The research aimed to develop a voriconazole (VRC)-loaded aspasomal gel for topical drug delivery, to minimize the dosing frequency and associated side effects. Aspasomal formulations were prepared using the thin film hydration method and their vesicle size (VS) and entrapment efficiency (%EE) were assessed. Optimization was carried out using a 32-factorial design by design expert software. The optimized batch underwent in vitro anti-fungal activity testing and morphological analysis using high-resolution transmission electron microscopy. This optimized batch was then incorporated into a gel, and various parameters such as drug content, pH, viscosity, spreadability, in vitro diffusion, ex vivo permeation, and in vivo skin irritancy were evaluated. The optimized aspasomal formulation displayed a VS of 171.36 ± 2.3 nm and an %EE of 80.77% ± 1.75%. In vitro drug diffusion and ex vivo permeation studies demonstrated significant release rates of 94.09% and 48.87% after 24 and 12 hours, respectively. The optimized formulation exhibited better in vitro anti-fungal activity against Candida albicans compared to a commercially available formulation. Skin irritancy tests on rat skin showed no signs of erythema or edema, confirming non-irritation. Long-term stability analysis confirmed the formulation’s stability under cold conditions. In conclusion, VRC-loaded aspasomes present a promising alternative for treating skin fungal infections, offering controlled drug release and minimizing adverse effects, ultimately enhancing patient outcomes.
Patil SB, Dandagi PM, Hulyalkar S, Nadaf RD. A design of expert-based development and optimization of voriconazole-loaded aspasomal gel for topical delivery. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.178562
1. Bongomin F, Gago S, Oladele RO, Denning, DW. Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi. 2017;3(4):57. doi: https://doi.org/10.3390/jof3040057
2. Toyotome T, Hagiwara D, Takahashi H, Watanabe A, Kamei K. Emerging antifungal drug resistance in Aspergillus fumigatus and among other species of Aspergillus. Curr Fungal Infect Rep. 2018;12:105–11. doi: https://doi.org/10.1007/s12281-018-0318-9
3. Spampinato C, Leonardi D. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. BioMed Res Int. 2013;5(8):258. doi: https://doi.org/10.1155/2013/204237
4. Song SH, Lee KM, Kang JB, Lee SG, Kang MJ, Choi YW. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem Pharm Bull. 2014;62(8):793–8. doi: https://doi.org/10.1248/cpb.c14-00202
5. Sahu RK, Salem-Bekhit MM, Bhattacharjee B, Almoshari Y, Ikbal AMA, Alshamrani M, et al. Mucormycosis in Indian COVID-19 patients: insight into its pathogenesis, clinical manifestation, and management strategies. Antibiotics. 2021;10(9):1079. doi: https://doi.org/10.3390/antibiotics10091079
6. Mukherjee PK, Wang M. Antifungal drug resistance: significance and mechanisms. Antifungal Ther. 2010;7(5):63–86.
7. Hossain CM, Ryan LK, Gera M, Choudhuri S, Lyle N, Ali KA et al. Antifungals and drug resistance. Encyclopedia. 2022;2(4):1722–37.
8. Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Coll Surf B Biointerfaces. 2012;92:299 –304. doi: https://doi.org/10.1016/j.colsurfb.2011.12.004
9. Johnson LB. Voriconazole: a new triazole antifungal agent. Clin Infect Dis. 2003;36(5):630–7. doi: https://doi.org/10.1086/367933
10. Waghule T, Rapalli VK, Singhvi G, Manchanda P, Hans N, Dubey SK, et al. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol. 2019;52:303–15. doi: https://doi.org/10.1016/j.jddst.2019.04.026
11. Pandit J, Garg M, Jain NK. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J Liposome Res. 2014;24(2):163–9. doi: https://doi.org/10.3109/08982104.2013.871025
12. El Zaafarany GM, Awad GA, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformablevesicles with enhanced skin delivery. Int J Pharm. 2010;397(1–2):164–72. doi: https://doi.org/10.1016/j.ijpharm.2010.06.034
13. Zaid Alkilani A, McCrudden MT, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7(4):438–70.
14. doi: https://doi.org/10.3390/pharmaceutics7040438
15. Ravetti S, Clemente C, Brignone S, Hergert L, Allemandi D, Palma, S. Ascorbic acid in skin health. Cosmetics. 2019;6(4):58. doi: https://doi.org/10.3390/cosmetics6040058
16. Gosenca M, Obreza A, Pe?ar S, Gašperlin M. A new approach for increasing ascorbyl palmitate stability by addition of non-irritant co-antioxidant. AAPS PharmSciTech. 2010;11:1485–92. doi: https://doi.org/10.1208/s12249-010-9507-8
17. Shinde G, Desai P, Shelke S, Patel R, Bangale G, Kulkarni, D. Mometasone furoate-loaded aspasomal gel for topical treatment of psoriasis: formulation, optimization, in vitro and in vivo performance. J Dermatol Treat. 2022;33(2):885–96. doi: https://doi.org/10.1080/09546634.2020.1789043
18. Gopinath D, Ravi D, Rao BR, Apte SS, Renuka D, Rambhau D. Ascorbyl palmitate vesicles (aspasomes): formation, characterization, and applications. Int J Pharm. 2004;271(1–2):95–113. doi: https://doi.org/10.1016/j.ijpharm.2003.10.032
19. Khuri AI, Conlon M. Simultaneous optimization of multiple responses represented by polynomial regression functions. Technometrics. 1981;23(4):363–75.
20. Pal S, Gauri SK. A desirability functions-based approach for simultaneous optimization of quantitative and ordinal response variables in industrial processes. Int J Eng Sci Technol, 2018;10(1):76–87. doi: https://doi.org/10.4314/ijest.v10i1.6
21. Gohel MC, Parikh RK, Aghara PY, Nagori SA, Delvadia RR, Dabhi MR. Application of simplex lattice design and desirability function for the formulation development of mouth dissolving film of salbutamol sulphate. Current Drug Deliv. 2009;6(5):486–94. doi: https://doi.org/10.2174/156720109789941696
22. Patil RP, Pawara DD, Gudewar CS, Tekade AR. Nanostructured cubosomes in an in situ nasal gel system: an alternative approach for the controlled delivery of donepezil HCl to brain. J Liposome Res. 2019;29(3):264–73. doi: https://doi.org/10.1080/08982104.2018.1552703
23. Gull A, Ahmed S, Ahmad FJ, Nagaich U, Chandra A. Hydrogel thickened microemulsion; a local cargo for the co-delivery of cinnamaldehyde and berberine to treat acne vulgaris. J Drug Deliv Sci Technol. 2020;58:101835. doi: https://doi.org/10.1016/j.jddst.2020.101835
24. Tanwar YS, Jain AK. Formulation and evaluation of topical diclofenac sodium gel using different gelling agent. Asian J Pharm Res Health Care, 2012;4(1):1–6.
25. Gaikwad VL, Yadav VD, Dhavale RP, Choudhari PB, Jadhav SD. Effect of carbopol 934 and 940 on fluconazole release from topical gel formulation: a factorial approach. J Current Pharm Res. 2012;2(2):487.
26. Roachman MF, Marviani T. Formulation of coenzyme Q10 liquid foundation with a variations linseed oil as the oil phase. Int Halal Sci Technol Conf. 2021;1(1):105–15. doi: https://doi.org/10.31098/ihsatec.v14i1.494
27. Aboul-Einien MH, Kandil SM, Abdou EM, Diab HM, Zaki MS. Ascorbic acid derivative-loaded modified aspasomes: formulation, in vitro, ex vivo and clinical evaluation for melasma treatment. J Liposome Res. 2020;30(1):54–67. doi: https://doi.org/10.1080/08982104.2019.1585448
28. Shah MK, Azad AK, Nawaz A, Ullah S, Latif MS, Rahman H, et al. Formulation development, characterization, and antifungal evaluation of chitosan NPs for topical delivery of voriconazole in vitro and ex vivo. Polymers. 2021;14(1):135. doi: https://doi.org/10.3390/gels8010047
29. Premkumar J, Ramani P, Chandrasekar T, Natesan A, Premkumar P. Detection of species diversity in oral candida colonization and anti-fungal susceptibility among non-oral habit adult diabetic patients. J Nat Sci Biol Med. 2014;5(1):148. doi: https://doi.org/10.4103/0976-9668.127315
30. Owuama CI. Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. Afr J Microbiol Res. 2017;11(23):977–80. doi: https://doi.org/10.5897/AJMR2017.8545
31. Nayak D, Tawale RM, Aranjani JM, Tippavajhala VK. Formulation, optimization, and evaluation of novel ultra-deformable vesicular drug delivery system for an anti-fungal drug. AAPS PharmSciTech. 2020;21:1–10. doi: https://doi.org/10.1208/s12249-020-01681-5
32. Khalil RM, Abdelbary A, Arini SK, Basha M, El-Hashemy HA, Farouk F. Development of tizanidine loaded aspasomes as transdermal delivery system: ex-vivo and in-vivo evaluation. J Liposome Res. 2021;31(1):19–29. doi: https://doi.org/10.1080/08982104.2019.1684940
33. Freitas C, Müller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Euro J Pharm Biopharm. 1999;47(2):125–32. doi: https://doi.org/10.1016/S0939-6411(98)00074-5
34. Guideline IH. Stability testing of new drug substances and products. Q1A (R2), current step. 2003;4:1–24.
35. Frøkjaer S, Hjorth EL, Wørts O. Stability testing of liposomes during storage. In Liposome technology. Boca Raton, FL: CRC Press; 2019, pp. 235–45.
36. Du Plessis J, Ramachandran C, Weiner N, Müller DG. The influence of lipid composition and lamellarity of liposomes on the physical stability of liposomes upon storage. Int J Pharm. 1996;127(2):273–8. doi: https://doi.org/10.1016/0378-5173(95)04281-4
Year
Month