This study aimed to review the quality of published evidence on the cost-effectiveness of fixed-dose drug combinations (FDCs), summarize key methodologic assumptions, and make recommendations for future economic evaluations of FDCs. The search was conducted on four databases, namely Medline, Embase, Web of Science, and the International Network of Agencies for Health Technology Assessment. Studies were selected if they assessed the cost-effectiveness of FDCs compared to one or more single active ingredient dosage forms or placebo. The Consolidated Health Economic Evaluation Reporting Standards 2022 checklist was utilized for evaluating the quality of studies. The study protocol was registered in PROSPERO (CRD42021295388). A total of 39 studies were eligible for inclusion in the review. While most of the studies (n = 29) reported that FDCs are cost-effective, the comparator in the economic evaluations was not justified explicitly in most studies (n = 34). Modelling that examined cost-effectiveness did not incorporate medication adherence (n = 22), failing to consider a key advantage of FDCs. The majority of studies investigating FDCs reported that they were cost-effective interventions. However, further economic evaluations based on long-term clinical trials with larger populations are necessary. Also, future economic studies should incorporate superior treatment adherence with FDC into the model structure.
Phung TL, Ong DT, Ngo NTN, Pham TT, Nguyen HT, Duong KNC, Dang MTN, Alcusky MJ, Amante DJ, Nguyen HL. Economic evaluation of fixed-dose drug combinations: A systematic review. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.199087
1. Gautam CS, Saha L. Fixed dose drug combinations (FDCs): rational or irrational: a view point. Br J Clin Pharmacol. 2008;65(5):795–6. doi: https://doi.org/10.1111/j.1365-2125.2007.03089.x
2. Sreedhar D, Subramanian G, Udupa N. Combination drugs: are they rational. Curr Sci. 2006;91:406.
3. European Medicines Agency. Guideline on Clinical Development of Fixed Combination Medicinal Products. Amsterdam, The Netherlands: European Medicines Agency; 2017.
4. Auwal F, Dahiru MN, Abdu-Aguye SN. Availability and rationality of fixed dose combinations available in Kaduna, Nigeria. Pharm Pract (Granada). 2019;17(2):1470. doi: https://doi.org/10.18549/PharmPract.2019.2.1470
5. Sawicki-Wrzask D, Thomsen M, Bjerrum OJ. An analysis of the fixed-dose combinations authorized by the European Union, 2009-2014: a focus on benefit-risk and clinical development conditions. Ther Innov Regul Sci. 2015;49(4):553–9. doi: https://doi.org/10.1177/2168479014567322
6. Duconge J, Ruaño G. Fixed-dose combination products and unintended drug interactions: urgent need for pharmacogenetic evaluation. Pharmacogenomics. 2015;16(15):1685–8. doi: https://doi.org/10.2217/pgs.15.123
7. Bangalore S, Kamalakkannan G, Parkar S, Messerli FH. Fixed-dose combinations improve medication compliance: a meta-analysis. Am J Med. 2007;120(8):713–9. doi: https://doi.org/10.1016/j.amjmed.2006.08.033
8. Godman B, McCabe H, D Leong T, Mueller D, Martin AP, Hoxha I, et al. Fixed dose drug combinations—are they pharmacoeconomically sound? findings and implications especially for lower- and middle-income countries. Expert Rev Pharmacoecon Outcomes Res. 2020;20(1):1–26. doi: https://doi.org/10.1080/14737167.2020.1734456
9. Selya-Hammer C, Gonzalez-Rojas Guix N, Baldwin M, Ternouth A, Miravitlles M, Rutten-Van Mölken M, et al. Development of an enhanced health-economic model and cost-effectiveness analysis of tiotropium + olodaterol Respimat® fixed-dose combination for chronic obstructive pulmonary disease patients in Italy. Ther Adv Respir Dis. 2016;10(5):391–401. doi: https://doi.org/10.1177/1753465816657272
10. Price D, Keininger D, Costa-Scharplatz M, Mezzi K, Dimova M, Asukai Y, et al. Cost-effectiveness of the LABA/LAMA dual bronchodilator indacaterol/glycopyrronium in a Swedish healthcare setting. Respir Med. 2014;108(12):1786–93. doi: https://doi.org/10.1016/j.rmed.2014.09.015
11. Becerra V, Gracia A, Desai K, Abogunrin S, Brand S, Chapman R, et al. Cost-effectiveness and public health benefit of secondary cardiovascular disease prevention from improved adherence using a polypill in the UK. BMJ Open. 2015;5(5):e007111. doi: https://doi.org/10.1136/bmjopen-2014-007111
12. Angus DC, Linde-Zwirble WT, Tam SW, Ghali JK, Sabolinski ML, Villagra VG, et al. Cost-effectiveness of fixed-dose combination of isosorbide dinitrate and hydralazine therapy for blacks with heart failure. Circulation. 2005;112(24):3745–53. doi: https://doi.org/10.1161/CIRCULATIONAHA.105.563882
13. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: https://doi.org/10.1371/journal.pmed.1000097
14. Husereau D, Drummond M, Augustovski F, de Bekker-Grob E, Briggs AH, Carswell C, et al. Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) statement: updated reporting guidance for health economic evaluations. BMJ. 2022;376:e067975. doi: https://doi.org/10.1136/bmj-2021-067975
15. Glasziou PP, Clarke P, Alexander J, Rajmokan M, Beller E, Woodward M, et al. Cost-effectiveness of lowering blood pressure with a fixed combination of perindopril and indapamide in type 2 diabetes mellitus: an advance trial-based analysis. Med J Aust. 2010;193(6):320–4. doi: https://doi.org/10.5694/j.1326-5377.2010.tb03941.x
16. Lin JK, Moran AE, Bibbins-Domingo K, Falase B, Pedroza Tobias A, Mandke CN, et al. Cost-effectiveness of a fixed-dose combination pill for secondary prevention of cardiovascular disease in China, India, Mexico, Nigeria, and South Africa: a modelling study. Lancet Glob Health. 2019;7(10):e1346–e58. doi: https://doi.org/10.1016/s2214-109x(19)30339-0
17. O’Connor RD, Nelson H, Borker R, Emmett A, Jhingran P, Rickard K, et al. Cost effectiveness of fluticasone propionate plus salmeterol versus fluticasone propionate plus montelukast in the treatment of persistent asthma. Pharmacoeconomics. 2004;22(12):815–25. doi: https://doi.org/10.2165/00019053-200422120-00004
18. Ismaila AS, Risebrough N, Li C, Corriveau D, Hawkins N, FitzGerald JM, et al. Cost-effectiveness of salmeterol/fluticasone propionate combination (Advair(®)) in uncontrolled asthma in Canada. Respir Med. 2014;108(9):1292–302. doi: https://doi.org/10.1016/j.rmed.2014.06.005
19. Van Boven JFM, Kocks JWH, Postma MJ. Cost-effectiveness and budget impact of the fixed-dose dual bronchodilator combination tiotropium–olodaterol for patients with COPD in the Netherlands. Int J Chron Obstruct Pulmon Dis. 2016;11(1):2191–201. doi: https://doi.org/10.2147/COPD.S114738
20. Ramos M, Haughney J, Henry N, Lindner L, Lamotte M. Cost versus utility of aclidinium bromide 400 μg plus formoterol fumarate dihydrate 12 μg compared to aclidinium bromide 400 μg alone in the management of moderate-to-severe COPD. Clinicoecon Outcomes Res. 2016;8:445–56. doi: https://doi.org/10.2147/CEOR.S107121
21. Rajagopalan K, Bloudek L, Marvel J, Dembek C, Kavati A. Cost-effectiveness of twice-daily indacaterol/glycopyrrolate inhalation powder for the treatment of moderate to severe COPD in the US. Int J Chron Obstruct Pulmon Dis. 2018;13:3867–77. doi: https://doi.org/10.2147/COPD.S177097
22. Hoogendoorn M, Ramos IC, Baldwin M, Luciani L, Fabron C, Detournay B, et al. Long-term cost-effectiveness of the fixed-dose combination of tiotropium plus olodaterol based on the DYNAGITO trial results. Int J Chron Obstruct Pulmon Dis. 2019;14:447–56. doi: https://doi.org/10.2147/COPD.S191031
23. Hoogendoorn M, Ramos IC, Soulard S, Cook J, Soini E, Paulsson E, et al. Cost-effectiveness of the fixed-dose combination tiotropium/olodaterol versus tiotropium monotherapy or a fixed-dose combination of long-acting β2-agonist/inhaled corticosteroid for COPD in Finland, Sweden and the Netherlands: a model-based study. BMJ Open. 2021;11(8):e049675. doi: https://doi.org/10.1136/bmjopen-2021-049675
24. Orlovic M, Magni T, Lukyanov V, Guerra I, Madoni A. Cost-effectiveness of single-inhaler extrafine beclometasone dipropionate/formoterol fumarate/glycopyrronium in patients with uncontrolled asthma in England. Respir Med. 2022;201:106934. doi: https://doi.org/10.1016/j.rmed.2022.106934
25. Lan Y, Yang N, Wang Y, Yang Y, Xu M, He Q. Cost-effectiveness analysis of fixed-dose tiotropium/Olodaterol versus tiotropium for COPD patients in China. Int J Chron Obstruct Pulmon Dis. 2023;18:2093–103. doi: https://doi.org/10.2147/copd.S425409
26. Ren M, Xuan D, Lu Y, Fu Y, Xuan J. Economic evaluation of olmesartan/amlodipine fixed-dose combination for hypertension treatment in China. J Med Econ. 2020;23(4):394–400. doi: https://doi.org/10.1080/13696998.2019.1699799
27. Zomer E, Owen A, Magliano DJ, Ademi Z, Reid CM, Liew D. Predicting the impact of polypill use in a metabolic syndrome population: an effectiveness and cost-effectiveness analysis. Am J Cardiovasc Drugs. 2013;13(2):121–8. doi: https://doi.org/10.1007/s40256-013-0019-2
28. Vaidya V, Anupindi VR, Pinto S, Kaun M. Cost utility analysis of fixed-dose and free-dose combinations of oral medications in type 2 diabetes patients. J Pharm Health Serv Res. 2016;7(3):181–7. doi: https://doi.org/10.1111/jphs.12139
29. Newman J, Grobman WA, Greenland P. Combination polypharmacy for cardiovascular disease prevention in men: a decision analysis and cost-effectiveness model. Prev Cardiol. 2008;11(1):36–41. doi: https://doi.org/10.1111/j.1520-037x.2007.06423.x
30. Rubinstein A, García Martí S, Souto A, Ferrante D, Augustovski F. Generalized cost-effectiveness analysis of a package of interventions to reduce cardiovascular disease in Buenos Aires, Argentina. Cost Eff Resour Alloc. 2009;7:10. doi: https://doi.org/10.1186/1478-7547-7-10
31. Rubinstein A, Colantonio L, Bardach A, Caporale J, Martí SG, Kopitowski K, et al. Estimation of the burden of cardiovascular disease attributable to modifiable risk factors and cost-effectiveness analysis of preventative interventions to reduce this burden in Argentina. BMC Public Health. 2010;10:627. doi: https://doi.org/10.1186/1471-2458-10-627
32. van Gils PF, Over EA, Hamberg-van Reenen HH, de Wit GA, van den Berg M, Schuit AJ, et al. The polypill in the primary prevention of cardiovascular disease: cost-effectiveness in the Dutch population. BMJ Open. 2011;1(2):e000363. doi: https://doi.org/10.1136/bmjopen-2011-000363
33. Ito K, Shrank WH, Avorn J, Patrick AR, Brennan TA, Antman EM, et al. Comparative cost-effectiveness of interventions to improve medication adherence after myocardial infarction. Health Serv Res. 2012;47(6):2097–117. doi: https://doi.org/10.1111/j.1475-6773.2012.01462.x
34. Khonputsa P, Veerman LJ, Bertram M, Lim SS, Chaiyakunnaphruk N, Vos T. Generalized cost-effectiveness analysis of pharmaceutical interventions for primary prevention of cardiovascular disease in Thailand. Value Health Reg Issues. 2012;1(1):15–22. doi: https://doi.org/10.1016/j.vhri.2012.03.019
35. Bautista LE, Vera-Cala LM, Ferrante D, Herrera VM, Miranda JJ, Pichardo R, et al. A ‘polypill’ aimed at preventing cardiovascular disease could prove highly cost-effective for use in Latin America. Health Aff (Millwood). 2013;32(1):155–64. doi: https://doi.org/10.1377/hlthaff.2011.0948
36. Megiddo I, Chatterjee S, Nandi A, Laxminarayan R. Cost-effectiveness of treatment and secondary prevention of acute myocardial infarction in India: a modeling study. Global Heart. 2014;9(4):391–8.e3. doi: https://doi.org/10.1016/j.gheart.2014.07.002
37. Ong KS, Carter R, Vos T, Kelaher M, Anderson I. Cost-effectiveness of interventions to prevent cardiovascular disease in Australia’s indigenous population. Heart Lung Circ. 2014;23(5):414–21. doi: https://doi.org/10.1016/j.hlc.2013.10.084
38. Wald NJ, Luteijn JM, Morris JK, Taylor D, Oppenheimer P. Cost-benefit analysis of the polypill in the primary prevention of myocardial infarction and stroke. Eur J Epidemiol. 2016;31(4):415–26. doi: https://doi.org/10.1007/s10654-016-0122-1
39. Barrios V, Kaskens L, Castellano JM, Cosin-Sales J, Ruiz JE, Zsolt I, et al. Usefulness of a cardiovascular polypill in the treatment of secondary prevention patients in Spain: a cost-effectiveness study. Revista Espanola de Cardiologia. 2017;70(1):42–9. doi: https://doi.org/10.1016/j.recesp.2016.05.011
40. Ferket BS, Hunink MG, Khanji M, Agarwal I, Fleischmann KE, Petersen SE. Cost-effectiveness of the polypill versus risk assessment for prevention of cardiovascular disease. Heart. 2017;103(7):483–91. doi: https://doi.org/10.1136/heartjnl-2016-310529
41. Jowett S, Barton P, Roalfe A, Fletcher K, Hobbs FDR, McManus RJ, et al. Cost-effectiveness analysis of use of a polypill versus usual care or best practice for primary prevention in people at high risk of cardiovascular disease. PLoS One. 2017;12(9):e0182625. doi: https://doi.org/10.1371/journal.pone.0182625
42. Gaziano TA, Pandya A, Sy S, Jardim TV, Ogden JM, Rodgers A, et al. Modeling the cost effectiveness and budgetary impact of Polypills for secondary prevention of cardiovascular disease in the United States. Am Heart J. 2019;214:77–87. doi: https://doi.org/10.1016/j.ahj.2019.04.020
43. Lung T, Jan S, de Silva HA, Guggilla R, Maulik PK, Naik N, et al. Fixed-combination, low-dose, triple-pill antihypertensive medication versus usual care in patients with mild-to-moderate hypertension in Sri Lanka: a within-trial and modelled economic evaluation of the TRIUMPH trial. Lancet Glob Health. 2019;7(10):e1359–e66. doi: https://doi.org/10.1016/S2214-109X(19)30343-2
44. Aguiar C, Araujo F, Rubio-Mercade G, Carcedo D, Paz S, Castellano JM, et al. Cost-effectiveness of the CNIC-Polypill strategy compared with separate monocomponents in secondary prevention of cardiovascular and cerebrovascular disease in Portugal: the MERCURY Study. J Health Econ Outcomes Res. 2022;9(2):134–46. doi: https://doi.org/10.36469/001c.39768
45. González-Domínguez A, Durán A, Hidalgo-Vega Á, Barrios V. Cost-effectiveness of the CNIC-Polypill versus separate monocomponents in cardiovascular secondary prevention in Spain. Rev Clin Esp (Barc). 2023;223(7):414–22. doi: https://doi.org/10.1016/j.rceng.2023.06.007
46. Al MJ, Michel BC, Rutten FFH. The cost effectiveness of diclofenac plus misoprostol compared with diclofenac monotherapy in patients with rheumatoid arthritis. PharmacoEconomics. 1996;10(2):141–51. doi: https://doi.org/10.2165/00019053-199610020-00006
47. Udeh EI, Ofoha CG, Adewole DA, Nnabugwu II. A cost effective analysis of fixed-dose combination of dutasteride and tamsulosin compared with dutasteride monotherapy for benign prostatic hyperplasia in Nigeria: a middle income perspective; using an interactive Markov model. BMC Cancer. 2016;16(1):405. doi: https://doi.org/10.1186/s12885-016-2431-x
48. Sussell JA, Roth JA, Meyer CS, Fung A, Hansen SA. Assessment of the cost-effectiveness of HER2-targeted treatment pathways in the neoadjuvant treatment of high-risk HER2-positive early-stage breast cancer. Adv Ther. 2022;39(3):1375–92. doi: https://doi.org/10.1007/s12325-022-02047-y
49. Nilsson J, Piovesana V, Turini M, Lezzi C, Eriksson J, Aapro M. Cost-effectiveness analysis of NEPA, a fixed-dose combination of netupitant and palonosetron, for the prevention of highly emetogenic chemotherapy-induced nausea and vomiting: an international perspective. Support Care Cancer. 2022;30(11):9307–15. doi: https://doi.org/10.1007/s00520-022-07339-1
50. EuroQol. EQ-5D [cited 2023 13 November]. Available from: https://euroqol.org/.
51. Memon RA, Raveena Bai B, Simran F, Kumari M, Aisha F, Sai Kiran K, et al. Effect of the Polypill on adherence and prevention of cardiovascular diseases in patients with or at high risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. Cureus. 2023;15(1):e34134. doi: https://doi.org/10.7759/cureus.34134
52. Baumgartner A, Drame K, Geutjens S, Airaksinen M. Does the Polypill improve patient adherence compared to its individual formulations? a systematic review. Pharmaceutics. 2020;12(2):190. doi: https://doi.org/10.3390/pharmaceutics12020190
53. Law MR, Wald NJ, Morris JK, Jordan RE. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. BMJ. 2003;326(7404):1427. doi: https://doi.org/10.1136/bmj.326.7404.1427
54. Yusuf S, Pais P, Sigamani A, Xavier D, Afzal R, Gao P, et al. Comparison of risk factor reduction and tolerability of a full-dose Polypill (With Potassium) versus low-dose Polypill (Polycap) in individuals at high risk of cardiovascular diseases. CircCardiovasc Qual Outcomes. 2012;5(4):463–71. doi: https://doi.org/10.1161/CIRCOUTCOMES.111.963637
55. Hong SH, Wang J, Tang J. Dynamic view on affordability of fixed-dose combination antihypertensive drug therapy. Am J Hypertens. 2013;26(7):879–87. doi: https://doi.org/10.1093/ajh/hpt035
56. Rabbani A, Alexander GC. Out-of-pocket and total costs of fixed-dose combination antihypertensives and their components. Am J Hypertens. 2008;21(5):509–13. doi: https://doi.org/10.1038/ajh.2008.31
57. Ijzerman MJ, Koffijberg H, Fenwick E, Krahn M. Emerging use of early health technology assessment in medical product development: a scoping review of the literature. PharmacoEconomics. 2017;35(7):727–40. doi: https://doi.org/10.1007/s40273-017-0509-1
58. Wang Y, Rattanavipapong W, Teerawattananon Y. Using health technology assessment to set priority, inform target product profiles, and design clinical study for health innovation. Technol Forecast Soc Change. 2021;172:121000. doi: https://doi.org/10.1016/j.techfore.2021.121000
59. Gupta AK, Arshad S, Poulter NR. Compliance, safety, and effectiveness of fixed-dose combinations of antihypertensive agents: a meta-analysis. Hypertension. 2010;55(2):399–407. doi: https://doi.org/10.1161/hypertensionaha.109.139816
60. Santo K, Kirkendall S, Laba TL, Thakkar J, Webster R, Chalmers J, et al. Interventions to improve medication adherence in coronary disease patients: a systematic review and meta-analysis of randomised controlled trials. Eur J Prev Cardiol. 2020;23(10):1065–76. doi: https://doi.org/10.1177/2047487316638501
61. Chongmelaxme B, Chaiyakunapruk N, Dilokthornsakul P. Incorporating adherence in cost-effectiveness analyses of asthma: a systematic review. J Med Econ. 2019;22(6):554–66. doi: https://doi.org/10.1080/13696998.2019.1572014
62. Pradhan S, Panda A, Sahu S, Behera JP. An evaluation of prevalence and prescribing patterns of rational and irrational fixed dose combinations (FDCs): a hospital based study. Int J Med Public Health. 2017;6:58–62. doi: https://doi.org/10.5455/ijmsph.2017.19062016555
63. Poudel A, Mohamed Ibrahim MI, Mishra P, Palaian S. Assessment of utilization pattern of fixed dose drug combinations in primary, secondary and tertiary healthcare centers in Nepal: a cross-sectional study. BMC Pharmacol Toxicol. 2017;18:69. doi: https://doi.org/10.1186/s40360-017-0176-z
64. Balat JD, Gandhi AM, Patel PP, Dikshit RK. A study of use of fixed dose combinations in Ahmedabad, India. Indian J Pharmacol. 2014;46(5):503–9. doi: https://doi.org/10.4103/0253-7613.140581
65. Nigam MP, Fernandes VLG, Rataboli PV. Fixed dose combinations- to prescribe or not to prescribe: a dilemma of medical profession. Int J Basic Clin Pharmacol. 2014;3:105–13. doi: https://doi.org/10.5455/2319-2003.IJBCP20140212
Year
Month