Unveiling the therapeutic potential of ketamine in depression: A bibliometric analysis and research landscape overview

Norsuhana Omar Zahiruddin Othman Ahmad Shahril Abdul Halim Rozaziana Ahmad Md Rizman Md Lazin Md Lazim Nazlahshaniza Shafin Asma Hayati Ahmad Rahimah Zakaria   

Open Access   

Published:  Aug 22, 2024

DOI: 10.7324/JAPS.2024.177533
Abstract

Ketamine has emerged as an effective option for treatment-resistant depression (TRD), with a quick and long-lasting antidepressant effect, as well as anti-suicidal benefits. This bibliometric analysis uses a quantitative approach to determine the trend in publication and research themes related to ketamine and depression research. The literature search was conducted using a specific search query from the Scopus database. The downloaded data were analyzed using Publish or Perish and VOSviewer tools to perform citation and keyword analyses, respectively. A total of 994 articles were analyzed. Studies on ketamine and depression have shown an increasing trend annually since 2012. While the journal of affective disorders published more ketamine and depression-related articles, higher impact studies published in the biology of psychiatry garnered the most citations. Ketamine and depression-related terms topped the keyword co-occurrence analysis. All keywords were grouped into four clusters, cognitive effects of ketamine, mechanisms underlying antidepressant effects of ketamine, its safety and tolerability, and its anti-suicidal effects in TRD. The identified research themes from this review serve as a guide for researchers, practitioners, policymakers, and funding agencies to understand the research landscape and identify areas where more research is needed.


Keyword:     Ketamine depression bibliometric analysis Harzing’s Publish or Perish VOSviewer


Citation:

Omar N, Othman Z, Halim ASA, Ahmad R, Md Lazim RL, Shafin N, Ahmad AH, Zakaria R. Unveiling the therapeutic potential of ketamine in depression: A bibliometric analysis and research landscape overview. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.177533

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. World Health Organization. Depression and other common mental disorders: global health estimates. Geneva, Switzerland: World Health Organization; 2017.

2. Vuyk J, Sitsen E, Reekers M. Intravenous anesthetics. In: Miller R, editor. Anesthesia. 8th ed. Philadelphia, PA: Elsevier Saunders; 2015. p. 858.

3. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351-4. https://doi.org/10.1016/S0006-3223(99)00230-9

4. Salahudeen MS, Wright CM, Peterson GM. Esketamine: new hope for the treatment of treatment-resistant depression? a narrative review. Ther Adv Drug Saf. 2020;11:2042098620937899. https://doi.org/10.1177/2042098620937899

5. Matveychuk D, Thomas RK, Swainson J, Khullar A, MacKay MA, Baker GB, et al. Ketamine as an antidepressant: overview of its mechanisms of action and potential predictive biomarkers. Ther Adv Psychopharmacol. 2020;10:2045125320916657. https://doi.org/10.1177/2045125320916657

6. Li X, Xiang P, Liang J, Deng Y, Du J. Global trends and hotspots in esketamine research: a bibliometric analysis of past and estimation of future trends. Drug Des Devel Ther. 2022;16:1131-42. https://doi.org/10.2147/DDDT.S356284

7. Miao H, Yu K, Gao D, Lin X, Cao Y, Liu X, et al. A bibliometric analysis of research on ketamine from 2001 to 2020. Front Mol Neurosci. 2022;15:839198. https://doi.org/10.3389/fnmol.2022.839198

8. Harzing AW. The publish or perish book. Melbourne, Australia: Tarma Software Research Pty Limited; 2010.

9. Van Eck NV, Waltman L. VOSviewer manual-Manual for VOSviewer version 1.6. 17. Leiden, Netherlands: Universiteit Leiden; 2021.

10. Zakaria WNA, Sasongko TH, Al-Rahbi B, Al-Sowayan N, Ahmad AH, Zakaria R, et al. Gene and schizophrenia in the pregenome and postgenome-wide association studies era: a bibliometric analysis and network visualization. Psychiatr Genet. 2023;33(2):37-49. https://doi.org/10.1097/YPG.0000000000000336

11. Zakaria R, Ahmi A, Ahmad AH, Othman Z, Azman KF, Ab Aziz CB, et al. Visualising and mapping a decade of literature on honey research: a bibliometric analysis from 2011 to 2020. J Apic Res. 2021;60(3):359-68. https://doi.org/10.1080/00218839.2021.1898789

12. Duan L, Gao Y, Shao X, Tian C, Fu C, Zhu G. Research on the development of theme trends and changes of knowledge structures of drug therapy studies on major depressive disorder since the 21st century: a bibliometric analysis. Front Psychiatry. 2020;11:647. https://doi.org/10.3389/fpsyt.2020.00647

13. Mischel NA, Balon R. Esketamine: a drug to treat resistant depression that brings more questions than answers. J Clin Psychopharmacol. 2021;41(3):233. https://doi.org/10.1097/JCP.0000000000001395

14. Yavi M, Lee H, Henter ID, Park LT, Zarate Jr CA. Ketamine treatment for depression: a review. Discov Ment Health. 2022;2(1):9. https://doi.org/10.1007/s44192-022-00012-3

15. Goldberg JF. Ketamine and cognitive function in depression: detrimental, neutral, or advantageous? J Clin Psychiatry. 2022;83(1):38970. https://doi.org/10.4088/JCP.21com14243

16. Zhang JC, Yao W, Hashimoto K. Arketamine, a new rapid-acting antidepressant: a historical review and future directions. Neuropharmacology. 2022;218:109219. https://doi.org/10.1016/j.neuropharm.2022.109219

17. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, Aan het Rot M, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry. 2013;74(4):250-6. https://doi.org/10.1016/j.biopsych.2012.06.022

18. Daly EJ, Singh JB, Fedgchin M, Cooper K, Lim P, Shelton RC, et al. Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2018;75(2):139-48. https://doi.org/10.1001/jamapsychiatry.2017.3739

19. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554(7692):317-22. https://doi.org/10.1038/nature25509

20. Price RB, Nock MK, Charney DS, Mathew SJ. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry. 2009;66(5):522-6. https://doi.org/10.1016/j.biopsych.2009.04.029

21. Aan Het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry. 2010;67(2):139-45. https://doi.org/10.1016/j.biopsych.2009.08.038

22. Zarate Jr CA, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, et al. Replication of ketamine's antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry. 2012;71(11):939-46. https://doi.org/10.1016/j.biopsych.2011.12.010

23. Lapidus KA, Levitch CF, Perez AM, Brallier JW, Parides MK, Soleimani L, et al. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol Psychiatry. 2014;76(12):970-6. https://doi.org/10.1016/j.biopsych.2014.03.026

24. Shiroma PR, Johns B, Kuskowski M, Wels J, Thuras P, Albott CS, et al. Augmentation of response and remission to serial intravenous subanesthetic ketamine in treatment resistant depression. J Affect Disord. 2014;155:123-9. https://doi.org/10.1016/j.jad.2013.10.036

25. Bahji A, Vazquez GH, CA Zarate Jr. Comparative efficacy of racemic ketamine and esketamine for depression: a systematic review and meta-analysis. J Affect Disord. 2021;278:542-55. https://doi.org/10.1016/j.jad.2020.09.071

26. Bartoli F, Wlkinson ST. Ketamine and esketamine for suicidal ideation: recent progress and practical issues. Aust NZJ Psychiatry. 2020;54(2):206-7. https://doi.org/10.1177/0004867419894064

27. Lee Y, Syeda K, Maruschak NA, Cha DS, Mansur RB, Wium-Andersen IK, et al. A new perspective on the anti-suicide effects with ketamine treatment: a procognitive effect. J Clin Psychopharmacol. 2016;36(1):50-6. https://doi.org/10.1097/JCP.0000000000000441

28. Gill H, Gill B, Rodrigues NB, Lipsitz O, Rosenblat JD, El-Halabi S, et al. The effects of ketamine on cognition in treatment-resistantdepression: a systematic review and priority avenues for future research. Neurosci Biobehav Rev. 2021;120:78-85. https://doi.org/10.1016/j.neubiorev.2020.11.020

29. Shiroma PR, Albott CS, Johns B, Thuras P, Wels J, Lim KO. Neurocognitive performance and serial intravenous subanesthetic ketamine in treatment-resistant depression. Int J Neuropsychopharmacol. 2014;17(11):1805-13. https://doi.org/10.1017/S1461145714001011

30. Liu W, Zhou Y, Zheng W, Wang C, Zhan Y, Lan X, et al. Repeated intravenous infusions of ketamine: neurocognition in patients with anxious and nonanxious treatment-resistant depression. J Affect Disord. 2019;259:1-6. https://doi.org/10.1016/j.jad.2019.08.012

31. Zanos P, Gould T. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23(4):801-11. https://doi.org/10.1038/mp.2017.255

32. Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent AC, et al. Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry. 2017;81(10):88697. https://doi.org/10.1016/j.biopsych.2016.05.005

33. Aleksandrova LR, Phillips AG, Wang YT. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J Psychiatry Neurosci. 2017;42(4):222-9. https://doi.org/10.1503/jpn.160175

34. Abdallah CG, Adams TG, Kelmendi B, Esterlis I, Sanacora G, Krystal JH. Ketamine's mechanism of action: a path to rapid-acting antidepressants. Depress Anxiety. 2016;33(8):689-97. https://doi.org/10.1002/da.22501

35. Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry. 2014;29(7):419-23. https://doi.org/10.1016/j.eurpsy.2013.10.005

36. Du J, Machado-Vieira R, Maeng S, Martinowich K, Manji HK, Zarate Jr CA. Enhancing AMPA to NMDA throughput as a convergent mechanism for antidepressant action. Drug Discov. Today Ther Strateg. 2006;3(4):519-26. https://doi.org/10.1016/j.ddstr.2006.11.012

37. Maeng S, Zarate Jr CA, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63(4):349-52. https://doi.org/10.1016/j.biopsych.2007.05.028

38. Yao N, Skiteva O, Zhang X, Svenningsson P, Chergui K. Ketamine and its metabolite (2R, 6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit. Mol Psychiatry. 2018;23(10):2066-77. https://doi.org/10.1038/mp.2017.239

39. Skiteva O, Yao N, Chergui K. Ketamine induces opposite changes in AMPA receptor calcium permeability in the ventral tegmental area and nucleus accumbens. Transl Psychiatry. 2021;11(1):530. https://doi.org/10.1038/s41398-021-01658-3

40. Trujillo KA. The neurobiology of opiate tolerance, dependence and sensitization: mechanisms of NMDA receptor-dependent synaptic plasticity. Neurotox Res. 2002;4(4):373-91. https://doi.org/10.1080/10298420290023954

41. Glass MJ, Vanyo L, Quimson L, Pickel VM. Ultrastructural relationship between N-methyl-D-aspartate-NR1 receptor subunit and mu-opioid receptor in the mouse central nucleus of the amygdala. Neuroscience. 2009;163(3):857-67. https://doi.org/10.1016/j.neuroscience.2009.07.020

42. Chartoff EH, Connery HS. It's MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system. Front Pharmacol. 2014;5:116. https://doi.org/10.3389/fphar.2014.00116

43. Borsini A, Di Benedetto MG, Giacobbe J, Pariante CM. Pro-And anti-inflammatory properties of interleukin in vitro: relevance for major depression and human hippocampal neurogenesis. Int J Neuropsychopharmacol. 2020;23(11):738-50. https://doi.org/10.1093/ijnp/pyaa055

44. Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun. 2020;87:901-9. https://doi.org/10.1016/j.bbi.2020.02.010

45. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27(1):24-31. https://doi.org/10.1016/j.it.2005.11.006

46. Rosenblat JD, ChaDS, Mansur RB, McIntyre RS. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuro-Psychopharmacol Biol Psychiatry.2014;53:23-34. https://doi.org/10.1016/j.pnpbp.2014.01.013

47. Maes M, Mihaylova I, Ruyter MD, Kubera M, Bosmans E. The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression--And other conditions characterized by tryptophan depletion induced by inflammation. Neuro Endocrinol Lett. 2007;28(6):826-31.

48. Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol. 2003;81(4):247-65. https://doi.org/10.1046/j.1440-1711.2003.t01-1-01177.x

49. Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199-229. https://doi.org/10.1016/j.neuroscience.2013.04.060

50. Nikkheslat N, McLaughlin AP, Hastings C, Zajkowska Z, Nettis MA, Mariani N, et al. Childhood trauma, HPA axis activity and antidepressant response in patients with depression. Brain Behav Immun. 2020;87:229-37. https://doi.org/10.1016/j.bbi.2019.11.024

51. Nikkheslat N, Pariante CM, Zunszain PA. Neuroendocrine abnormalities in major depression: an insight into glucocorticoids, cytokines, and the kynurenine pathway. In: Baune, BT, editor. Inflammation and immunity in depression. Cambridge, MA: Academic Press; 2018. pp. 45-60. https://doi.org/10.1016/B978-0-12-811073-7.00003-9

52. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 2015;72(6):603-11. https://doi.org/10.1001/jamapsychiatry.2015.0071

53. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1-38. https://doi.org/10.1196/annals.1440.011

54. Buckner RL, DiNicola LM. The brain's default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci. 2019;20(10):593-608. https://doi.org/10.1038/s41583-019-0212-7

55. Scalabrini A, Vai B, Poletti S, Damiani S, Mucci C, Colombo C, et al. All roads lead to the default-mode network-global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology. 2020;45(12):2058-69. https://doi.org/10.1038/s41386-020-0785-x

56. Scheidegger M, Walter M, Lehmann M, Metzge, C, Grimm S, Boeker H, et al. Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS One. 2012;7(9):e44799. https://doi.org/10.1371/journal.pone.0044799

57. Sheline YI, Price JL, Yan Z, Mintun MA. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA. 2010;107(24):11020-5. https://doi.org/10.1073/pnas.1000446107

58. Li J, Chen J, Kong W, Li X, Hu B. Abnormal core functional connectivity on the pathology of MDD and antidepressant treatment: a systematic review. J Affect Disord. 2022;296:622-34. https://doi.org/10.1016/j.jad.2021.09.074

59. Krug S, Müller T, Kayali Ö, Leichter E, Peschel SKV, Jahn N, et al. Altered functional connectivity in common resting-state networks in patients with major depressive disorder: a resting-state functional connectivity study. J Psychiatr Res. 2022;155:33-41. https://doi.org/10.1016/j.jpsychires.2022.07.040

60. W?odarczyk A, Cuba?a WJ. Safety and tolerability of ketamine use in treatment-resistant bipolar depression patients with regard to central nervous system symptomatology: literature review and analysis. Medicina. 2020;56(2):67. https://doi.org/10.3390/medicina56020067

61. Smith-Apeldoorn SY, Vischjager M, Veraart JK, Kamphuis J, Aan Het Rot M, Schoevers, RA. The antidepressant effect and safety of non-intranasal esketamine: a systematic review. J Psychopharmacol. 2022;36(5):531-44. https://doi.org/10.1177/02698811221084055

62. Dilip TS, Chandy G.M, Hazra D, Selvan J, Ganesan P. The adverse effects of ketamine on procedural sedation and analgesia (PSA) in the emergency department. J Family Med Prim Care. 2021;10(6):2279. https://doi.org/10.4103/jfmpc.jfmpc_2140_20

63. D'Souza DC, Ahn K, Bhakta S, Elander J, Singh N, Nadim H, et al. Nicotine fails to attenuate ketamine-induced cognitive deficits and negative and positive symptoms in humans: implications for schizophrenia. Biol Psychiatry. 2012;72(9):785-94. https://doi.org/10.1016/j.biopsych.2012.05.009

64. Drug Enforcement Administration (DEA). Drug fact sheet: ketamine. 2020. Available from https://www.dea.gov/sites/default/files/2020-06/Ketamine-2020.pdf

65. Kleczkowska P, Zaremba M. An update of ketamine illicit use. IntechOpen; 2022. https://doi.org/10.5772/intechopen.100644

66. Mann JJ, Apter A, Bertolote J, Beautrais A, Currier D, Haas A, et al. Suicide prevention strategies: a systematic review. JAMA. 2005;294(16):2064-74. https://doi.org/10.1001/jama.294.16.2064

67. Bergfeld IO, Mantione M, Figee M, Schuurman PR, Lok A, Denys D. Treatment-resistant depression and suicidality. J Affect Disord. 2018;235:362-7. https://doi.org/10.1016/j.jad.2018.04.016

68. Wilkinson ST, Ballard ED, Bloch MH, Mathew SJ, Murrough JW, Feder A, et al. The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am J Psychiatry. 2018;175(2):150-8. https://doi.org/10.1176/appi.ajp.2017.17040472

69. Witt K, Potts J, Hubers A, Grunebaum MF, Murrough JW, Loo C, et al. Ketamine for suicidal ideation in adults with psychiatric disorders: a systematic review and meta-analysis of treatment trials. Aust NZJ Psychiatry. 2020;54(1):29-45. https://doi.org/10.1177/0004867419883341

70. Chen CC, Zhou N, Hu N, Feng JG, Wang XB. Acute effects of intravenous sub-anesthetic doses of ketamine and intranasal inhaled esketamine on suicidal ideation: a systematic review and meta-analysis. Neuropsychiatr Dis Treat. 2023;9:587-99. https://doi.org/10.2147/NDT.S401032

Article Metrics
51 Views 10 Downloads 61 Total

Year

Month

Related Search

By author names