Fermented calabash fruit-derived choline (Crescentia cujete L.) against artificial-induced ischemic stroke in rat models: Analysis of N/LR, PWR, histopathology, GM-CSF, and VEGF

Yos Adi Prakoso Jasir Hakim Hidayah Sitarina Widyarini   

Open Access   

Published:  Aug 01, 2024

DOI: 10.7324/JAPS.2024.188046
Abstract

Ischemic stroke is commonly caused by a thrombus and its standard treatment may have side effects. Hence, the alternative therapy against ischemic stroke requires elucidation. This study aimed to analyse the efficacy of fermented calabash fruit-derived choline (Crescentia cujete L.) (FC-C) against ischemic stroke. This study consisted of four groups: CO (sham-operated group); and the other groups (CU, FC, and PR) were artificially induced ischemic stroke, while CU (untreated); FC (2.94 mg/kg BW FC-C); and PR (496 mg/kg BW piracetam). The therapy was applied for 14 days. The neuro-deficit, blood, and brain samples were collected and the data was analysed. The results showed that the FC-C potentially affects the body weight and neuro-deficit score in rats with artificial-induced ischemic stroke compared to the other treatments. The score of neuro-deficit correlated to the percentage of infarct area in the FC group that indicated the smallest area than the others. Utilization of FC influenced the decrease of the level of N/ LR, promoted the  histopathological repair, and increased expression and level of granulocyte-macrophage colonystimulating factors (GM-CSFs) and vascular endothelial growth factor (VEGF), but not regarding the platelet-towhite blood cell ratio (PWR). In conclusion, FC-C has beneficial effects for artificial ischemic stroke in rat models. The advanced study regarding the safety of FC-C must be elucidated to support the current findings.


Keyword:     Fermented calabash fruitderived choline GM-CSF ischemic stroke N/LR PWR VEGF


Citation:

Prakoso YA, Hidayah JH, Widyarini S. Fermented calabash fruit-derived choline (Crescentia cujete L.) against artificial-induced ischemic stroke in rat models: Analysis of N/LR, PWR, histopathology, GM-CSF, and VEGF. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.188046

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Donkor ES. Stroke in the 21st century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat. 2018;2018:3238165. doi: https://doi.org/10.1155/2018/3238165

2. Murphy SJ, Werring DJ. Stroke: causes and clinical features. Medicine. 2020;48(9):561–6. doi: https://doi.org/10.1016/j.mpmed.2020.06.002

3. Yan LL, Li C, Chen J, Miranda JJ, Luo R, Bettger J, et al. Prevention, management, and rehabilitation of stroke in low- and middleincome countries. eNeurologicalSci. 2016;2:21–30. doi: https://doi.org/10.1016/j.ensci.2016.02.011

4. Wilujeng S, Wirjaatmadja R, Prakoso YA. Effects of extraction, fermentation, and storage processes on the levels of choline derived from calabash fruit (Crescentia cujete L.). J Res Pharm. 2023;27(2):620–6. doi: https://doi.org/10.29228/jrp.344

5. Hidayah JH, Prakoso YA, Widyarini S. Brain histopathological changes after treatment using calabash fruit (Crescentia cujete L.) in rat model with artificially induced ischemic stroke. Adv Anim Vet Sci. 2023;11(12):2003–9. doi: http://doi.org/10.17582/journal.aavs/2023/11.12.2003.2009

6. Prakoso YA, Sigit M, Aliviameita A. Standardization of the simple methodology for experimentally induced ischemic stroke in rat models. World Vet J. 2023;13(4):510–9. doi: https://doi.org/10.54203/scil.2023.wvj54

7. Navarro-Sobrino M, Rosell A, Penalba A, Ribó M, Alvarez-Sabín J, Fernández-Cadenas I, et al. Role of endogenous granulocytemacrophage colony stimulating factor following stroke and relationship to neurological outcome. Curr Neurovasc Res. 2009;6(4):246–51. doi: https://doi.org/10.2174/156720209789630366

8. Talwar T, Srivastava MV. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery. Ann Indian Acad Neurol. 2014;17(1):1–6. doi: https://doi.org/10.4103/0972-2327.128519

9. Bertrand L, Dygert L, Toborek M. Induction of ischemic stroke and ischemia-reperfusion in mice using the middle artery occlusion technique and visualization of infarct area. J Vis Exp. 2017;120:54805. doi: https://doi.org/10.3791/54805

10. Sharma D, Spring KJ, Bhaskar SMM. Neutrophil-lymphocyte ratio in acute ischemic stroke: immunopathology, management, and prognosis. Acta Neurol Scand. 2021;144(5):486–99. doi: https://doi.org/10.1111/ane.13493

11. Amalia L, Dalimonthe NZ. Clinical significance of platelet-to-white blood cell ratio (PWR) and National Institute of Health Stroke Scale (NIHSS) in acute ischemic stroke. Heliyon. 2020;6(10):e05033; doi: https://doi.org/10.1016/j.heliyon.2020.e05033

12. Prakoso YA, Rini CS, Rahayu A, Sigit M, Widhowati D. Celery (Apium graveolens) as a potential antibacterial agent and its effect on cytokeratin-17 and other healing promoters in skin wounds infected with methicillin-resistant Staphylococcus aureus. Vet World. 2020;13(5):865–71. doi: https://doi.org/10.14202/vetworld.2020.865-871

13. Xu RG, Ariëns RAS. Insights into the composition of stroke thrombi: heterogeneity and distinct clot areas impact treatment. Haematologica. 2020;105(2):257–9. doi: https://doi.org/10.3324/haematol.2019.238816

14. Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci. 2020;21(20):7609. doi: https://doi.org/10.3390/ijms21207609

15. Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, Kamtchum- Tatuene J, et al. Hemorrhagic transformation in ischemic stroke and the role of inflammation. Front Neurol. 2021;12:661955. doi: https://doi.org/10.3389/fneur.2021.661955

16. Fischer U, Cooney MT, Bull LM, Silver LE, Chalmers J, Anderson CS, et al. Acute post-stroke blood pressure relative to premorbid levels in intracerebral haemorrhage versus major ischaemic stroke: a population-based study. Lancet Neurol. 2014;13(4):374–84. doi: https://doi.org/10.1016/S1474-4422(14)70031-6

17. Haider L, Hametner S, Endmayr V, Mangesius S, Eppensteiner A, Frischer JM, et al. Post-mortem correlates of Virchow-Robin spaces detected on in vivo MRI. J Cereb Blood Flow Metab. 2022;42(7):1224–35. doi: https://doi.org/10.1177/0271678X211067455

18. Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: from mechanisms to treatment (review). Int J Mol Med. 2022;49(2):15. doi: https://doi.org/10.3892/ijmm.2021.5070

19. Donatien P, Anand U, Yiangou Y, Sinisi M, Fox M, MacQuillan A, et al. Granulocyte-macrophage colony-stimulating factor receptor expression in clinical pain disorder tissues and role in neuronal sensitization. Pain Rep. 2018;3(5):e676. doi: https://doi.org/10.1097/PR9.0000000000000676

20. Li X, Lin S, Chen X, Huang W, Li Q, Zhang H, et al. The Prognostic value of serum cytokines in patients with acute ischemic stroke. Aging Dis. 2019;10(3):544–56. doi: https://doi.org/10.14336/AD.2018.0820

21. Huang X, Liu Y, Bai S, Peng L, Zhang B, Lu H. Granulocyte colony stimulating factor therapy for stroke: a pairwise meta-analysis of randomized controlled trial. PLoS One. 2017;12(4):e0175774. doi: https://doi.org/10.1371/journal.pone.0175774

22. Dikmen HO, Hemmerich M, Lewen A, Hollnagel JO, Chausse B, Kann O. GM-CSF induces noninflammatory proliferation of microglia and disturbs electrical neuronal network rhythms in situ. J Neuroinflam. 2020;17(1):235. doi: https://doi.org/10.1186/s12974-020-01903-4

23. Prodjohardjono A, Vidyanti AN, Susianti NA, Sudarmanta, Sutarni S, Setyopranoto I. Higher level of acute serum VEGF and larger infarct volume are more frequently associated with post-stroke cognitive impairment. PLoS One. 2020;15(10):e0239370. doi: https://doi.org/10.1371/journal.pone.0239370

24. Setyopranoto I, Sadewa AH, Wibowo S, Widyadharma IPE. Comparison of mean VEGF-A expression between acute ischemic stroke patients and non-ischemic stroke subjects. Open Access Maced J Med Sci. 2019;7(5):747–51. doi: https://doi.org/10.3889/oamjms.2019.175

25. Hu ZB, Zhong QQ, Lu ZX, Zhu F. Association of platelet-to-white blood cell ratio and platelet-to-neutrophil ratio with the risk of fatal stroke occurrence in middle-aged to older Chinese. BMC Geriatr. 2022;22(1):430. doi: https://doi.org/10.1186/s12877-022-03134-z

26. Quan K, Wang A, Zhang X, Meng X, Chen P, Li H, et al. Neutrophil to lymphocyte ratio and adverse clinical outcomes in patients with ischemic stroke. Ann Transl Med. 2021;9(13):1047. doi: https://doi.org/10.21037/atm-21-710

27. Krittayaphong R, Chichareon P, Komoltri C, Kornbongkotmas S, Yindeengam A, Lip GYH. Low body weight increases the risk of ischemic stroke and major bleeding in atrial fibrillation: the COOL-AF registry. J Clin Med. 2020;9(9):2713. doi: https://doi.org/10.3390/jcm9092713

28. Derbyshire E, Obeid R. Choline, neurological development and brain function: a systematic review focusing on the first 1000 days. Nutrients. 2020;12(6):1731. doi: https://doi.org/10.3390/nu12061731

29. Blusztajn JK, Slack BE, Mellott TJ. Neuroprotective actions of dietary choline. Nutrients. 2017;9(8):815. doi: https://doi.org/10.3390/nu9080815

30. Tanabe J, Yamamoto DJ, Sutton B, Brown MS, Hoffman PL, Burnham EL, et al. Effects of alcohol and acetate on cerebral blood flow: a pilot study. Alcohol Clin Exp Res. 2019;43(10):2070–8. doi: https://doi.org/10.1111/acer.14173

31. Kansakar U, Trimarco V, Mone P, Varzideh F, Lombardi A, Santulli G. Choline supplements: an update. Front Endocrinol. 2023;14:1148166. doi: https://doi.org/10.3389/fendo.2023.1148166

32. Liu L, Lu Y, Bi X, Xu M, Yu X, Xue R, et al. Choline ameliorates cardiovascular damage by improving vagal activity and inhibiting the inflammatory response in spontaneously hypertensive rats. Sci Rep. 2017;7:42553. doi: https://doi.org/10.1038/srep42553

33. Kusuda R, Carreira EU, Ulloa L, Cunha FQ, Kanashiro A, Cunha TM. Choline attenuates inflammatory hyperalgesia activating nitric oxide/cGMP/ATP-sensitive potassium channels pathway. Brain Res. 2020;1727:146567. doi: https://doi.org/10.1016/j.brainres.2019.146567

34. Zhang LC, Jin X, Huang Z, Yan ZN, Li PB, Duan RF, et al. Protective effects of choline against hypoxia-induced injuries of vessels and endothelial cells. Exp Ther Med. 2017;13(5):2316–24. doi: https://doi.org/10.3892/etm.2017.4276

35. Theoret JK, Jadavji NM, Zhang M, Smith PD. Granulocyte macrophage colony-stimulating factor treatment results in recovery of motor function after white matter damage in mice. Eur J Neurosci. 2016;43(1):17–24. doi: https://doi.org/10.1111/ejn.13105

36. Olson KE, Namminga KL, Lu Y, Thurston MJ, Schwab AD, de Picciotto S, et al. Granulocyte-macrophage colony-stimulating factor mRNA and neuroprotective immunity in Parkinson’s disease. Biomaterials. 2021;272:120786. doi: https://doi.org/10.1016/j.biomaterials.2021.120786

37. Dames C, Winek K, Beckers Y, Engel O, Meisel A, Meisel C. Immunomodulatory treatment with systemic GM-CSF augments pulmonary immune responses and improves neurological outcome after experimental stroke. J Neuroimmunol. 2018;321:144–9. doi: https://doi.org/10.1016/j.jneuroim.2018.03.005

38. Zhang N, Li Y, Feng Z. Inhibition effect of choline and parecoxib sodium on chronic constriction nerve injury-induced neuropathic pain in rats. BMC Anesthesiol. 2023;23(1):22. doi: https://doi.org/10.1186/s12871-022-01913-0

39. Winblad B. Piracetam: a review of pharmacological properties and clinical uses. CNS Drug Rev. 2005;11(2):169–82. doi: https://doi.org/10.1111/j.1527-3458.2005.tb00268.x

40. Cohen PA, Zakharevich I, Gerona R. Presence of piracetam in cognitive enhancement dietary supplements. JAMA Intern Med. 2020;180(3):458–9. doi: https://doi.org/10.1001/jamainternmed.2019.5507

41. Olaizola I, Brodde MF, Kehrel BE, Evers S. The impact of levetiracetam and valproate on platelet functions-a double-blind, placebo-controlled crossover study. J Clin Med. 2023;12(3):933. doi: https://doi.org/10.3390/jcm12030933

42. Tuncer S, Ayhan S, Findikcioglu K, Ergun H, Tuncer I. Effect of systemic piracetam treatment on flap survival and vascular endothelial growth factor expression after ischemia-reperfusion injury. J Reconstr Microsurg. 2011;27(7):409–18. doi: https://doi.org/10.1055/s-0031-1281523

43. Fessel J. Cure of Alzheimer’s dementia requires addressing all of the affected brain cell types. J Clin Med. 2023;12(5):2049. doi: https://doi.org/10.3390/jcm12052049

44. Contreras-García IJ, Cárdenas-Rodríguez N, Romo-Mancillas A, Bandala C, Zamudio SR, Gómez-Manzo S, et al. Levetiracetam mechanisms of action: from molecules to systems. Pharmaceuticals. 2022;15(4):475. doi: https://doi.org/10.3390/ph15040475

45. Mani V, Rabbani SI, Shariq A, Amirthalingam P, Arfeen M. Piracetam as a therapeutic agent for doxorubicin-induced cognitive deficits by enhancing cholinergic functions and reducing neuronal inflammation, apoptosis, and oxidative stress in rats. Pharmaceuticals. 2022;15(12):1563. doi: https://doi.org/10.3390/ph15121563

Article Metrics
138 Views 23 Downloads 161 Total

Year

Month

Related Search

By author names