxib nanomixed micelles using pulsatile drug delivery systems for the prevention of inflammatory bowel disease. Int J Pharm. 2020;576(October 2019):118982. https://doi.org/10.1016/j.ijpharm.2019.118982

16. Iwao Y, Tomiguchi I, Domura A, Mantaira Y, Minami A. Inflamed site-specific drug delivery system based on the interaction of human serum albumin nanoparticles with myeloperoxidase in a murine model of experimental colitis. Euro J Pharm Biopharm. 2018;125(October 2017):141-7. https://doi.org/10.1016/j.ejpb.2018.01.016

17. Shahdadi H, Akhgari A, Afrasiabi H, Sadeghi F. Screening of different polysaccharides in a composite film based on Eudragit RS for subsequent use as a coating for delivery of 5-ASA to colon. Int J Pharm. 2019;568(June):118527. https://doi.org/10.1016/j.ijpharm.2019.118527

18. Zeeshan M, Ali H, Khan S, Ahmad S, Weigmann B. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int J Pharm. 2019;558(October 2018):201-14. https://doi.org/10.1016/j.ijpharm.2018.12.074

19. Asfour MH, Mohsen AM. Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line. J Adv Res. 2018;9:17-26. https://doi.org/10.1016/j.jare.2017.10.003

20. Song L, Liang L, Shi X, Chen H. Optimizing pH-sensitive and time-dependent polymer formula of colonic pH-responsive pellets to achieve precise drug release. Asian J Pharm Sci 2019;14(1):413-22. https://doi.org/10.1016/j.ajps.2018.05.012

21. Sharma N, Sharma A, Bhatnagar A, Nishad D, Karwasra R. Novel gum acacia based macroparticles for colon delivery of Mesalazine: development and gammascintigraphy study. J Drug Deliv Sci Technol. 2019;54(August):101224. https://doi.org/10.1016/j.jddst.2019.101224

22. Sharma A, Kim EJ, Shi H, Yong J, Geun B, Seung J. Biomaterials Development of a theranostic prodrug for colon cancer therapy by combining ligand-targeted delivery and enzyme-stimulated activation. Biomaterials. 2018;155:145-51. https://doi.org/10.1016/j.biomaterials.2017.11.019

23. Chaudhary A, Tiwari N, Jain V, Singh R. Microporous bilayer osmotic tablet for colon-specific delivery. Euro J Pharm Biopharm. 2011;78(1):134-40. https://doi.org/10.1016/j.ejpb.2011.01.004

24. Kaur R, Gulati M, Singh SK. Role of synbiotics in polysaccharide assisted colon targeted microspheres of mesalamine for the treatment of ulcerative colitis. Int J Biol Macromol. 2017;95:438-50. https://doi.org/10.1016/j.ijbiomac.2016.11.066

25. Mastropietro D, Park K, Omidian H. Polymers in oral drug delivery. Amsterdam, The Netherlands: Elsevier Inc.; 2017. Vol. 4, pp 430-44. https://doi.org/10.1016/B978-0-12-803581-8.09291-2

26. Sunoqrot S, Abujamous L. pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J Drug Deliv Sci Technol. 2019;52(May):670-6. https://doi.org/10.1016/j.jddst.2019.05.035

27. Elbatanony RSE. Modified pH independent/time controlled explosion system (TES) for targeted drug delivery in the lower intestinal tract: formulation and pharmacokinetic evaluation in healthy volunteers. J Drug Deliv Sci Technol. 2019;50(November 2018):163-73. https://doi.org/10.1016/j.jddst.2019.01.029

28. Chen S, Song Y, Wang C, Tao S, Yu F, Lou H, et al. Chitosan-modified lipid nanodrug delivery system for the targeted and responsive treatment of ulcerative colitis. Carbohydr Polym. 2020;230(July 2019):115613. https://doi.org/10.1016/j.carbpol.2019.115613

29. Sinha VR, Kumria R. Microbially triggered drug delivery to the colon. Euro J Pharm Sci. 2003;18(1):3-18. https://doi.org/10.1016/S0928-0987(02)00221-X

30. Agarwal T, Narayana SNGH, Pal K, Pramanik K, Giri S, Banerjee I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int J Biol Macromol. 2015;75:409-17. https://doi.org/10.1016/j.ijbiomac.2014.12.052

31. Elkhodairy KA, Elsaghir HA, Al-Subayiel AM. Formulation of indomethacin colon targeted delivery systems using polysaccharides as carriers by applying liquisolid technique. Biomed Res Int. 2014;1(2014):704362. https://doi.org/10.1155/2014/704362

32. Zhang T, Yang Y. Beneficial effect of intestinal fermentation of natural polysaccharides. Nutrients 2018;10(8):1055. https://doi.org/10.3390/nu10081055

33. Miao T, Wang J, Zeng Y, Liu G, Chen X. Polysaccharide-based controlled release systems for therapeutics delivery and tissue engineering: from bench to bedside. Advanced Sci 2018;5:1700513. https://doi.org/10.1002/advs.201700513

34. Sharma N, Srivastava P, Sharma A, Nishad DK, Karwasra R, Khanna K, et al. Potential applications of Abelmoschus moschatus polysaccharide as colon release tablets-Rheology and gamma scintigraphic study. J Drug Deliv Sci Technol. 2020;57(February):101632. https://doi.org/10.1016/j.jddst.2020.101632

35. Maity S, Kundu A, Karmakar S, Sa B. In vitro and in vivo correlation of colon-targeted compression-coated tablets. J Pharm (Cairo). 2016;2016:1-9. https://doi.org/10.1155/2016/5742967

36. Zhang B, Yan Y, Shen Q, Ma D, Huang L, Cai X, et al. A colon targeted drug delivery system based on alginate modificated graphene oxide for colorectal liver metastasis. Mater Sci Eng C. 2017;79:185-90. https://doi.org/10.1016/j.msec.2017.05.054

37. Xu W, Gao Q, Xu Y, Wu D, Sun Y. pH-controlled drug release from mesoporous silica tablets coated with hydroxypropyl methylcellulose phthalate. Mater Res Bull. 2009;44(3):606-12. https://doi.org/10.1016/j.materresbull.2008.07.001

38. Bisharat L, Barker SA, Narbad A, Craig DQM. In vitro drug release from acetylated high amylose starch-zein films for oral colon-specific drug delivery. Int J Pharm. 2019;556:311-9. https://doi.org/10.1016/j.ijpharm.2018.12.021

39. Li S, Sun Y, Hu X, Qin W, Li C, Liu Y, et al. Effect of arabinoxylan on colonic bacterial metabolites and mucosal barrier in high-fat diet-induced rats. Food Sci Nutr. 2019;7:3052-61. https://doi.org/10.1002/fsn3.1164

40. Martínez-lópez AL, Carvajal-millan E, Miki-yoshida M, Alvarez-contreras L, Rascón-chu A, Lizardi-mendoza J, et al. Arabinoxylan microspheres: structural and textural characteristics. Molecules 2013;18(4):4640. https://doi.org/10.3390/molecules18044640

41. Shrivastava PK, Shrivastava A, Sinha SK, Shrivastava SK. Dextran carrier macromolecules for colon-specific delivery of 5-aminosalicylic acid. Indian J Pharm Sci. 2013 May;75(3):277-83. https://doi.org/10.4103/0250-474X.117420

42. Kiani M, Sadat F, Tekie M, Dinarvand M, Soleimani M. Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense : in vitro stability and ef fi ciency study. Mater Sci Eng C. 2016;62:771-8. https://doi.org/10.1016/j.msec.2016.02.009

43. Elkhodairy KA, Afifi SA, Zakaria AS. A promising approach to provide appropriate colon target drug delivery systems of vancomycin HCL: pharmaceutical and microbiological studies. BioMed Res Int 2014;2014:182197. https://doi.org/10.1155/2014/182197

44. Seeli DS, Prabaharan M. Guar gum succinate as a carrier for colon-specific drug delivery. Int J Biol Macromol. 2016;84:10-5. https://doi.org/10.1016/j.ijbiomac.2015.12.002

45. Mensink MA, Frijlink HW, van der Voort K, Hinrichs WLJ. Inulin, a flexible oligosaccharide. II : Review of its pharmaceutical applications. Carbohydr Polym. 2015;134:418-28. https://doi.org/10.1016/j.carbpol.2015.08.022

46. Kusumaningrum IK, Wijaya AR, Marfuah S, Fadilah MN. Optimation of alkoxide formed step on carboxymethyl kappa carrageenan synthesis. IOP Conf Ser Earth Environ Sci. 2019;299(1):012008. https://doi.org/10.1088/1755-1315/299/1/012008

47. Mahdaviniaa GR, Rahmania Z, Karamia S, Pourjavadi A. Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery. J Biomater Sci Polym Ed. 2014;25(17):1891-1906. https://doi.org/10.1080/09205063.2014.956166

48. Nalinbenjapun S, Ovatlarnporn C. Chitosan-5-aminosalicylic acid conjugates for colon-specific drug delivery: methods of preparation and in vitro evaluations. J Drug Deliv Sci Technol. 2019;57:101397. https://doi.org/10.1016/j.jddst.2019.101397

49. Xu J, Tam M, Samaei S, Lerouge S, Barralet J, Stevenson MM, et al. Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater. 2017;48:247-57. https://doi.org/10.1016/j.actbio.2016.10.026

50. Barkat K, Ahmad M, Minhas MU, Khalid I, Malik NS. Chondroitin sulfatebased smart hydrogels for targeted delivery of oxaliplatin in colorectal cancer: preparation, characterization and toxicity evaluation. Polymer Bulletin. 2019;77:6271-97. https://doi.org/10.1007/s00289-019-03062-w

51. Algieri F, Rodr A, Garrido-mesa N, Vezza T, Garrido-mesa J, Utrilla MP, et al. Intestinal anti-inflammatory effects of oligosaccharides derived from lactulose in the trinitrobenzenesulfonic acid model of rat colitis. J Agric Food Chem. 2014;62(19):4285-97. https://doi.org/10.1021/jf500678p

52. Onishi H, Ikeuchi-takahashi Y, Kawano K, Hattori Y. Preparation of chondroitin sulfate-glycyl-prednisolone conjugate nanogel and its efficacy in rats with ulcerative colitis. Biol Pharm Bull. 2019;42(7):1155-63. https://doi.org/10.1248/bpb.b19-00020

53. Mahzouni P. Development of novel budesonide pellets based on CODES TM technology : in vitro/in vivo evaluation in induced colitis in rats. DARU: J Faculty Pharm Tehran Univ Med Sci. 2011;19(2):107.

54. Dionísio M, Grenha A. Locust bean gum : exploring its potential for biopharmaceutical applications. J Pharm Bioallied Sci. 2012;4(3):175-86. https://doi.org/10.4103/0975-7406.99013

55. Chickpetty SM, Raga BV. Formulation, in vitro drug release and in vivo human X-ray investigation of polysaccharide based drug delivery systems for targeting 5-fluorouracil to the colon. Braz J Pharm Sci. 2013;49:263-73. https://doi.org/10.1590/S1984-82502013000200008

56. Vemula SK. Colon specific drug delivery: effect of Eudragit enteric coating on hydroxypropyl methylcellulose matrix tablets of flurbiprofen. J Young Pharm. 2015;7(4):373-83. https://doi.org/10.5530/jyp.2015.4.12

57. Wong TW, Colombo G, Sonvico F. Pectin matrix as oral drug delivery vehicle for colon cancer treatment. Aaps Pharm Sci Tech. 2011;12(1):201-14. https://doi.org/10.1208/s12249-010-9564-z

58. Varshosaz J, Emami J, Tavakoli N, Minaiyan M. Pectin film coated pellets for colon-targeted delivery of budesonide: in-vitro/in-vivo evaluation in induced ulcerative colitis in rat. Iran J Pharm Res 2012;11:733-45.

59. Madan J, Gundala SR, Baruah B, Nagaraju M, Yates C, Turner T, et al. Cyclodextrin complexes of reduced bromonoscapine in guar gum microspheres enhance colonic drug delivery. Mole Pharm 2014;11(12):4339-49. https://doi.org/10.1021/mp500408n

60. Almeida H, Amaral MH, Lobão P. Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery. J Appl Pharm Sci. 2012;2(6):01-10.

61. Dias ML, Agüero L, Zaldivar-Silva D, Pe L. Alginate microparticles as oral colon drug delivery device: a review. Carbohydrate Polym 2017;168:32-43. https://doi.org/10.1016/j.carbpol.2017.03.033

62. Sohail R, Abbas SR. Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy. Int J Biol Macromol. 2020;153:36-45. https://doi.org/10.1016/j.ijbiomac.2020.02.191

63. Iswandana R, Sari K, Putri S, Wulandari FR, Najuda G, Sari SP. Preparation of calcium alginate-tetrandrine beads using ionic gelation method as colon-targeted dosage form. J Appl Pharm Sci. 2018;8(05):68-74. https://doi.org/10.7324/JAPS.2018.8509

64. Rajpurohit H, Sharma P, Sharma S, Bhandari A. Polymers for colon targeted drug delivery. Indian J Pharm Sci. 2010;72:689-96. https://doi.org/10.4103/0250-474X.84576

65. Neha S, Harikumar SL. Polymers for colon targeted drug delivery: a review. Int J Drug Dev Res. 2013;5(1):21-31.

66. Nabais T, Brouillet F, Kyriacos S, Mroueh M. High-amylose carboxymethyl starch matrices for oral sustained drug-release : in vitro and in vivo evaluation. Euro J Pharm Biopharm, 2007;65:371-8. https://doi.org/10.1016/j.ejpb.2006.12.001

67. Freire AC, Fertig CC, Podczeck F, Veiga F, Sousa J. Starch-based coatings for colon-specific drug delivery. Part I: the influence of heat treatment on the physico-chemical properties of high amylose maize starches. Eur J Pharm Biopharm. 2009;72(3):574-86. https://doi.org/10.1016/j.ejpb.2009.02.008

68. Hald S, Schioldan AG, Moore ME, Dige A. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: a randomised crossover study. PLoS One 2016;11:1-18. https://doi.org/10.1371/journal.pone.0159223

69. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol. 2016;7:979. https://doi.org/10.3389/fmicb.2016.00979

70. Kim W, Kim D. Conjugation of metronidazole with dextran: a potential pharmaceutical strategy to control colonic distribution of the anti-amebic drug susceptible to metabolism by colonic microbes. Drug Des Devel Ther 2017;11:419-29. https://doi.org/10.2147/DDDT.S129922

71. Lee Y, Kim J, Kim W, Yoo JW. Celecoxib coupled to dextran via a glutamic acid linker yields a polymeric prodrug suitable for colonic delivery. Drug Des Devel Ther 2015;9:4105-13. https://doi.org/10.2147/DDDT.S89077

72. Varshosaz J, Emami J, Ahmadi F, Tavakoli N, Minaiyan M. Preparation of budesonide-dextran conjugates using glutarate spacer as a colon-targeted drug delivery system : in vitro/in vivo evaluation in induced ulcerative colitis. 2011;19:140-53. https://doi.org/10.3109/10611861003801826

73. Shrivastava PK, Shrivastava SK. Dextran carrier macromolecule for colon specific delivery of celecoxib. Curr Drug Deliv. 2010;7(2):144-51. https://doi.org/10.2174/156720110791011828

74. Seeli DS, Dhivya S, Selvamurugan N, Prabaharan M. Guar gum succinate-sodium alginate beads as a pH-sensitive carrier for colon-specific drug delivery. Int J Biol Macromol. 2016;91:45-50. https://doi.org/10.1016/j.ijbiomac.2016.05.057

75. Mahto A, Mishra S. Design, development and validation of guar gum based pH-sensitive drug delivery carrier via graft copolymerization reaction using microwave irradiations. Int J Biol Macromol. 2019;138:278-91. https://doi.org/10.1016/j.ijbiomac.2019.07.063

76. Wang D, Sun F, Lu C, Chen P, Wang Z, Qiu Y, et al. Inulin based glutathione-responsive delivery system for colon cancer treatment. Int J Biol Macromol. 2018;111:1264-72. https://doi.org/10.1016/j.ijbiomac.2018.01.071

77. Imran S, Gillis RB, Kok SM, Harding SE, Adams G, Imran S, et al. Application and use of inulin as a tool for therapeutic drug delivery Application and use of Inulin as a tool for therapeutic drug delivery. 2013;8725. https://doi.org/10.5661/bger-28-33

78. Akhgari A, Farahmand F, Garekani HA, Sadeghi F, Vandamme TF. Permeability and swelling studies on free films containing inulin in combination with different polymethacrylates aimed for colonic drug delivery. Eur J Pharm Sci. 2006;8:307-14. https://doi.org/10.1016/j.ejps.2006.03.005

79. Khan AK, Saba AU, Nawazish S, Akhtar F, Rashid R, Mir S, et al. Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxid Med Cell Longev. 2017;2017:8158315. https://doi.org/10.1155/2017/8158315

80. Javanbakht S, Shadi M, Mohammadian R, Shaabani A, Amini MM, Pooresmaeil M, et al. Facile preparation of pH-responsive k-Carrageenan/tramadol loaded UiO-66 bio-nanocomposite hydrogel beads as a nontoxic oral delivery vehicle. J Drug Deliv Sci Technol. 2019;54(June):101311. https://doi.org/10.1016/j.jddst.2019.101311

81. Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. React Funct Polym. 2020;148(December 2019):104501. https://doi.org/10.1016/j.reactfunctpolym.2020.104501

82. Ghaffar A, Yameen B, Latif M, Malik MI. pH-sensitive drug delivery systems. Metal nanoparticles for drug delivery and diagnostic applications. Amsterdam, The Netherlands: Elsevier Inc.; 2020. pp 259-78. https://doi.org/10.1016/B978-0-12-816960-5.00014-8

83. Sinha P, Udhumansha U, Rathnam G, Ganesh M, Jang HT. Capecitabine encapsulated chitosan succinate-sodium alginate macromolecular complex beads for colon cancer targeted delivery: in vitro evaluation. Int J Biol Macromol. 2018;117:840-50. https://doi.org/10.1016/j.ijbiomac.2018.05.181

84. Cerchiara T, Abruzzo A, Cagno M, Bigucci F, Bauer-brandl A, Parolin C, et al. Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur J Pharm Biopharm. 2015;92:112-9. https://doi.org/10.1016/j.ejpb.2015.03.004

85. Iswandana R, Sari K, Putri S, Dwiputra R, Yanuari T, Purna S, et al. Formulation of Chitosan tripolyphosphate-tetrandrine beads using ionic gelation method: in vitro and in vivo evaluation. J Biomater Sci Polym Ed. 2017;9(5):1891-906. https://doi.org/10.22159/ijap.2017v9i5.20842

86. Jyoti K, Kaur R, Martis EAF, Coutinho EC, Kumar U, Chandra R, et al. Soluble curcumin amalgamated chitosan microspheres augmented drug delivery and cytotoxicity in colon cancer cells : in vitro and in vivo study. Colloids Surf B Biointerfaces. 2016;148:674-83. https://doi.org/10.1016/j.colsurfb.2016.09.044

87. Zu M, Ma L, Zhang X, Xie D, Kang Y, Xiao B. Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer- targeted chemotherapy. Colloids Surf B Biointerfaces. 2019;177(November 2018):399-406. https://doi.org/10.1016/j.colsurfb.2019.02.031

88. Ramasamy T, Khandasamy US, Shanmugamb S, Ruttala H. Formulation and evaluation of chondroitin sulphate tablets of aceclofenac for colon targeted drug delivery. Iran J Pharm Res IJPR 2012;11(May 2010):465-79.

89. Shpak M, Ryabtseva S, Bratsikhin A. Lactulose effect on viability of starter cultures. J Hygienic Eng Des. 2019;2-7.

90. Suganya G. CODESTM drug delivery: capecitabine in the management of colorectal cancer. 2017.

91. Katsuma M, Watanabe S, Kawai H. Studies on lactulose formulations for colon-specific drug delivery. Int J Pharm. 2002;249:33-43. https://doi.org/10.1016/S0378-5173(02)00429-5

92. Trivedi HD, Puranik PK. Formulation and development of colon specific etoricoxib CODES TM tablet : statistical optimization and in vivo roentgenography. Int J Pharm Pharm Res. 2016;7(1):185-215.

93. Sanjeevani D, Kranti T, Ajinath S, Aparna B, Padm S, Patil D. Development of colon targeted delivery of ketoprofen using natural gums as carrier. Res J Pharm Technol. 2009;2(4):771-6.

94. Milani PZ. Physicochemical characterization and dissolution study of Ibuprofen compression-coated tablets using locust bean gum. Dissolution Technol. 2013;20:38-43. https://doi.org/10.14227/DT200113P38

95. Kumar M, Kaushik S, Saini V. Formulation development and evaluation of colon targeted beads of mesalamine. J Drug Des Res. 2018;5:1067.

96. Shukla S, Jain D, Verma K, Verma S. Pectin-based colon-specific drug delivery. Chron Young Sci. 2011;2(2):83-90. https://doi.org/10.4103/2229-5186.82978

97. Butte K, Momin M, Deshmukh H. Optimisation and in vivo evaluation of pectin based drug delivery system containing curcumin for colon. Int J Biomater. 2014;2014:924278. https://doi.org/10.1155/2014/924278

98. Wei H, Qing D, De-Ying C, Bai X, Fanli-Fang. Pectin/ethylcellulose as film coatings for colon-specific drug delivery: preparation and in vitro evaluation using 5-fluorouracil pellets. PDA J Pharm Sci Technol. 2007 Mar 1;61(2):121 LP-130.

99. Vaidya A, Jain S, Agrawal RK, Jain SK. Pectin-metronidazole prodrug bearing microspheres for colon targeting. J Saudi Chem Soc. 2012:19(3):257-64. https://doi.org/10.1016/j.jscs.2012.03.001

100. Tian B, Hua S, Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs : a review. Carbohydr Polym. 2020;232(December 2019):115805. https://doi.org/10.1016/j.carbpol.2019.115805

101. Shahiwala A. Cyclodextrin conjugates for colon drug delivery. J Drug Deliv Sci Technol. 2020;55(December 2019):101448. https://doi.org/10.1016/j.jddst.2019.101448

102. Arulraj P, Gopal V, Jeyabalan G, Kandasamy CS, Chander SJJU, Venkatanarayanan R. Studies on formulation development and in vitro evaluation of celecoxib matrix tablet containing combination of equal ratio of natural gums guargum and cyclodextrin, amylose and pectin for colon specific drug delivery. Int J Pharm Sci Res. 2015;6(12):5273-8.

103. Jiang HL, Zhu KJ. Polyanion/gelatin complexes as pH-sensitive gels for controlled protein release. J Appl Polym Sci. 2001;80(9):1416-25. https://doi.org/10.1002/app.1231

104. Adeleke OA. Premium ethylcellulose polymer based architectures at work in drug delivery. Int J Pharm X. 2019;1:100023. https://doi.org/10.1016/j.ijpx.2019.100023

105. Godge GR, Hiremath SN. Development and evaluation of colon targeted drug delivery system by using natural polysaccharides/polymers. Dhaka Univ J Pharm Sci. 2014;13(1):105-13. https://doi.org/10.3329/dujps.v13i1.21874

106. Joshi SC. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials. 2011;4(10):1861-905. https://doi.org/10.3390/ma4101861

107. Sureshkumar R, Munikumar M, Ganesh GNK, Jawahar N, Nagasamyvenkatesh D, Senthil V, et al. Formulation and evaluation of pectin-hydroxypropyl methylcellulose coated curcumin pellets for colon delivery. Asian J Pharm. 2009;3(2):138-42. https://doi.org/10.4103/0973-8398.55052

108. Kshirsagar SJ, Bhalekar MR, Shewale NS, Godbole VP, Jagdale PK, Mohapatra SK. Development of enzyme-controlled colonic drug delivery using amylose and hydroxypropyl methylcellulose : optimization by factorial design. 2011;18:385-93. https://doi.org/10.3109/10717544.2011.567308

109. Mishra S. Formulation and evaluation of pH sensitive nanoparticles for colon targeted drug delivery system. In: 3rd International Conference and Exhibition on Pharmaceutics and Novel Drug Delivery Systems. 2013.

110. Lone KD, Dhole JA. An in vitro investigation of suitability of press-coated tablets with hydroxypropyl methylcellulose acetate succinate (HPMCAS) and sodium alginate in outer shell for colon targeting. Int J Pharm Sci Res. 2013;4(6):2244-51.

111. Kaur S, Narang RK, Aggarwal G. Formulation and development of colon-targeted mucopenetrating metronidazole nanoparticles. Trop J Pharm Res. 2017;16(5):967-73. https://doi.org/10.4314/tjpr.v16i5.1

112. Sinha VR, Kumria R. Coating polymers for colon specific drug delivery: a comparative in vitro evaluation. Acta Pharm. 2003;53(1):41-7.

113. Rathore VS, Tanwar YS, Rathore GS, Ahmed JA. a review on enteric coating technology. Int J Chem Pharm Sci. 2014;2(9):1155-9.

114. Neekhra M, Shrivastav S, Sharma S, Molvi KI, Kumar V. Development and evaluation of oral colon targeted ketorolac tromethamine capsule. Int J Pharm Sci Res. 2010;1(5):61-7.

115. Giunchedi P, Ltorre M, Maggi L, Conti B, Conte U. Cellulose acetate trimellitate microspheres containing NSAIDS. Drug Dev Ind Pharm. 1995 Jan 1;21(3):315-30. https://doi.org/10.3109/03639049509048113

116. Sirisha VNL, Eswariah MC, Rao AS. A novel approach of locust bean gum microspheres for colonic delivery of mesalamine. Int J Appl Pharm. 2018;10(1):86-93. https://doi.org/10.22159/ijap.2018v10i1.22638

117. Tung NT, Pham TMH, Nguyen TH, Pham TT, Nguyen TQ. Pectin/HPMC dry powder coating formulations for colon specific targeting tablets of metronidazole. J Drug Deliv Sci Technol. 2016;33:19-27. https://doi.org/10.1016/j.jddst.2016.03.004

118. Jeganathan B, Prakya V, Deshmukh A. Preparation and evaluation of diclofenac sodium tablet coated with polyelectrolyte multilayer film using hypromellose acetate succinate and polymethacrylates for pH-dependent, modified release drug delivery. AAPS Pharm Sci Tech. 2016;17(3):578-87. https://doi.org/10.1208/s12249-015-0385-y

119. Jagdale S, Chandekar A. Optimization of chitosan and cellulose acetate phthalate controlled delivery of methylprednisolone for treatment of inflammatory bowel disease. Adv Pharm Bull. 2017;7(2):203-13. https://doi.org/10.15171/apb.2017.025

120. Terao K. Poly(acrylic acid) (PAA). Encyclop Polym Nanomater. 2014. https://doi.org/10.1007/978-3-642-36199-9_279-1

121. National Center for Biotechnology Information. PubChem Database. 2020 [cited 2020 May 21]. Methacrylic acid, CID=4093. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Methacrylic-acid

122. Khan S, Anwar N. Highly porous ph-responsive carboxymethyl chitosan- grafted -poly (acrylic acid) based smart hydrogels for 5-fluorouracil controlled delivery and colon targeting. Int J Polym Sci. 2019;2019:6579239. https://doi.org/10.1155/2019/6579239

123. Seeli DS, Prabaharan M. Guar gum oleate-graft-poly(methacrylic acid) hydrogel as a colon-specific controlled drug delivery carrier. Carbohydr Polym. 2017;158:51-7. https://doi.org/10.1016/j.carbpol.2016.11.092

124. Chourasia MK, Jain SK. Design and development of multiparticulate system for targeted drug delivery to colon. Drug Deliv J Deliv Target Therapeutic Agents. 2004;11(3):201-7. https://doi.org/10.1080/10717540490445955

125. Devi SKU, Thiruganesh R, Suresh S. Preparation and characterization of chitosan tablets of aceclofenac for colon targeted drug delivery. Asian J Pharm Res Health Care 2010;2(1):46-65.

126. Nguyen CA, Konan-Kouakou YN, Allémann E, Doelker E, Quintanar-Guerrero D, Fessi H, et al. Preparation of surfactant-free nanoparticles of methacrylic acid copolymers used for film coating. Aaps Pharm 2006;7:E54-60. https://doi.org/10.1208/pt070363

127. Agrawal D, Ranawat MS. Formulation and charecterisation of colon targeted time dependent microspheres of capecitabine for colorectal cancer. Asian J Pharm Res Dev. 2013;1(5):152-61.

128. Choi M, Cao J, Lee Y, Ikram M. Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy. Drug Des Devel Ther. 2015;3789-99. https://doi.org/10.2147/DDDT.S88672

129. Soni P, Gp C, Lk S. Enzyme specific drug delivery system: a potential approach for colon targeting. Curr Res Pharm Sci. 2015;05(02):28-50.

130. Ofokansi KC, Kenechukwu FC. Formulation development and evaluation of drug release kinetics from colon-targeted ibuprofen tablets based on Eudragit RL 100-Chitosan interpolyelectrolyte complexes. Int Scholar Res Notices 2013;2013:838403. https://doi.org/10.1155/2013/838403

131. Sun X, Xu C, Wu G, Ye Q, Wang C. Poly(lactic-co-glycolic acid): applications and future prospects for periodontal tissue regeneration. Polymers (Basel). 2017;9(6):1-19. https://doi.org/10.3390/polym9060189

132. Drechsler M, Garbacz G, Thomann R, Schubert R. Development and evaluation of chitosan and chitosan/Kollicoat® Smartseal 30 D film-coated tablets for colon targeting. Eur J Pharm Biopharm. 2014;88(3):807-15. https://doi.org/10.1016/j.ejpb.2014.09.006

133. BASF. Excipients and actives for pharma. Ludwigshafen, Germany: BASF Aktiengesellschaft; 2002.

134. Ali H, Weigmann B, Collnot EM, Khan SA, Windbergs M, Lehr CM. Budesonide loaded PLGA nanoparticles for targeting the inflamed intestinal mucosa-pharmaceutical characterization and fluorescence imaging. Pharm Res. 2016;33(5):1085-92. https://doi.org/10.1007/s11095-015-1852-6

135. Zhang W, Mahuta KM, Mikulski BA, Harvestine JN, Zachary J, Lee JC, et al. Novel pectin-based carriers for colonic drug delivery. Pharm Devel Technol 2014;7450:1-4. https://doi.org/10.3109/10837450.2014.965327

136. Liu Z, Yu D, Wang K. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites. Int J Nanomed 2018;13:2395-404. https://doi.org/10.2147/IJN.S154849

137. Naeem M, Bae J, Oshi MA, Kim MS, Moon HR, Lee BL, et al. Colon-targeted delivery of cyclosporine a using dual-functional eudragit® FS30D/PLGA nanoparticles ameliorates murine experimental colitis. Int J Nanomedicine. 2018;13:1225-40. https://doi.org/10.2147/IJN.S157566

138. Perrie Y, Rades T. FASTtrack pharmaceutics: Drug Delivery and Targeting. London, UK: Pharmaceutical Press; 2012. (Fast Track Pharmacy Series).

139. Tian B, Liu S, Wu S, Lu W, Wang D, Jin L, et al. pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloids Surf B Biointerfaces 2017;154:287-96. https://doi.org/10.1016/j.colsurfb.2017.03.024

140. Tian B, Liu S, Lu W, Jin L, Li Q, Shi Y, et al. Construction of pH-responsive and up-conversion luminescent NaYF 4:Yb3+/Er3+ @SiO2 @PMAA nanocomposite for colon targeted drug delivery. Sci Rep. 2016;6:1-11. https://doi.org/10.1038/srep21335

141. Vibhooti P, Rajan G, Seema B. Eudragit and Chitosan-the two most promising polymer for colon drug delivery. J Med Sci Clin Res. 2013;1:61-83.

142. Kathiravan P. Formulation and evaluation of colon specific drug delivery system of capecitabine containing polymer coated capsule dosage form. Int J Drug Dev Res. 2015;7(3):26-31.

143. Alkazzaz SZM, Ali WK. Design and in-vitro evaluation of colon targeted prednisolone solid dispersion tablets. UK J Pharm Biosci. 2015;3(6):30. https://doi.org/10.20510/ukjpb/3/i6/87833

144. Nguyen MNU, Tran PHL, Tran TTD. A single-layer film coating for colon-targeted oral delivery. Int J Pharm. 2019;559:402-9. https://doi.org/10.1016/j.ijpharm.2019.01.066

145. Lozoya-Agullo I, Araújo F, González-Álvarez I, Merino-Sanjuán M, González-Álvarez M, Bermejo M, et al. PLGA nanoparticles are effective to control the colonic release and absorption on ibuprofen. Eur J Pharm Sci. 2018;115:119-25. https://doi.org/10.1016/j.ejps.2017.12.009

146. Akl MA, Kartal-Hodzic A, Suutari T, Oksanen T, Montagner IM, Rosato A, et al. Real-time label-free targeting assessment and in vitro characterization of curcumin-loaded poly-lactic-co-glycolic acid nanoparticles for oral colon targeting. ACS Omega. 2019;4(16):16878-90. https://doi.org/10.1021/acsomega.9b02086

147. Reddy PS, Subhash P, Bose C, Saritha D, Sruthi V. Formulation and evaluation of colon targeted matrix tablet using natural tree gums. Int J Pharm Pharm Sci 2018;10(9):92-7. https://doi.org/10.22159/ijpps.2018v10i9.27255

148. Wang X, Yu DG, Li XY, Bligh SW, Williams GR. Electrospun medicated shellac nanofibers for colon-targeted drug delivery. Int J Pharm. 2015 Jul 25;490(1-2):384-90. https://doi.org/10.1016/j.ijpharm.2015.05.077

149. Oehme A, Valotis A, Krammer G, Zimmermann I. Preparation and characterization of shellac-coated anthocyanin pectin beads as dietary colonic delivery system. Mole Nutr Food Res 2011;55:75-85. https://doi.org/10.1002/mnfr.201000467

150. Wahlgren M, Axenstrand M, Håkansson Å, Marefati A, Pedersen BL. In vitro methods to study colon release: state of the art and an outlook on new strategies for better in-vitro biorelevant release media. Pharmaceutics. 2019;11(2):95. https://doi.org/10.3390/pharmaceutics11020095

151. Ahmadi F, Varshosaz J, Emami J, Tavakoli N, Minaiyan M, Mahzouni P, et al. Preparation and in vitro/in vivo evaluation of dextran matrix tablets of budesonide in experimental ulcerative colitis in rats. Drug Deliv. 2011;18(2):122-30. https://doi.org/10.3109/10717544.2010.520352

152. Rajpoot K, Jain SK. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: a dual-targeted approach. Int J Biol Macromol [Internet]. 2020. https://doi.org/10.1016/j.ijbiomac.2020.02.132

153. Asikainen S, Seppälä J. Photo-crosslinked anhydride-modified polyester and-ethers for pH- sensitive drug release. Eur J Pharm Biopharm [Internet]. 2020. https://doi.org/10.1016/j.ejpb.2020.02.015

154. Sinko PJ, Martin AN. Martin's physical pharmacy and pharmaceutical sciences: Physical chemical and biopharmaceutical principles in the pharmaceutical sciences. Philadelph, PA: Lippincott Williams & Wilkins; 2006.

155. Jain V, Shukla N, Mahajan SC. Polysaccharides in colon specific drug delivery. J Transl Sci. 2015;1(1):3-11.

156. Wilson C, Wang Lee W, Mukherji G. Time-dependent systems for colonic delivery. Boca Raton, FL: CRC Press; 2002. pp 243-8. https://doi.org/10.1201/9780203910337.ch20

157. Kumar V, Kumar B, Deeba F, Bano S, Kulshreshtha A. Lipophilic 5-fluorouracil prodrug encapsulated xylan-stearic acid conjugates nanoparticles for colon cancer therapy. Int J Biol Macromol [Internet]. 2019;128:204-13. https://doi.org/10.1016/j.ijbiomac.2019.01.101

158. Pinto DC. Seaweeds Secondary metabolites: successes in and/or probable therapeutic applications. Basel, Switzerland: MDPI AG; 2020.

159. Necas J, Bartosikova L. Carrageenan : a review. Veter Med 2013;2013(4):187-205. https://doi.org/10.17221/6758-VETMED

160. Guarino V, Caputo T, Altobelli R, Ambrosio L. Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Mater Sci. 2015;2:497-502. https://doi.org/10.3934/matersci.2015.4.497

161. Vadnerkar G, Dhaneshwar S. Macromolecular prodrug of 4-aminosalicylic acid for targeted delivery to inflamed colon. Curr Drug Discov Technol 2013;10:16-24. https://doi.org/10.2174/1570163811310010004

162. Kumar VS, John R, Sabitha M. Guargum and Eudragit® coated curcumin liquid solid tablets for colon specific drug delivery. Int J Biol Macromol. 2018;110:318-27. https://doi.org/10.1016/j.ijbiomac.2018.01.082

163. Oshi MA, Naeem M, Bae J, Kim J, Lee J. Colon-targeted dexamethasone microcrystals with pH-sensitive chitosan/alginate/Eudragit S multilayers for the treatment of in fl ammatory bowel disease. Carbohydr Polym. 2018;198:434-42. https://doi.org/10.1016/j.carbpol.2018.06.107

164. Rachmawati H, Mudhakir D, Kusuma J. Combination of inulin-shellac as a unique coating formulation for design of co-lonic delivery dosage form of ibuprofen. Int J Res Pharm Sci. 2012;3(1):17-23.

165. Amini-Fazl MS, Mohammadi R, Kheiri K. 5Fluorouracil loaded chitosan/polyacrylic acid/Fe3O4 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system. Int J Biol Macromol. 2019;132:506-13. https://doi.org/10.1016/j.ijbiomac.2019.04.005

166. Penhasi A, Gomberg M, Shalev DE. A novel nicotine pectinate salt formulated in a specific time-controlled delivery system: a new approach for colon-targeted nicotine release. J Drug Deliv Sci Technol. 2020;56:101583. https://doi.org/10.1016/j.jddst.2020.101583

167. Rehman K, Amin MCIM, Muda S. Influence of beta-cyclodextrin and chitosan in the formulation of a colon-specific drug delivery system. Drug Res 2013;63:657-62. https://doi.org/10.1055/s-0033-1349129

168. Maqbool I, Akhtar M, Ahmad R, Sadaquat H, Noreen S, Batool A, et al. Novel multiparticulate pH triggered delayed release chronotherapeutic drug delivery of celecoxib-β-cyclodextrin inclusion complexes by using Box-Behnken design. Eur J Pharm Sci. 2020;146:105254. https://doi.org/10.1016/j.ejps.2020.105254

169. Katsuma M, Watanabe S, Takemura S, Sako K, Sawada T. Scintigraphic evaluation of a novel colon-targeted delivery system (CODES TM) in healthy volunteers. J Pharm Sci. 2004;93(5):1287-99. https://doi.org/10.1002/jps.20063

Article Metrics
45 Views 17 Downloads 62 Total

Year

Month

Related Search

By author names