This study aimed to identify the most cost-effective vancomycin dosage regimen to treat ventilator-associated pneumonia (VAP) in critically ill patients infected with “minimum inhibitory concentration (MIC) Creep” Methicillin-resistant Staphylococcus aureus (MRSA). Decision tree analysis with a healthcare provider perspective was used in this study. Clinical data, both efficacy and safety, were derived from Monte Carlo Simulation (MCS). Only direct medical cost was calculated in this study without any discounting factor analysis. The most cost-effective dosage regimen is the dosage regimen with the lowest incremental cost-effectiveness ratio (ICER). MCS found that the standard dose of vancomycin (2 g/day) was ineffective in treating MRSA with MIC 2 mg/l. The dosage regimen with a total daily dose of 4 g afforded the highest efficacy for all MIC values of MRSA. Nevertheless, this dosage regimen also afforded the highest risk of nephrotoxicity. The dosage regimen with a total daily dose of 3 g vancomycin attained a relatively good efficacy and safety profile. The ICER for vancomycin 1 g every 8 hours, 1 g every 6 hours, 1.5 g every 12 hours, and 2 g every 12 hours were 50,464; 58,998; 49,809; and 57,153, respectively. Vancomycin 1.5 g every 12 hours was the most cost-effective dosage regimen to treat VAP patients without advanced renal impairment in the era of “MIC Creep” MRSA.
Presley B, Halim SV, Setiawan E. Cost-effectiveness analysis of several dosage regimens of vancomycin in ventilator-associated pneumonia critically ill patients. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.194102
1. Alp E, Voss A. Ventilator associated pneumonia and infection control. Ann Clin Microbiol Antimicrob. 2006;5:1-11. https://doi.org/10.1186/1476-0711-5-7 | |
2. American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388. https://doi.org/10.1164/rccm.200405-644ST | |
3. Doyle JS, Buising KL, Thursky KA, Worth LJ, Richards MJ, editors. Epidemiology of infections acquired in intensive care units. Semin Respir Crit Care Med. 2011;32(2):115-38. https://doi.org/10.1055/s-0031-1275525 | |
4. Tao L, Hu B, Rosenthal VD, Gao X, He L. Device-associated infection rates in 398 intensive care units in Shanghai, China: International nosocomial infection control consortium (INICC) findings. Int J Infect Dis. 2011;15(11):e774-80. https://doi.org/10.1016/j.ijid.2011.06.009 | |
5. Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis. 2010;51(Supplement_1):S81-7. https://doi.org/10.1086/653053 | |
6. Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol. 2005;26(2):166-74. https://doi.org/10.1086/502522 | |
7. Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36(1):53-9. https://doi.org/10.1086/345476 | |
8. Filice GA, Nyman JA, Lexau C, Lees CH, Bockstedt LA, Como-Sabetti K, et al. Excess costs and utilization associated with methicillin resistance for patients with Staphylococcus aureus infection. Infect Control Hosp Epidemiol. 2010;31(4):365-73. https://doi.org/10.1086/651094 | |
9. Wolkewitz M, Frank U, Philips G, Schumacher M, Davey P, Group BS, et al. Mortality associated with in-hospital bacteraemia caused by Staphylococcus aureus: a multistate analysis with follow-up beyond hospital discharge. J Antimicrob Chemother. 2011;66(2):381-6. https://doi.org/10.1093/jac/dkq424 | |
10. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18-55. https://doi.org/10.1093/cid/ciq146 | |
11. Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis. 2011;52(8):975-81. https://doi.org/10.1093/cid/cir124 | |
12. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43:925-42. https://doi.org/10.2165/00003088-200443130-00005 | |
13. Pitz AM, Yu F, Hermsen ED, Rupp ME, Fey PD, Olsen KM. Vancomycin susceptibility trends and prevalence of heterogeneous vancomycin-intermediate Staphylococcus aureus in clinical methicillin-resistant s. aureus isolates. J Clin Microbiol. 2011;49(1):269-74. https://doi.org/10.1128/JCM.00914-10 | |
14. Robert J, Bismuth R, Jarlier V. Decreased susceptibility to glycopeptides in methicillin-resistant Staphylococcus aureus: a 20 year study in a large french teaching hospital, 1983-2002. J Antimicrob Chemother. 2006;57(3):506-10. https://doi.org/10.1093/jac/dki486 | |
15. Steinkraus G, White R, Friedrich L. Vancomycin mic creep in non-vancomycin-intermediate Staphylococcus aureus (visa), vancomycin-susceptible clinical methicillin-resistant s. aureus (mrsa) blood isolates from 2001-05. J Antimicrob Chemother. 2007;60(4):788-94. https://doi.org/10.1093/jac/dkm258 | |
16. Jacob JT, DiazGranados CA. High vancomycin minimum inhibitory concentration and clinical outcomes in adults with methicillin-resistant Staphylococcus aureus infections: a meta-analysis. Int J Infect Dis. 2013;17(2):e93-100. https://doi.org/10.1016/j.ijid.2012.08.005 | |
17. Van Hal S, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis. 2012;54(6):755-71. https://doi.org/10.1093/cid/cir935 | |
18. Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet. 2005;44:1009-34. https://doi.org/10.2165/00003088-200544100-00002 | |
19. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37(3):840-51. https://doi.org/10.1097/CCM.0b013e3181961bff | |
20. Revilla N, Martín-Suárez A, Pérez MP, González FM, Fernández de Gatta MDM. Vancomycin dosing assessment in intensive care unit patients based on a population pharmacokinetic/pharmacodynamic simulation. Br J Clin Pharmacol. 2010;70(2):201-12. https://doi.org/10.1111/j.1365-2125.2010.03679.x | |
21. Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis. 2009;49(4):507-14. https://doi.org/10.1086/600884 | |
22. Beringer PM, Wong-Beringer A, Rho JP. Economic aspects of antibacterial adverse effects. Pharmacoeconomics. 1998;13:35-49. https://doi.org/10.2165/00019053-199813010-00004 | |
23. Mullins CD, Kuznik A, Shaya FT, Obeidat NA, Levine AR, Liu LZ, et al. Cost-effectiveness analysis of linezolid compared with vancomycin for the treatment of nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus. Clin Ther. 2006;28(8):1184-98. https://doi.org/10.1016/j.clinthera.2006.08.016 | |
24. Rybak MJ, Albrecht L, Berman J, Warbasse L, Svensson C. Vancomycin pharmacokinetics in burn patients and intravenous drug abusers. Antimicrob Agents Chemother. 1990;34(5):792-5. https://doi.org/10.1128/AAC.34.5.792 | |
25. Cano EL, Haque NZ, Welch VL, Cely CM, Peyrani P, Scerpella EG, et al. Incidence of nephrotoxicity and association with vancomycin use in intensive care unit patients with pneumonia: retrospective analysis of the impact-hap database. Clin Ther. 2012;34(1):149-57. https://doi.org/10.1016/j.clinthera.2011.12.013 | |
26. Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol. 2012;68:1243-55. https://doi.org/10.1007/s00228-012-1259-9 | |
27. Gupta A, Biyani M, Khaira A. Vancomycin nephrotoxicity: Myths and facts. Neth J Med. 2011;69(9):379-83. | |
28. Jeffres MN, Isakow W, Doherty JA, Micek ST, Kollef MH. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther. 2007;29(6):1107-15. https://doi.org/10.1016/j.clinthera.2007.06.014 | |
29. Lodise TP, Lomaestro B, Graves J, Drusano G. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52(4):1330-6. https://doi.org/10.1128/AAC.01602-07 | |
30. European Committee on Antimicrobial Susceptibility Testing. Antimicrobial wild type distributions of microorganisms. Växjö, Sweden: European Committee on Antimicrobial Susceptibility Testing. Available from: http://mic.eucast.org/Eucast2/SearchController/search.jsp?action= perform Search& BeginIndex= 0&Micdif=mic&NumberIndex=50&Antib=38&Specium=-1 | |
31. Bauer LA. Applied clinical pharmacokinetics. 2nd ed. New York, NY: The McGraw-Hill Companies, Inc; 2008. | |
32. DeRyke CA, Alexander DP. Optimizing vancomycin dosing through pharmacodynamic assessment targeting area under the concentration-time curve/minimum inhibitory concentration. Hosp Pharm. 2009;44(9):751-65. https://doi.org/10.1310/hpj4409-751 | |
33. Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL. Standardization of pharmacokinetic/pharmacodynamic (pk/pd) terminology for anti-infective drugs: an update. J Antimicrob Chemother. 2005;55(5):601-7. https://doi.org/10.1093/jac/dki079 | |
34. Trissel L. Handbook on injectable drugs. 15th ed. Bethesda, MD: American Society of Health-System Pharmacists, Inc; 2009. | |
35. Health Intervention and Technology Assessment Program. Standard cost lists for health technology assessment. Nonthaburi, Thailand: Thailand; 2009. | |
36. Ministry of Public Health. Drugs and medical supplies information center (DMSIC). Ministry of Public Health, Thailand; 2013. Available from: http://dmsic.moph.go.th/price/price1_1.php?method=drug | |
37. Chan JD, Pham TN, Wong J, Hessel M, Cuschieri J, Neff M, et al. Clinical outcomes of linezolid vs vancomycin in methicillin-resistant Staphylococcus aureus ventilator-associated pneumonia: retrospective analysis. J Intensive Care Med. 2011;26(6):385-91. https://doi.org/10.1177/0885066610392893 | |
38. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365-70. https://doi.org/10.1681/ASN.2004090740 | |
39. Kollef MH, Rello J, Cammarata SK, Croos-Dabrera RV, Wunderink RG. Clinical cure and survival in gram-positive ventilator-associated pneumonia: retrospective analysis of two double-blind studies comparing linezolid with vancomycin. Intensive Care Med. 2004;30:388-94. https://doi.org/10.1007/s00134-003-2088-1 | |
40. Rojas L, Bunsow E, Munoz P, Cercenado E, Rodriguez-Creixems M, Bouza E. Vancomycin mics do not predict the outcome of methicillin-resistant Staphylococcus aureus bloodstream infections in correctly treated patients. J Antimicrob Chemother. 2012;67(7):1760-8. https://doi.org/10.1093/jac/dks128 | |
41. Wunderink RG, Mendelson MH, Somero MS, Fabian TC, May AK, Bhattacharyya H, et al. Early microbiological response to linezolid vs vancomycin in ventilator-associated pneumonia due to methicillin-resistant Staphylococcus aureus. Chest. 2008;134(6):1200-7. https://doi.org/10.1378/chest.08-0011 | |
42. Chung J, Oh J, Cho E, Jang H, Hong S, Lim C, et al. Optimal dose of vancomycin for treating methicillin-resistant Staphylococcus aureus pneumonia in critically ill patients. Anaesth Intensive Care. 2011;39(6):1030-7. https://doi.org/10.1177/0310057X1103900608 | |
43. De Cock E, Krueger W, Sorensen S, Baker T, Hardewig J, Duttagupta S, et al. Cost-effectiveness of linezolid vs vancomycin in suspected methicillin-resistant Staphylococcus aureus nosocomial pneumonia in germany. Infection. 2009;37:123-32. https://doi.org/10.1007/s15010-008-8046-7 | |
44. Grau S, Alvarez-Lerma F, Del Castillo A, Neipp R, Rubio-Terres C. Cost-effectiveness analysis of the treatment of ventilator-associated pneumonia with linezolid or vancomycin in spain. J Chemother. 2005;17(2):203-11. https://doi.org/10.1179/joc.2005.17.2.203 | |
45. Machado AR, Arns CDC, Follador W, Guerra A. Cost-effectiveness of linezolid versus vancomycin in mechanical ventilation-associated nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus. Braz J Infect Dis. 2005;9:191-200. https://doi.org/10.1590/S1413-86702005000300001 | |
46. Shorr AF, Susla GM, Kollef MH. Linezolid for treatment of ventilator-associated pneumonia: a cost-effective alternative to vancomycin. Crit Care Med. 2004;32(1):137-43. https://doi.org/10.1097/01.CCM.0000104110.74657.25 | |
47. Patel DA, Shorr AF, Chastre J, Niederman M, Simor A, Stephens JM, et al. Modeling the economic impact of linezolid versus vancomycin in confirmed nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus. Crit Care. 2014;18:1-9. https://doi.org/10.1186/cc13996 | |
48. Wan Y, Li Q, Chen Y, Haider S, Liu S, Gao X. Economic evaluation among chinese patients with nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus and treated with linezolid or vancomycin: a secondary, post-hoc analysis based on a phase 4 clinical trial study. J Med Econ. 2016;19(1):53-62. https://doi.org/10.3111/13696998.2015.1088448 | |
49. Buendía JA, Patiño DG, Zuluaga Salazar AF. Cost-effectiveness of linezolid to ventilator-associated pneumonia in colombia. BMC Infect Dis. 2024;24(1):98. https://doi.org/10.1186/s12879-023-08961-y | |
50. Niederman MS, Chastre J, Solem CT, Wan Y, Gao X, Myers DE, et al. Health economic evaluation of patients treated for nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus: secondary analysis of a multicenter randomized clinical trial of vancomycin and linezolid. Clin Ther. 2014;36(9):1233-43. e1. https://doi.org/10.1016/j.clinthera.2014.06.029 | |
51. Jeurissen A, Sluyts I, Rutsaert R. A higher dose of vancomycin in continuous infusion is needed in critically ill patients. Int J Antimicrob Agents. 2011;37(1):75-7. https://doi.org/10.1016/j.ijantimicag.2010.09.004 | |
52. Rose WE, Knier RM, Hutson PR. Pharmacodynamic effect of clinical vancomycin exposures on cell wall thickness in heterogeneous vancomycin-intermediate Staphylococcus aureus. J Antimicrob Chemother. 2010;65(10):2149-54. https://doi.org/10.1093/jac/dkq292 | |
53. Zelenitsky S, Alkurdi N, Weber Z, Ariano R, Zhanel G. Preferential emergence of reduced vancomycin susceptibility in health care-associated methicillin-resistant Staphylococcus aureus isolates during continuous-infusion vancomycin therapy in an in vitro dynamic model. Antimicrob Agents Chemother. 2011;55(7):3627-30. https://doi.org/10.1128/AAC.01472-10 | |
54. Hsieh HM, Gu SM, Shin SJ, Kao HY, Lin YC, Chiu HC. Cost-effectiveness of a diabetes pay-for-performance program in diabetes patients with multiple chronic conditions. PLoS One. 2015;10(7):e0133163. https://doi.org/10.1371/journal.pone.0133163 | |
55. Bohingamu Mudiyanselage S, Stevens J, Watts JJ, Toscano J, Kotowicz MA, Steinfort CL, et al. Personalised telehealth intervention for chronic disease management: a pilot randomised controlled trial. J Telemed Telecare. 2019;25(6):343-52. https://doi.org/10.1177/1357633X18775850 |
Year
Month