Research Trend in The Inhibition of Transient Receptor Potential Vanilloid 1 (TRPV1): Bibliometric Analysis and Visualization

Shereen M. Aleidi Amani A. Harb Lina A. Dahabiyeh Montaha AL-Iede Islam Hamad Walhan Alshaer Ihab M. Almasri Yasser Bustanji   

Open Access   

Published:  Jul 31, 2024

DOI: 10.7324/JAPS.2024.188749
Abstract

This study aimed to provide a comprehensive overview of the research trend in transient receptor potential vanilloid 1 (TRPV1) inhibition and modulation. A bibliometric analysis of peer-reviewed articles and reviews published from 2003 until 2022 in the Scopus database was conducted. A total of 7,470 publications were retrieved and distributed over 140 countries and published by 23,875 authors. The number of publications was increasing over the determined period, indicating a steady upward trend. Approximately 80% of the total extracted publications were research articles. The leading country in this research field is the United States of America. The top publishing journal was the British Journal of Pharmacology. The most frequent keywords included TRPV1, pain, and capsaicin. Analysis of authors-keywords pointed to the role of TRPV1 inhibition in numerous conditions including cancer, inflammation, oxidative stress, pruritus, osteoarthritis, migraine, the endocannabinoid system, nitric oxide, and endothelium relaxation. This study revealed most of the research was focused on the role of TRPV1 channels in pain. However, TRPV1 has been implicated in different pathological conditions. This implication should be translated into the development of therapeutic strategy, and efforts should be expanded into new clinical indications and novel drug discovery.


Keyword:     TRPV1 capsaicin pain inhibition bibliometrics and visualization


Citation:

Aleidi SM, Harb AA, Dahabiyeh LA, AL-Iede M, Hamad I, Alshaer W, Almasri IM, Bustanji Y. Research trend in the inhibition of transient receptor potential vanilloid 1: Bibliometric analysis and visualization. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.188749

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24. doi: https://doi.org/10.1038/39807

2. Abdalla SS, Harb AA, Almasri IM, Bustanji YK. The interaction of TRPV1 and lipids: insights into lipid metabolism. Front Physiol. 2022;13:1066023.

https://doi.org/10.3389/fphys.2022.1066023.

3. Iftinca M, Defaye M, Altier C. TRPV1-targeted drugs in development for human pain conditions. Drugs. 2021;81(1):7–27. doi: https://doi.org/10.1007/s40265-020-01429-2.

4. Kark T, Bagi Z, Lizanecz E, Pásztor ET, Erdei N, Czikora A, et al. Tissue-specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. Mol Pharmacol. 2008;73(5):1405–12. doi: https://doi.org/10.1124/mol.107.043323.

5. Takahashi N, Matsuda Y, Yamada H, Tabeta K, Nakajima T, Murakami S, et al. Epithelial TRPV1 signaling accelerates gingival epithelial cell proliferation. J Dent Res. 2014;93(11):1141–7. doi: https://doi.org/10.1177/0022034514552826.

6. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306–13. doi: https://doi.org/10.1126/science.288.5464.306.

7. Kwon DH, Zhang F, Suo Y, Bouvette J, Borgnia MJ, Lee SY. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat Struct Mole Biol. 2021;28(7):554–63. doi: https://doi.org/10.1038/s41594-021-00616-3.

8. Caterina MJ, Pang Z. TRP channels in skin biology and pathophysiology. Pharmaceuticals (Basel, Switzerland). 2016;9(4):77. doi: https://doi.org/10.3390/ph9040077.

9. Woo DH, Jung SJ, Zhu MH, Park CK, Kim YH, Oh SB, et al. Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG). Mol Pain. 2008;4:42. doi: https://doi.org/10.1186/1744-8069-4-42.

10. Senning EN, Collins MD, Stratiievska A, Ufret-Vincenty CA, Gordon SE. Regulation of TRPV1 ion channel by phosphoinositide (4,5)-bisphosphate: the role of membrane asymmetry. J Biol Chem. 2014;289(16):10999–1006. doi: https://doi.org/10.1074/jbc.M114.553180.

11. Muller C, Morales P, Reggio PH. Cannabinoid ligands targeting TRP channels. Front Mole Neurosci. 2018;11:487. doi: https://doi.org/10.3389/fnmol.2018.00487.

12. Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. Medicinal chemistry, pharmacology, and clinical implications of TRPV1 receptor antagonists. Med Res Rev. 2017;37(4):936–83. doi: https://doi.org/10.1002/med.21427.

13. Koivisto A-P, Belvisi MG, Gaudet R, Szallasi A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov. 2022;21(1):41–59. doi: https://doi.org/10.1038/s41573-021-00268-4.

14. Harb AA, Bustanji YK, Almasri IM, Abdalla SS. Eugenol reduces LDL cholesterol and hepatic steatosis in hypercholesterolemic rats by modulating TRPV1 receptor. Sci Rep. 2019;9(1):14003. doi: https://doi.org/10.1038/s41598-019-50352-4.

15. El-Hammadi MM, Small-Howard AL, Jansen C, Fernández-Arévalo M, Turner H, Martín-Banderas L. Potential use for chronic pain: Poly(Ethylene Glycol)-Poly(Lactic-Co-Glycolic Acid) nanoparticles enhance the effects of cannabis-based terpenes on calcium influx in TRPV1-Expressing cells. Int J Pharm. 2022;616:121524. doi: https://doi.org/10.1016/j.ijpharm.2022.121524.

16. van Eck NJ, Waltman L. Visualizing bibliometric networks. Ding Y, Rousseau R, Wolfram D, editors. Measuring Scholarly Impact: Methods and Practice. Cham: Springer International Publishing; 2014. pp 285–320.

17. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. 2021;133:285–96. doi: https://doi.org/10.1016/j.jbusres.2021.04.070.

18. Wang S, Wang W, Ye X. Bibliometric analysis of global research on transient receptor potential vanilloid 1 in the field of pain. J Pain Res. 2023;16:1517–32. doi: https://doi.org/10.2147/jpr.S407384.

19. Xu P, Shao RR, He Y. Bibliometric analysis of recent research on the association between TRPV1 and inflammation. Channels (Austin, Tex). 2023;17(1):2189038. doi: https://doi.org/10.1080/19336950.2023.2189038.

20. Zhang L, Xu Y, Ma Y, Xie T, Liu C, Liu Q. Research trends in transient receptor potential vanilloid in cardiovascular disease: bibliometric analysis and visualization. Front Cardiovasc Med. 2023;10:1071198. doi: https://doi.org/10.3389/fcvm.2023.1071198.

21. Bustanji Y, Shihab KHA, El-Huneidi W, Semreen MH, Abu-Gharbieh E, Alzoubi KH, et al. Analysis and mapping of global scientific research on human monkeypox over the past 20 years. Veterinary world. 2023;16(4):693–703. doi: https://doi.org/10.14202/vetworld.2023.693-703.

22. Bustanji Y, Taneera J, Semreen MH, Abu-Gharbieh E, El-Huneidi W, Faris MA-IE, et al. Gold nanoparticles and breast cancer: a bibliometric analysis of the current state of research and future directions. OpenNano. 2023;12:100164. doi: https://doi.org/10.1016/j.onano.2023.100164.

23. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84. doi: https://doi.org/10.1016/j.cell.2009.09.028.

24. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92(2):791–896. doi: https://doi.org/10.1152/physrev.00017.2011.

25. Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Marzo VD, Elphick MR, et al. International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev. 2010;62(4):588. doi: https://doi.org/10.1124/pr.110.003004.

26. Liao M, Cao E, Julius D, Cheng Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature. 2013;504(7478):107–12. doi: https://doi.org/10.1038/nature12822.

27. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. Endocannabinoid-mediated control of synaptic transmission. 2009;89(1):309–80. doi: https://doi.org/10.1152/physrev.00019.2008

28. Uniyal A, Gadepalli A, Tiwari V, Allani M, Chouhan D, et al. Unlocking the potential of TRPV1 based siRNA therapeutics for the treatment of chemotherapy-induced neuropathic pain. Life Sci. 2022;288:120187. doi: https://doi.org/10.1016/j.lfs.2021.120187.

29. Lee H, Ahn S, Ann J, Ha H, Yoo YD, Kim YH, et al. Discovery of dual-acting opioid ligand and TRPV1 antagonists as novel therapeutic agents for pain. Eur J Med Chem. 2019;182:111634. doi: https://doi.org/10.1016/j.ejmech.2019.111634.

30. Kim C, Ann J, Lee S, Sun W, Blumberg PM, Frank-Foltyn R, et al. Discovery of 2-(3,5-difluoro-4-methylsulfonaminophenyl)propanamides as potent TRPV1 antagonists. Bioorg Med Chem Lett. 2018;28(14):2539–42. doi: https://doi.org/10.1016/j.bmcl.2018.05.043.

31. Bautista DM. Spicy science: David Julius and the discovery of temperature-sensitive TRP channels. Temperature (Austin, Tex). 2015;2(2):135–41. doi: https://doi.org/10.1080/23328940.2015.1047077.

32. De Petrocellis L, Ligresti A, Moriello AS, Allarà M, Bisogno T, Petrosino S, et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. British J Pharm. 2011;163(7):1479–94. doi: https://doi.org/10.1111/j.1476-5381.2010.01166.x.

33. Arora V, Campbell JN, Chung MK. Fight fire with fire: neurobiology of capsaicin-induced analgesia for chronic pain. Pharm Ther. 2021;220:107743. doi: https://doi.org/10.1016/j.pharmthera.2020.107743.

34. Sanz-Salvador L, Andrés-Borderia A, Ferrer-Montiel A, Planells-Cases R. Agonist- and Ca2+-dependent desensitization of TRPV1 channel targets the receptor to lysosomes for degradation. J Biol Chem. 2012;287(23):19462–71. doi: https://doi.org/10.1074/jbc.M111.289751.

35. Blanton H, Reddy PH, Benamar K. Chronic pain in Alzheimer’s disease: endocannabinoid system. Exp Neurol. 2023;360:114287. doi: https://doi.org/10.1016/j.expneurol.2022.114287.

36. Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The endocannabinoid system: a potential target for the treatment of various diseases. Int Journal of molecular sciences. 2021;22(17). doi: https://doi.org/10.3390/ijms22179472.

37. Fitzgibbon M, Finn DP, Roche M. High times for painful blues: the endocannabinoid system in pain-depression comorbidity. Int J Neuropsychopharmacol. 2015;19(3):pyv095. doi: https://doi.org/10.1093/ijnp/pyv095.

38. Maldonado R, Baños JE, Cabañero D. The endocannabinoid system and neuropathic pain. Pain. 2016;157 Suppl 1:S23–S32. doi: https://doi.org/10.1097/j.pain.0000000000000428.

39. Anand P, Whiteside G, Fowler CJ, Hohmann AG. Targeting CB2 receptors and the endocannabinoid system for the treatment of pain. Brain Res Rev. 2009;60(1):255–66. doi: https://doi.org/10.1016/j.brainresrev.2008.12.003.

40. Greco R, Demartini C, Zanaboni AM, Francavilla M, De Icco R, Ahmad L, et al. The endocannabinoid system and related lipids as potential targets for the treatment of migraine-related pain. Headache. 2022;62(3):227–40. doi: https://doi.org/10.1111/head.14267.

41. Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiological reviews. 2015;95(2):645–90. doi: https://doi.org/10.1152/physrev.00026.2014.

42. Yang D, Luo Z, Ma S, Wong WT, Ma L, Zhong J, et al. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension. Cell Metab. 2010;12(2):130–41. doi: https://doi.org/10.1016/j.cmet.2010.05.015.

43. Wang Q, Zhang C, Yang C, Sun Y, Chen K, Lu Y. Capsaicin alleviates vascular endothelial dysfunction and cardiomyopathy via TRPV1/eNOS pathway in diabetic rats. Oxid Med Cell Longev. 2022;2022:6482363. doi: https://doi.org/10.1155/2022/6482363.

44. Waning J, Vriens J, Owsianik G, Stüwe L, Mally S, Fabian A, et al. A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration. Cell Calcium. 2007;42(1):17–25. doi: https://doi.org/10.1016/j.ceca.2006.11.005.

45. Zhang SS, Ni YH, Zhao CR, Qiao Z, Yu HX, Wang LY, et al. Capsaicin enhances the antitumor activity of sorafenib in hepatocellular carcinoma cells and mouse xenograft tumors through increased ERK signaling. Acta Pharm Sinica. 2018;39(3):438–48. doi: https://doi.org/10.1038/aps.2017.156.

46. Li L, Chen C, Chiang C, Xiao T, Chen Y, Zhao Y, et al. The impact of TRPV1 on cancer pathogenesis and therapy: a systematic review. Int J Biol Sci. 2021;17(8):2034–49. doi: https://doi.org/10.7150/ijbs.59918.

47. Li T, Jiang S, Zhang Y, Luo J, Li M, Ke H, et al. Nanoparticle-mediated TRPV1 channel blockade amplifies cancer thermo-immunotherapy via heat shock factor 1 modulation. Nat Commun. 2023;14(1):2498. doi: https://doi.org/10.1038/s41467-023-38128-x.

48. Oh SJ, Lim JY, Son MK, Ahn JH, Song K-H, Lee H-J, et al. TRPV1 inhibition overcomes cisplatin resistance by blocking autophagy-mediated hyperactivation of EGFR signaling pathway. Nature Communications. 2023;14(1):2691. doi: https://doi.org/10.1038/s41467-023-38318-7.

49. Lee KP, Koshelev MV. Upcoming topical TRPV1 anti-pruritic compounds. Dermatol Online J. 2020;26(9):3.

Article Metrics
158 Views 63 Downloads 221 Total

Year

Month

Related Search

By author names