Ketamine has emerged as an effective option for treatment-resistant depression (TRD), with a quick and long-lasting antidepressant effect, as well as anti-suicidal benefits. This bibliometric analysis uses a quantitative approach to determine the trend in publication and research themes related to ketamine and depression research. The literature search was conducted using a specific search query from the Scopus database. The downloaded data were analyzed using Publish or Perish and VOSviewer tools to perform citation and keyword analyses, respectively. A total of 994 articles were analyzed. Studies on ketamine and depression have shown an increasing trend annually since 2012. While the journal of affective disorders published more ketamine and depression-related articles, higher impact studies published in the biology of psychiatry garnered the most citations. Ketamine and depression-related terms topped the keyword co-occurrence analysis. All keywords were grouped into four clusters, cognitive effects of ketamine, mechanisms underlying antidepressant effects of ketamine, its safety and tolerability, and its anti-suicidal effects in TRD. The identified research themes from this review serve as a guide for researchers, practitioners, policymakers, and funding agencies to understand the research landscape and identify areas where more research is needed.
Omar N, Othman Z, Halim ASA, Ahmad R, Md Lazim RL, Shafin N, Ahmad AH, Zakaria R. Unveiling the therapeutic potential of ketamine in depression: A bibliometric analysis and research landscape overview. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.177533
1. World Health Organization. Depression and other common mental disorders: global health estimates. Geneva, Switzerland: World Health Organization; 2017. | |
2. Vuyk J, Sitsen E, Reekers M. Intravenous anesthetics. In: Miller R, editor. Anesthesia. 8th ed. Philadelphia, PA: Elsevier Saunders; 2015. p. 858. | |
3. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351-4. https://doi.org/10.1016/S0006-3223(99)00230-9 | |
4. Salahudeen MS, Wright CM, Peterson GM. Esketamine: new hope for the treatment of treatment-resistant depression? a narrative review. Ther Adv Drug Saf. 2020;11:2042098620937899. https://doi.org/10.1177/2042098620937899 | |
5. Matveychuk D, Thomas RK, Swainson J, Khullar A, MacKay MA, Baker GB, et al. Ketamine as an antidepressant: overview of its mechanisms of action and potential predictive biomarkers. Ther Adv Psychopharmacol. 2020;10:2045125320916657. https://doi.org/10.1177/2045125320916657 | |
6. Li X, Xiang P, Liang J, Deng Y, Du J. Global trends and hotspots in esketamine research: a bibliometric analysis of past and estimation of future trends. Drug Des Devel Ther. 2022;16:1131-42. https://doi.org/10.2147/DDDT.S356284 | |
7. Miao H, Yu K, Gao D, Lin X, Cao Y, Liu X, et al. A bibliometric analysis of research on ketamine from 2001 to 2020. Front Mol Neurosci. 2022;15:839198. https://doi.org/10.3389/fnmol.2022.839198 | |
8. Harzing AW. The publish or perish book. Melbourne, Australia: Tarma Software Research Pty Limited; 2010. | |
9. Van Eck NV, Waltman L. VOSviewer manual-Manual for VOSviewer version 1.6. 17. Leiden, Netherlands: Universiteit Leiden; 2021. | |
10. Zakaria WNA, Sasongko TH, Al-Rahbi B, Al-Sowayan N, Ahmad AH, Zakaria R, et al. Gene and schizophrenia in the pregenome and postgenome-wide association studies era: a bibliometric analysis and network visualization. Psychiatr Genet. 2023;33(2):37-49. https://doi.org/10.1097/YPG.0000000000000336 | |
11. Zakaria R, Ahmi A, Ahmad AH, Othman Z, Azman KF, Ab Aziz CB, et al. Visualising and mapping a decade of literature on honey research: a bibliometric analysis from 2011 to 2020. J Apic Res. 2021;60(3):359-68. https://doi.org/10.1080/00218839.2021.1898789 | |
12. Duan L, Gao Y, Shao X, Tian C, Fu C, Zhu G. Research on the development of theme trends and changes of knowledge structures of drug therapy studies on major depressive disorder since the 21st century: a bibliometric analysis. Front Psychiatry. 2020;11:647. https://doi.org/10.3389/fpsyt.2020.00647 | |
13. Mischel NA, Balon R. Esketamine: a drug to treat resistant depression that brings more questions than answers. J Clin Psychopharmacol. 2021;41(3):233. https://doi.org/10.1097/JCP.0000000000001395 | |
14. Yavi M, Lee H, Henter ID, Park LT, Zarate Jr CA. Ketamine treatment for depression: a review. Discov Ment Health. 2022;2(1):9. https://doi.org/10.1007/s44192-022-00012-3 | |
15. Goldberg JF. Ketamine and cognitive function in depression: detrimental, neutral, or advantageous? J Clin Psychiatry. 2022;83(1):38970. https://doi.org/10.4088/JCP.21com14243 | |
16. Zhang JC, Yao W, Hashimoto K. Arketamine, a new rapid-acting antidepressant: a historical review and future directions. Neuropharmacology. 2022;218:109219. https://doi.org/10.1016/j.neuropharm.2022.109219 | |
17. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, Aan het Rot M, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry. 2013;74(4):250-6. https://doi.org/10.1016/j.biopsych.2012.06.022 | |
18. Daly EJ, Singh JB, Fedgchin M, Cooper K, Lim P, Shelton RC, et al. Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2018;75(2):139-48. https://doi.org/10.1001/jamapsychiatry.2017.3739 | |
19. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554(7692):317-22. https://doi.org/10.1038/nature25509 | |
20. Price RB, Nock MK, Charney DS, Mathew SJ. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry. 2009;66(5):522-6. https://doi.org/10.1016/j.biopsych.2009.04.029 | |
21. Aan Het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry. 2010;67(2):139-45. https://doi.org/10.1016/j.biopsych.2009.08.038 | |
22. Zarate Jr CA, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, et al. Replication of ketamine's antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry. 2012;71(11):939-46. https://doi.org/10.1016/j.biopsych.2011.12.010 | |
23. Lapidus KA, Levitch CF, Perez AM, Brallier JW, Parides MK, Soleimani L, et al. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol Psychiatry. 2014;76(12):970-6. https://doi.org/10.1016/j.biopsych.2014.03.026 | |
24. Shiroma PR, Johns B, Kuskowski M, Wels J, Thuras P, Albott CS, et al. Augmentation of response and remission to serial intravenous subanesthetic ketamine in treatment resistant depression. J Affect Disord. 2014;155:123-9. https://doi.org/10.1016/j.jad.2013.10.036 | |
25. Bahji A, Vazquez GH, CA Zarate Jr. Comparative efficacy of racemic ketamine and esketamine for depression: a systematic review and meta-analysis. J Affect Disord. 2021;278:542-55. https://doi.org/10.1016/j.jad.2020.09.071 | |
26. Bartoli F, Wlkinson ST. Ketamine and esketamine for suicidal ideation: recent progress and practical issues. Aust NZJ Psychiatry. 2020;54(2):206-7. https://doi.org/10.1177/0004867419894064 | |
27. Lee Y, Syeda K, Maruschak NA, Cha DS, Mansur RB, Wium-Andersen IK, et al. A new perspective on the anti-suicide effects with ketamine treatment: a procognitive effect. J Clin Psychopharmacol. 2016;36(1):50-6. https://doi.org/10.1097/JCP.0000000000000441 | |
28. Gill H, Gill B, Rodrigues NB, Lipsitz O, Rosenblat JD, El-Halabi S, et al. The effects of ketamine on cognition in treatment-resistantdepression: a systematic review and priority avenues for future research. Neurosci Biobehav Rev. 2021;120:78-85. https://doi.org/10.1016/j.neubiorev.2020.11.020 | |
29. Shiroma PR, Albott CS, Johns B, Thuras P, Wels J, Lim KO. Neurocognitive performance and serial intravenous subanesthetic ketamine in treatment-resistant depression. Int J Neuropsychopharmacol. 2014;17(11):1805-13. https://doi.org/10.1017/S1461145714001011 | |
30. Liu W, Zhou Y, Zheng W, Wang C, Zhan Y, Lan X, et al. Repeated intravenous infusions of ketamine: neurocognition in patients with anxious and nonanxious treatment-resistant depression. J Affect Disord. 2019;259:1-6. https://doi.org/10.1016/j.jad.2019.08.012 | |
31. Zanos P, Gould T. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23(4):801-11. https://doi.org/10.1038/mp.2017.255 | |
32. Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent AC, et al. Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry. 2017;81(10):88697. https://doi.org/10.1016/j.biopsych.2016.05.005 | |
33. Aleksandrova LR, Phillips AG, Wang YT. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J Psychiatry Neurosci. 2017;42(4):222-9. https://doi.org/10.1503/jpn.160175 | |
34. Abdallah CG, Adams TG, Kelmendi B, Esterlis I, Sanacora G, Krystal JH. Ketamine's mechanism of action: a path to rapid-acting antidepressants. Depress Anxiety. 2016;33(8):689-97. https://doi.org/10.1002/da.22501 | |
35. Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry. 2014;29(7):419-23. https://doi.org/10.1016/j.eurpsy.2013.10.005 | |
36. Du J, Machado-Vieira R, Maeng S, Martinowich K, Manji HK, Zarate Jr CA. Enhancing AMPA to NMDA throughput as a convergent mechanism for antidepressant action. Drug Discov. Today Ther Strateg. 2006;3(4):519-26. https://doi.org/10.1016/j.ddstr.2006.11.012 | |
37. Maeng S, Zarate Jr CA, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63(4):349-52. https://doi.org/10.1016/j.biopsych.2007.05.028 | |
38. Yao N, Skiteva O, Zhang X, Svenningsson P, Chergui K. Ketamine and its metabolite (2R, 6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit. Mol Psychiatry. 2018;23(10):2066-77. https://doi.org/10.1038/mp.2017.239 | |
39. Skiteva O, Yao N, Chergui K. Ketamine induces opposite changes in AMPA receptor calcium permeability in the ventral tegmental area and nucleus accumbens. Transl Psychiatry. 2021;11(1):530. https://doi.org/10.1038/s41398-021-01658-3 | |
40. Trujillo KA. The neurobiology of opiate tolerance, dependence and sensitization: mechanisms of NMDA receptor-dependent synaptic plasticity. Neurotox Res. 2002;4(4):373-91. https://doi.org/10.1080/10298420290023954 | |
41. Glass MJ, Vanyo L, Quimson L, Pickel VM. Ultrastructural relationship between N-methyl-D-aspartate-NR1 receptor subunit and mu-opioid receptor in the mouse central nucleus of the amygdala. Neuroscience. 2009;163(3):857-67. https://doi.org/10.1016/j.neuroscience.2009.07.020 | |
42. Chartoff EH, Connery HS. It's MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system. Front Pharmacol. 2014;5:116. https://doi.org/10.3389/fphar.2014.00116 | |
43. Borsini A, Di Benedetto MG, Giacobbe J, Pariante CM. Pro-And anti-inflammatory properties of interleukin in vitro: relevance for major depression and human hippocampal neurogenesis. Int J Neuropsychopharmacol. 2020;23(11):738-50. https://doi.org/10.1093/ijnp/pyaa055 | |
44. Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun. 2020;87:901-9. https://doi.org/10.1016/j.bbi.2020.02.010 | |
45. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27(1):24-31. https://doi.org/10.1016/j.it.2005.11.006 | |
46. Rosenblat JD, ChaDS, Mansur RB, McIntyre RS. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuro-Psychopharmacol Biol Psychiatry.2014;53:23-34. https://doi.org/10.1016/j.pnpbp.2014.01.013 | |
47. Maes M, Mihaylova I, Ruyter MD, Kubera M, Bosmans E. The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression--And other conditions characterized by tryptophan depletion induced by inflammation. Neuro Endocrinol Lett. 2007;28(6):826-31. | |
48. Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol. 2003;81(4):247-65. https://doi.org/10.1046/j.1440-1711.2003.t01-1-01177.x | |
49. Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199-229. https://doi.org/10.1016/j.neuroscience.2013.04.060 | |
50. Nikkheslat N, McLaughlin AP, Hastings C, Zajkowska Z, Nettis MA, Mariani N, et al. Childhood trauma, HPA axis activity and antidepressant response in patients with depression. Brain Behav Immun. 2020;87:229-37. https://doi.org/10.1016/j.bbi.2019.11.024 | |
51. Nikkheslat N, Pariante CM, Zunszain PA. Neuroendocrine abnormalities in major depression: an insight into glucocorticoids, cytokines, and the kynurenine pathway. In: Baune, BT, editor. Inflammation and immunity in depression. Cambridge, MA: Academic Press; 2018. pp. 45-60. https://doi.org/10.1016/B978-0-12-811073-7.00003-9 | |
52. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 2015;72(6):603-11. https://doi.org/10.1001/jamapsychiatry.2015.0071 | |
53. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1-38. https://doi.org/10.1196/annals.1440.011 | |
54. Buckner RL, DiNicola LM. The brain's default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci. 2019;20(10):593-608. https://doi.org/10.1038/s41583-019-0212-7 | |
55. Scalabrini A, Vai B, Poletti S, Damiani S, Mucci C, Colombo C, et al. All roads lead to the default-mode network-global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology. 2020;45(12):2058-69. https://doi.org/10.1038/s41386-020-0785-x | |
56. Scheidegger M, Walter M, Lehmann M, Metzge, C, Grimm S, Boeker H, et al. Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS One. 2012;7(9):e44799. https://doi.org/10.1371/journal.pone.0044799 | |
57. Sheline YI, Price JL, Yan Z, Mintun MA. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA. 2010;107(24):11020-5. https://doi.org/10.1073/pnas.1000446107 | |
58. Li J, Chen J, Kong W, Li X, Hu B. Abnormal core functional connectivity on the pathology of MDD and antidepressant treatment: a systematic review. J Affect Disord. 2022;296:622-34. https://doi.org/10.1016/j.jad.2021.09.074 | |
59. Krug S, Müller T, Kayali Ö, Leichter E, Peschel SKV, Jahn N, et al. Altered functional connectivity in common resting-state networks in patients with major depressive disorder: a resting-state functional connectivity study. J Psychiatr Res. 2022;155:33-41. https://doi.org/10.1016/j.jpsychires.2022.07.040 | |
60. W?odarczyk A, Cuba?a WJ. Safety and tolerability of ketamine use in treatment-resistant bipolar depression patients with regard to central nervous system symptomatology: literature review and analysis. Medicina. 2020;56(2):67. https://doi.org/10.3390/medicina56020067 | |
61. Smith-Apeldoorn SY, Vischjager M, Veraart JK, Kamphuis J, Aan Het Rot M, Schoevers, RA. The antidepressant effect and safety of non-intranasal esketamine: a systematic review. J Psychopharmacol. 2022;36(5):531-44. https://doi.org/10.1177/02698811221084055 | |
62. Dilip TS, Chandy G.M, Hazra D, Selvan J, Ganesan P. The adverse effects of ketamine on procedural sedation and analgesia (PSA) in the emergency department. J Family Med Prim Care. 2021;10(6):2279. https://doi.org/10.4103/jfmpc.jfmpc_2140_20 | |
63. D'Souza DC, Ahn K, Bhakta S, Elander J, Singh N, Nadim H, et al. Nicotine fails to attenuate ketamine-induced cognitive deficits and negative and positive symptoms in humans: implications for schizophrenia. Biol Psychiatry. 2012;72(9):785-94. https://doi.org/10.1016/j.biopsych.2012.05.009 | |
64. Drug Enforcement Administration (DEA). Drug fact sheet: ketamine. 2020. Available from https://www.dea.gov/sites/default/files/2020-06/Ketamine-2020.pdf | |
65. Kleczkowska P, Zaremba M. An update of ketamine illicit use. IntechOpen; 2022. https://doi.org/10.5772/intechopen.100644 | |
66. Mann JJ, Apter A, Bertolote J, Beautrais A, Currier D, Haas A, et al. Suicide prevention strategies: a systematic review. JAMA. 2005;294(16):2064-74. https://doi.org/10.1001/jama.294.16.2064 | |
67. Bergfeld IO, Mantione M, Figee M, Schuurman PR, Lok A, Denys D. Treatment-resistant depression and suicidality. J Affect Disord. 2018;235:362-7. https://doi.org/10.1016/j.jad.2018.04.016 | |
68. Wilkinson ST, Ballard ED, Bloch MH, Mathew SJ, Murrough JW, Feder A, et al. The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am J Psychiatry. 2018;175(2):150-8. https://doi.org/10.1176/appi.ajp.2017.17040472 | |
69. Witt K, Potts J, Hubers A, Grunebaum MF, Murrough JW, Loo C, et al. Ketamine for suicidal ideation in adults with psychiatric disorders: a systematic review and meta-analysis of treatment trials. Aust NZJ Psychiatry. 2020;54(1):29-45. https://doi.org/10.1177/0004867419883341 | |
70. Chen CC, Zhou N, Hu N, Feng JG, Wang XB. Acute effects of intravenous sub-anesthetic doses of ketamine and intranasal inhaled esketamine on suicidal ideation: a systematic review and meta-analysis. Neuropsychiatr Dis Treat. 2023;9:587-99. https://doi.org/10.2147/NDT.S401032 |
Year
Month