Production and biological properties of nano porous glass microparticles for anticancer drug carrier

Emre Burak Ertus Elif Gulbahce-Mutlu Serife Alpa Abdullah Ozturk   

Open Access   

Published:  Jun 14, 2024

DOI: 10.7324/JAPS.2024.168308

Nanoporous glass (NPG) microparticles were produced by conventional melt-quenching followed by acid-alkali leaching to get material for anticancer drug carriers. NPG exhibited a positive zeta potential of 34 mV after [3-(2-aminoethylamino) propyl] trimethoxysilane treatment. The specific surface area and the total pore volume of NPG were 47.3 m2/g and 0.692 cm3/g, respectively. The 5-Fluorouracil (5FU) loading capacity of NPG was measured as 18.2 ± 0.2 mg5FU/gNPG. The drug release rate was monitored for 120 hours. To evaluate the cytotoxic effects of NPG on both MCF-7 breast cancer cells and MCF-12A, an immortalized cell line, the study employed the 2,3-bis [2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium5-carboxanilide inner salt (XTT) assay. The XTT results revealed that NPG showed a time and concentration-dependent cytotoxic effect. It is anticipated that NPG is a safe and effective material for drug delivery systems for in vitro and a promising alternative material for in vivo applications.

Keyword:     Porous glass 5FU MCF7 drug release breast cancer


Ertus EB, Gulbahce-Mutlu E, Alpa S, Ozturk A. Production and biological properties of nano porous glass microparticles for anticancer drug carrier. J Appl Pharm Sci. 2024. Online First.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text


1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69-90.

2. Soule H, Vazquez J, Long A, Albert S, Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973;51(5):1409-16.

3. Nugoli M, Chuchana P, Vendrell J, Orsetti B, Ursule L, Nguyen C, et al. Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications. BMC Cancer. 2003;3(1):1-12.

4. Paine TM, Soule HD, Pauley RJ, Dawson PJ. Characterization of epithelial phenotypes in mortal and immortal human breast cells. Int J Cancer. 1992;50(3):463-73.

5. Waks AG, Winer EP. Breast cancer treatment: a review. Jama. 2019;321(3):288-300.

6. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219-34.

7. Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet. 1989;16(4):215-37.

8. Ghoshal K, Jacob ST. An alternative molecular mechanism of action of 5-fluorouracil, a potent anticancer drug. Biochem Pharmacol. 1997;53(11):1569-75.

9. Dhankhar R, Vyas SP, Jain AK, Arora S, Rath G, Goyal AK. Advances in novel drug delivery strategies for breast cancer therapy. Artif Cells Blood Sub Biotechnol. 2010;38(5):230-49.

10. Arruebo M. Drug delivery from structured porous inorganic materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(1):16-30.

11. Gârea S, Mihai A, Ghebaur A, Nistor C, Sârbu A. Porous clay heterostructures: a new inorganic host for 5-fluorouracil encapsulation. Int J Pharm. 2015;491(1-2):299-309.

12. Ouchi T, Banba T, Fujimoto M, Hamamoto S. Synthesis and antitumor activity of chitosan carrying 5-fluorouracils. Die Makromolekulare Chemie: Macromol Chem Phys. 1989;190(8):1817-25.

13. She X, Chen L, Li C, He C, He L, Kong L. Functionalization of hollow mesoporous silica nanoparticles for improved 5-FU loading. J Nanomaters. 2015;16:108-108.

14. Moodley T, Singh M. Polymeric mesoporous silica nanoparticles for enhanced delivery of 5-fluorouracil in vitro. Pharmaceutics. 2019;11(6):288.

15. Nair L, Jagadeeshan S, Nair SA, Kumar GV. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomed. 2011;6:1685.

16. Maney V, Singh M. The synergism of platinum-gold bimetallic Nanoconjugates enhances 5-fluorouracil delivery in vitro. Pharmaceutics. 2019;11(9):439.

17. Elmer TH. Porous and reconstructed glasses. ASM International, Engineered Materials Handbook. 1991;4:427-32.

18. Enke D, Janowski F, Schwieger W. Porous glasses in the 21st century--a short review. Microporous Mesoporous Mater. 2003;60(1-3):19-30.

19. Nordberg ME. Properties of some Vycor-brand glasses. J Am Ceramic Soc. 1944;27(10):299-305.

20. Mazilu C, Rotiu E, Ionescu L, Radu D, Dinischiotu A. Nanoporous glass in Na2O-B2O3-SiO2 oxidic system, for potential biomedical applications. J Optoelectron Adv Mater. 2007;9(7):2036-40.

21. Li S, Nguyen L, Xiong H, Wang M, Hu TC-C, She J-X, et al. Porous-wall hollow glass microspheres as novel potential nanocarriers for biomedical applications. Nanomed Nanotechnol Biol Med. 2010;6(1):127-36.

22. Ertu? EB, Vakifahmetoglu C, Öztürk A. Production and properties of phase separated porous glass. Ceram Int. 2020;46(4):4947-51.

23. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25-35.

24. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217-23.

25. Koygun G, Arslan E, Zengin G, Orlando G, Ferrante C. Comparison of anticancer activity of Dorycnium pentaphyllum extract on MCF-7 and MCF-12A cell line: correlation with invasion and adhesion. Biomolecules. 2021;11(5):671.

26. Schüth F, Sing KSW, Weitkamp J. Handbook of porous solids. Weinheim, Germany: Wiley-Vch; 2002.

27. Dau TAN, Le VMH, Pham TKH, Le VH, Cho SK, Nguyen TNU, et al. Surface functionalization of doxorubicin loaded MCM-41 mesoporous silica nanoparticles by 3-aminopropyltriethoxysilane for selective anticancer 9 effect on A549 and A549/DOX cells. J Electr Mater. 2021;50(5):2932-9.

28. Enke D, Otto K, Janowski F, Heyer W, Schwieger W, Gille W. Two-phase porous silica: Mesopores inside controlled pore glasses. Journal of materials science. 2001;36(9):2349-57.

29. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87(9-10):1051-69.

30. Šuleková M, Váhovská L, Hudák A, Žid L, Zele?ák V. A study of 5-fluorouracil desorption from mesoporous silica by RP-UHPLC. Molecules. 2019;24(7):1317.

31. El-Kady AM, Farag MM. Bioactive glass nanoparticles as a new delivery system for sustained 5-fluorouracil release: characterization and evaluation of drug release mechanism. J Nanomater. 2015;16(1):399-399.

32. Egodawatte S, Dominguez Jr S, Larsen SC. Solvent effects in the development of a drug delivery system for 5-fluorouracil using magnetic mesoporous silica nanoparticles. Microporous Mesoporous Mater. 2017;237:108-16.

Article Metrics
74 Views 5 Downloads 79 Total



Related Search

By author names