Parinari curatellifolia (PC), an indigenous African plant has numerous nutritional, and medicinal benefits, including hepatoprotection. Following the established approach of using plant metabolites as prototype drugs, flavonoids from PC were investigated as potential hepatoprotective therapeutics using in silico approach. Initially, the flavonoids were identified by high performance liquid chromatography (HPLC), afterwards, their drug-likeness, biological activities, and toxicity were predicted using different algorithms and softwares. HPLC revealed 3-methylquercetin, chrysin, kaempferol, quercetin, pinocembrin, tricetin, apigenin, baicalein, genistein, isorhamnetin, and myricetin as prominent flavonoids in PC extract. Furthermore, all the compounds fulfilled Lipinski’s rule of five, were predicted to be non-toxic, and were also shown by prediction of activity spectra for substances to demonstrate probable hepatoprotection mechanisms. Molecular docking of the Parinari flavonoids and Cytochrome P450 1A1 showed binding energy scores ranging from −8.7 to −10.2 kcal/mol, while molecular dynamic simulation confirmed the stability of the complexes formed with ΔGbind ranging from −35.85 to –32.00. Hence, this study establishes the hepatoprotective effect of the natural PC compounds and proposes the activation of Cytochrome P450 1A1 as a major mechanism of action. In addition, a successful effort has been made to validate previously reported flavonoid activities of PCs using a comprehensive computational approach.
Amobonye A, Sabiu S, Olaleye MT, Pillai S. Computational investigation into Parinari curatellifolia flavonoids as lead hepatoprotective therapeutics. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.188178
1. Olaleye MT, Amobonye AE, Komolafe K, Akinmoladun AC. Protective effects of Parinari curatellifolia flavonoids against acetaminophen-induced hepatic necrosis in rats. Saudi J Biol Sci. 2014;21:486–92. doi: https://doi.org/10.1016/j.sjbs.2014.06.005
2. Chatepa LEC, Masamba K, Jose M. Proximate composition, physical characteristics and mineral content of fruit, pulp and seeds of Parinari curatellifolia (Maula) from Central Malawi. Afr J Food Sci. 2018;12:238–45. doi: https://doi.org/10.5897/AJFS2017.1662/
3. Benhura M, Muchuweti M, Gombiro P, Benhura C. Properties of (Parinari curatellifolia) (Hacha or Chakata) fruit from different parts of Harare, Zimbabwe. Afr J Food Agric Nutr Dev. 2013;13(4):8004–18. doi: https://doi.org/8004-8018. 10.18697/ajfand.59.12520
4. De Wet, Nciki S, van Vuuren SF. Medicinal plants used for the treatment of various skin disorders by a rural community in northern Maputaland. South Afr J Ethnobiol Ethnomed. 2013;9:51. doi: https://doi.org/10.1186/1746-4269-9-51
5. Shai KN, Ncama K, Ndhlovu PT, Struwig M, Aremu AO. An exploratory study on the diverse uses and benefits of locally-sourced fruit species in three villages of Mpumalanga Province, South Africa. Foods 2020;9:1581.
6. Halilu EM, October N, Ugwah-Oguejiofor CJ, Jega AY, Nefai, MS. Anti-snake venom and analgesic activities of extracts and betulinic and oleanolic acids isolated from Parinari curatellifolia. J Med Plants Econ Dev. 2020;4:1–8.
7. Manuwa TR, Akinmoladun AC, Crown OO, Komolafe K, Olaleye MT. Toxicological assessment, and ameliorative effects of Parinari curatellifolia alkaloids on triton-induced hyperlipidemia and atherogenicity in rats. Proc Natl Acad Sci, India Sect B Biol Sci. 2017;87:611–23. doi: https://doi.org/10.1007/s40011-015-0630-x
8. Mawire P, Mozirandi W, Heydenreich M, Chi GF, Mukanganyama S. Isolation and antimicrobial activities of phytochemicals from Parinari curatellifolia (Chrysobalanaceae). Adv Pharmacol Pharm Sci. 2021;2021:1–18. doi: https://doi.org/10.1155/2021/8842629
9. Gororo M, Chimponda T, Chirisa E, Mukanganyama S. Multiple cellular effects of leaf extracts from Parinari curatellifolia. BMC Complement Altern Med. 2016;16:1–14. doi: https://doi.org/10.1186/s12906-016-1287-6
10. Josiah SS, Oyeleye SI, Crown OO, Olaleye MT. Ameliorative effect of Parinari curatellifolia seed extracts on sodium nitroprusside–induced cardiovascular toxicity in rats. Comp Clin Pathol. 2020;29:239 –46. doi: https://doi.org/10.1007/s00580-019-03047-1
11. Atawodi, S, Yakubu O, Umar I. Antioxidant and hepatoprotective effects of Parinari curatellifolia root. Int J Agric Biol. 2013;15:523–8.
12. Yakubu O, Atawodi S, Ojogbane E, Nwaneri-Chidozie V. Acute toxicity and antioxidant activity of Parinari curatellifollia root methanolic extract in carbon tetrachloride-induced toxicity in wistar rats. Int J Basic Appl Chem Sci. 2012;2:82–9.
13. Marceddu R, Dinolfo L, Carrubba A, Sarno M, Di Miceli G. Milk thistle (Silybum Marianum L.) as a novel multipurpose crop for agriculture in marginal environments: a review. Agronomy. 2022;12:729. doi: https://doi.org/10.3390/agronomy12030729
14. Boojar MMA, Golmohammad S. Overview of Silibinin anti-tumor effects. J Herb Med. 2020;23:100375. doi: https://doi.org/10.1016/j.hermed.2020.100375
15. Crown OO, Komolafe TR, Akinmoladun AC, Olaleye MT, Akindahunsi AA, Boligon AA. Parinari curatellifolia seed flavonoids protect against triton-induced dyslipidemia and atherogenicity in rats. Trad Kampo Med. 2018;5:11–8. doi: https://doi.org/10.1002/tkm2.1082
16. Agati G, Brunetti C, Fini A, Gori A, Guidi L, Landi M, et al. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants. 2020;9:1098. doi: https://doi.org/10.3390/antiox9111098
17. Mondal S, Rahaman S. Flavonoids: a vital resource in healthcare and medicine. Pharm Pharmacol Int J. 2020;8:91–104. doi:
18. Federico A, Dallio M, Loguercio C. Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules. 2017;22:191. Doi: https://doi.org/10.3390/molecules22020191
19. RajaSekhar K, RajendraPrasad Y, Shankarananth V, Harika KS, Rajani K, Padmavathamma M. In silico prediction of selected pharmacokinetic, biological and toxic properties of some 1, 3, 5-trisubstituted-2-pyrazolines derived from isonicotinic acid. J Global Trend Pharm Sci. 2011;2:489–512.
20. Evans, W.C. Trease and Evans’ pharmacognosy E-book. Elsevier Health Sciences, Oxford, UK; 2009.
21. Sofowora A. Research on medicinal plants and traditional medicine in Africa. J Altern Complement Med. 1996;2:365–72. doi: https://doi.org/10.1089/acm.1996.2.365
22. Öztürk N, Tunçel M, Poto?lu-Erkara ?. Phenolic compounds and antioxidant activities of some Hypericum species: a comparative study with Hypericum perforatum. Pharm Biol. 2009;47:120–7. doi: https://doi.org/10.1080/13880200802437073
23. Znati M, Zardi-Bergaoui A, Daami-Remadi M, Ben Jannet H. Semi-synthesis, antibacterial, anticholinesterase activities, and drug likeness properties of new analogues of coumarins isolated from Ferula lutea (Poir.) Maire. Chem Afr 2020;3:635–45. doi: https://doi.org/10.1007/s42250-020-00145-4
24. Alodeani EA, Arshad M, Izhar MA. Anti-uropathogenic activity, drug likeness, physicochemical and molecular docking assessment of (E-)-N′-(substituted-benzylidene)-2-(quinolin-8-yloxy) acetohydrazide. Asian Pac J Tropical Biomed. 2015;5:676–83. doi: https://doi.org/10.1016/j.apjtb.2015.04.010
25. Amobonye A, Bhagwat P, Ranjith D, Mohanlall V, Pillai S. Characterisation, pathogenicity and hydrolytic enzyme profiling of selected Fusarium species and their inhibition by novel coumarins. Arch Microbiol. 2021;1–14. https://doi.org/10.1007/s00203-021-02335-1.
26. Bhagwat P, Amobonye A, Singh S, Pillai S. A comparative analysis of GH18 chitinases and their isoforms from Beauveria bassiana: an in-silico approach. Process Biochem. 2021;100:207–16. doi: https://doi.org/10.1016/j.procbio.2020.10.012
27. Shode F, Idowu A, Uhomoibhi O, Sabiu S. Repurposing drugs and identification of inhibitors of integral proteins (spike protein and main protease) of SARS-CoV-2. J Biomol Str Dyn. 2021;1–16. doi: https://doi.org/10.1080/07391102.2021.1886993
28. Narayanaswamy V, Alaabed S, Obaidat IM. Molecular simulation of adsorption of methylene blue and rhodamine B on graphene and graphene oxide for water purification. Mater Today Proc. 2020;28:1078–83. doi: https://doi.org/10.1016/j.matpr.2020.01.086
29. Ibrahim MAA, Abdelrahman AHM, Hussien TA, Badr EAA, Mohamed TA, El-Seedi HR, et al. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Comput Biol Med. 2020;26:104046. https://doi.org/10.1016/j.compbiomed.2020.104046
30. Trivedi A, Ahmad R, Siddiqui S, Misra A, Khan MA, Srivastava A, et al. Prophylactic and therapeutic potential of selected immunomodulatory agents from Ayurveda against coronaviruses amidst the current formidable scenario: an in-silico analysis. J Biomol Str Dyn. 2021;1–53. doi: https://doi.org/10.1080/07391102.2021.1932601
31. Yu HH, Qiu YX, Li B, Peng CY, Zeng R, Wang W. Kadsura heteroclita stem ethanol extract protects against carbon tetrachloride-induced liver injury in mice via suppression of oxidative stress, inflammation, and apoptosis. J Ethnopharmacol. 2021;267:113496. doi: https://doi.org/10.1016/j.jep.2020.113496
32. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013; 2013:162750. doi: https://doi.org/10.1155/2013/162750
33. Shlini, P. Molecular and pharmacokinetic properties of the histidine decarboxylase inhibitors from clove. Int J Green Pharm. 2020;14:203–13. doi: https://doi.org/10.22377/ijgp.v14i02.2930
34. Kumar BP, Soni M, Bhikhalal UB, Kakkot IR, Jagadeesh M, Bommu P, et al. Nanjan M. Analysis of physicochemical properties for drugs from nature. Med Chem Res. 2010;19:984–92. doi: https://doi.org/10.1007/s00044-009-9244-2
35. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334:3–13. doi: https://doi.org/10.1016/j.mce.2010.06.018
36. Zollner G, Trauner M. Nuclear receptors as therapeutic targets in cholestatic liver diseases. Br J Pharmacol. 2009;156:7–27. doi: https://doi.org/10.1111/j.1476-5381.2008.00030.x
37. Yang X, Gonzalez FJ, Huang M, Bi H. Nuclear receptors and non-alcoholic fatty liver disease: an update. Liver Res. 2020;4(2):88–93. doi: https://doi.org/10.1016/j.livres.2020.03.001
38. Townsend S, Newsome P. New treatments in non-alcoholic fatty liver disease. Alimentary Pharmacol Ther. 2017;46:494–507. doi: https://doi.org/10.1111/apt.14210
39. Sousa A, Fernandes D, Ferreira M, Cordeiro L, Souza M, Pessoa H, et al. Analysis of the toxicological and pharmacokinetic profile of Kaempferol-3-O-β-D-(6”-Ep-coumaryl) glucopyranoside-tiliroside: in silico, in vitro and ex vivo assay. Braz J Biol. 2021;83:e244127. doi: https://doi.org/10.1590/1519-6984.244127
40. Thorgersen EB, Barratt-Due A, Haugaa H, Harboe M, Pischke SE, Nilsson PH, et al. The role of complement in liver injury, regeneration, and transplantation. Hepatology. 2019;70:725–36. doi: https://doi.org/10.1002/hep.30508
41. Abdel-Salam OM, Youness ER, Mohammed NA, Yassen NN, Khadrawy YA, El-Toukhy SE et al. Nitric oxide synthase inhibitors protect against brain and liver damage caused by acute malathion intoxication. Asian Pac J Tropical Med. 2017;10:773–86. doi: https://doi.org/10.1016/j.apjtm.2017.07.018
42. Li X, He X, Chen S, Le Y, Bryant MS, Guo L, et al. The genotoxicity potential of luteolin is enhanced by CYP1A1 and CYP1A2 in human lymphoblastoid TK6 cells. Toxicol Lett. 2021;344:58–68. doi: https://doi.org/10.1016/j.toxlet.2021.03.006
43. Salgueiro AC, Folmer V, da Rosa HS, Costa MT, Boligon AA, Paula FR, et al. In vitro and in silico antioxidant and toxicological activities of Achyrocline satureioides. J Ethnopharmacol. 2016;194:6–14. doi: https://doi.org/10.1016/j.jep.2016.08.048
44. Stading R, Couroucli X, Lingappan K, Moorthy B. The role of cytochrome P450 (CYP) enzymes in hyperoxic lung injury. Expert Opin Drug Metab Toxicol. 2021;17:171–8. doi: https://doi.org/10.1080/17425255.2021.1853705
45. Uno S, Nebert DW, Makishima M. Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by western diet containing benzo[a]pyrene in mice. Food Chem Toxicol. 2018;113:73–82. doi: https://doi.org/10.1016/j.fct.2018.01.029
46. Coelho AM, Queiroz IF, Lima WG, Talvani A, Perucci LO, Oliveira de Souza M, et al. Temporal analysis of paracetamol-induced hepatotoxicity. Drug Chem. Toxicol. 2022; 1–10. https://doi.org/10.1080/01480545.2022.2052891
47. Salmaso V, Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front Pharmacol. 2018;9:923. doi: https://doi.org/10.3389/fphar.2018.00923
48. Fang J, Wu P, Yang R, Gao L, Li C, Wang D, et al. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation. Acta Pharm Sinica B. 2014;4:430–37. doi: https://doi.org/10.1016/j.apsb.2014.10.002
49. Hejazi II, Beg MA, Imam MA, Athar F, Islam A. Glossary of phytoconstituents: can these be repurposed against SARS CoV-2? A quick in silico screening of various phytoconstituents from plant Glycyrrhiza glabra with SARS CoV-2 main protease. Food Chem Toxicol. 2021;150:112057. doi: https://doi.org/10.1016/j.fct.2021.112057
50. Naidoo D, Roy A, Kar P, Mutanda T, Anandraj A. Cyanobacterial metabolites as promising drug leads against the Mpro and PLpro of SARS-CoV-2: An in silico analysis. J Biomol Str Dyn. 2020;1–13. doi: https://doi.org/10.1080/07391102.2020.1794972
51. Muthumanickam S, Indhumathi T, Boomi P, Balajee R, Jeyakanthan J, Anand K, et al. In silico approach of naringin as potent phosphatase and tensin homolog (PTEN) protein agonist against prostate cancer. J Biomol Str Dyn. 2020;1–10. doi: https://doi.org/10.1080/07391102.2020.1830855
52. Singh G, Tiwari A, Choudhir G, Kumar A, Sharma P. Unravelling the potential role of bioactive molecules produced by Trichoderma spp. as inhibitors of tomatinase enzyme having an important role in wilting disease: an in-silico approach. J Biomol Str Dyn. 2021;1–10. doi: https://doi.org/10.1080/07391102.2021.1898476
53. Mishra A, Pathak Y, Kumar A, Mishra SK, Tripathi V. Natural compounds as potential inhibitors of SARS-CoV-2 main protease: An in-silico study. Asian Pac J Trop Biomed. 2021;11:155–63. doi: https://doi.org/10.21203/rs.3.rs-22839/v2
Year
Month