A small review on polymerase chain reaction for the detection of Salmonella species

Jayanta Deb Saurabh Gupta Sanjit Debnath   

Open Access   

Published:  May 23, 2024

DOI: 10.7324/JAPS.2024.177634
Abstract

Salmonella identification from blood samples is crucial for rapid detection and efficient medication of typhoid and paratyphoid fever. Because of its remarkable sensitivity and specificity, polymerase chain reaction (PCR) is a broadly applied technology. The goal of this analysis of 16 papers concentrating on PCR-based Salmonella species identification in blood samples is to identify the most common and successful PCR techniques. The review covers a variety of PCR methods, such as one-step differential detection PCR, nested PCR, multiplex PCR, and real-time PCR. The effectiveness of many PCR primers, including those for the flagellin gene, hilA gene, invA gene, and iroB gene, in detecting Salmonella was examined. The examined studies consistently showed that the PCR techniques used had good sensitivity (95%–100%) and specificity (97%–100%). In addition, PCR was effectively used by the researchers to identify particular species of Salmonella serovars, which comprise Salmonella typhimurium, Salmonella paratyphi A, and Salmonella enteritidis. Notably, multiplex PCR became a useful technique for detecting many Salmonella serovars at the same time. The use of PCR in identifying antibiotic resistance in Salmonella isolates is also emphasized in the review. The collective results highlight the remarkable specificity and sensitivity of PCR-based techniques for Salmonella species identification from blood samples. Of them, real-time PCR and multiplex PCR are the most widely used because of their increased efficiency, sensitivity, and specificity.


Keyword:     Salmonella species polymerase chain reaction efficacy of techniques typhoid


Citation:

Deb J, Gupta S, Debnath S. A small review on polymerase chain reaction for the detection of Salmonella species. J Appl Pharm Sci, 2024. Online First. http://doi.org/10.7324/JAPS.2024.177634

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Carl AB. Encyclopedia of food microbiology. Cambridge, MA: Academic Press; 2014. Vol. 3, pp 349–52.

2. World Health Organization (WHO). Salmonella (non-typhoidal). Geneva, Switzerland: World Health Organization; [cited 2023 Nov 1]. Available from: https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal)

3. Ochiai RL, Acosta CJ, Danovaro-Holliday MC, Baiqing D, Bhattacharya SK, Agtini MD, et al. A study of typhoid fever in five Asian countries: disease burden and implications for controls. Bull World Health Organ. 2008;86(4):260–8. doi: https://doi.org/10.2471/blt.06.039818

4. Pouzol S, Tanmoy AM, Ahmed D, Khanam F, Brooks WA, Bhuyan GS, et al. Clinical evaluation of a multiplex PCR for the detection of salmonella enterica serovars typhimurium and Paratyphi A from blood specimens in a high-endemic setting. Am J Trop Med Hyg. 2019;101(3):513–20. doi: https://doi.org/10.4269/ajtmh.18-0992

5. Centers for Disease Control and Prevention. Symptoms and treatment. Typhoid fever. Atlanta, Georgia: CDC; 2022.

6. NHS. Typhoid fever—vaccination—NHS choices. UK: NHS; 2021 [cited 2023 Sep 4]. Available from: http://www.nhs.uk/Conditions/Typhoid-fever/Pages/Prevention.aspx

7. Foddai ACG, Grant IR. Methods for detection of viable foodborne pathogens: current state-of-art and future prospects. Appl Microbiol Biotechnol. 2020;104(10):4281–8. doi: https://doi.org/10.1007/s00253-020-10542-x

8. Khokhar F, Pickard D, Dyson Z, Iqbal J, Pragasam A, John JJ, et al. Multiplex PCR assay to detect high risk lineages of Salmonella typhimurium and Paratyphi A. PLoS One. 2022;17(7):e0267805. doi: https://doi.org/10.1371/journal.pone.0267805

9. Murphy MS. Management of bloody diarrhoea in children in primary care. BMJ. 2008;336(7651):1010–5. doi: https://doi.org/10.1136/bmj.39542.440417.BE

10. Larson DE, editor. Mayo clinic family health book: the ultimate home medical reference. New York, NY: William Morrow; 1993.

11. Smith M. Polymerase chain reaction (PCR). Bethesda, MD: Genome. gov.; 2023. Available from: https://www.genome.gov/genetics-glossary/Polymerase-Chain-Reaction

12. Ganesan V, Harish BN, Menezes GA, Parija SC. Detection of Salmonella in blood by PCR using iroB gene. J ClinDiagn Res. 2014;8(11):DC01–3. doi: https://doi.org/10.7860/JCDR/2014/9191.5086

13. Kasturi KN, Drgon T. Real-time PCR method for detection of Salmonella spp. in environmental samples. Appl Environ Microbiol. 2017;83(14):e00644–17. doi: https://doi.org/10.1128/AEM.00644-17

14. Ding T, Suo Y, Zhang Z, Liu D, Ye X, Chen S et al. A multiplex RT-PCR assay for S. aureus, L. monocytogenes, and Salmonella spp. detection in raw milk with pre-enrichment. Front Microbiol. 2017;8:989. doi: https://doi.org/10.3389/fmicb.2017.00989

15. Levine MM, Grados O, Gilman RH, Woodward WE, Solis-Plaza R, Waldman W. Diagnostic value of the Widal test in areas endemic for typhoid fever. Am J Trop Med Hyg. 1978;27(4):795–800. doi: https://doi.org/10.4269/ajtmh.1978.27.795

16. Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. Typhoid fever. N Engl J Med. 2002;347(22):1770–82. doi: https://doi.org/10.1056/NEJMra020201

17. Wain J, Pham VB, Ha V, Nguyen NM, To SD, Walsh AL et al. Quantitation of bacteria in bone marrow from patients with typhoid fever: relationship between counts and clinical features. J Clin Microbiol. 2001;39(4):1571–6. doi: https://doi.org/10.1128/JCM.39.4.1571-1576.2001

18. Wain J, Diep TS, Bay PV, Walsh AL, Vinh H, Duong NM et al. Specimens and culture media for the laboratory diagnosis of typhoid fever. J Infect Dev Ctries. 2008;2(6):469–74. doi: https://doi.org/10.3855/jidc.164

19. Zhou L, Pollard AJ. A fast and highly sensitive blood culture PCR method for clinical detection of Salmonella enterica serovar typhimurium. Ann Clin Microbiol Antimicrob. 2010;9:14. doi: https://doi.org/10.1186/1476-0711-9-14

20. Mullis KB. Facts. Nobel Prize.org. Nobel Prize Outreach AB 2023. [cited 2023 Dec 6]. Available from: https://www.nobelprize.org/prizes/chemistry/1993/mullis/facts/

21. Valones MAA, Guimarães RL, Brandão LA, de Souza PR, de Albuquerque Tavares Carvalho A, Crovela S. Principles and applications of polymerase chain reaction in medical diagnostic fields: a review. Braz J Microbiol. 2009;40(1):1–11. doi: https://doi.org/10.1590/S1517-83822009000100001

22. Jensen B. Benefits of PCR testing for infectious diseases. Salt Lake City, UT: Bio fire diagnostics; 2021. Available from: https://www.biofiredx.com/blog/benefits-pcr-testing-infectious-diseases/

23. NIH, US. Web archive Retrieved from the Library of Congress. Bethesda, MD: National Human Genome Research Institute; [cited 2023 Dec 6]. Available from: https://www.genome.gov/genetics-glossary/Genetic-Marker

24. Garibyan L, Nidhi A. Polymerase chain reaction. J Investig Dermatol. 2013;133(3):1–4. doi: https://doi.org/10.1038/jid.2013.1

25. Higginson EE, Nkeze J, Permala-Booth J, Kasumba IN, Lagos R, Hormazabal JC, et al. Detection of Salmonella typhimurium in bile by quantitative real-time PCR. Microbiol Spectr. 2022;10(3):e0024922. doi: https://doi.org/10.1128/spectrum.00249-22

26. Ali A, Haque A, Haque A, Sarwar Y, Mohsin M, Bashir S et al. Multiplex PCR for differential diagnosis of emerging typhoidal pathogens directly from blood samples. Epidemiol Infect. 2009;137(1):102–7. doi: https://doi.org/10.1017/S0950268808000654

27. Song JH, Cho H, Park MY, Na DS, Moon HB, Pai CH. Detection of Salmonella typhimurium in the blood of patients with typhoid fever by polymerase chain reaction. J Clin Microbiol. 1993;31(6):1439–43. doi: https://doi.org/10.1128/jcm.31.6.1439-1443.1993

28. Massi MN, Shirakawa T, Gotoh A, Bishnu A, Hatta M, Kawabata M. Rapid diagnosis of typhoid fever by PCR assay using one pair of primers from flagellin gene of Salmonella typhimurium. J Infect Chemother. 2003;9(3):233–7. doi: https://doi.org/10.1007/s10156-003-0256-4

29. Prakash P, Mishra OP, Singh AK, Gulati AK, Nath G. Evaluation of nested PCR in diagnosis of typhoid fever. J Clin Microbiol. 2005;43(1):431–2. doi: https://doi.org/10.1128/JCM.43.1.431-432.2005

30. Prabagaran SR, Kalaiselvi V, Chandramouleeswaran N, Deepthi KNG, Brahmadathan KN, Mani M. Molecular diagnosis of Salmonella typhimurium and its virulence in suspected typhoid blood samples through nested multiplex PCR. J Microbiol Methods. 2017;139:150–4. doi: https://doi.org/10.1016/j.mimet.2017.05.013

31. Zhou L, Jones C, Gibani MM, Dobinson H, Thomaides-Brears H, Shrestha S, et al. Development and evaluation of a blood culture PCR assay for rapid detection of Salmonella paratyphi A in clinical samples. PLoS One. 2016;11(3):e0150576. doi: https://doi.org/10.1371/journal.pone.0150576

32. Park SH, Ricke SC. Development of multiplex PCR assay for simultaneous detection of Salmonella genus, Salmonella subspecies I, Salm. Enteritidis, Salm. Heidelberg and Salm. Typhimurium. J Appl Microbiol. 2015;118(1):152–60. doi: https://doi.org/10.1111/jam.12678

33 Teh CSJ, Lau MY, Chong CW, Ngoi ST, Chua KH, Lee WS, et al. One-step differential detection of Salmonella entericaserovar typhimurium, serovar Paratyphi A and other Salmonella spp. by using a quadruplex real-time PCR assay. J Microbiol Methods. 2021;183:106184. doi: https://doi.org/10.1016/j.mimet.2021.106184

34. Muttiullah F, Khan FM, Abbas FI, Shamim S. Characterization of different molecular markers for identification of Salmonella entericaserovar typhimurium in Pakistani population. J Bioresour Manag. 2017;4(4):4. doi: https://doi.org/10.35691/JBM.7102.0080

35. Arkali A, Çetinkaya B. Molecular identification and antibiotic resistance profiling of Salmonella species isolated from chickens in eastern Turkey. BMC Vet Res. 2020;16(1):205. doi: https://doi.org/10.1186/s12917-020-02425-0, 32560721.

36. Malewski T, Malewska A. Rutkowski R. RT-PCR technique and its applications. State-of the-art. J Anim Feed Sci. 2003;12(3):403–16. doi: https://doi.org/10.22358/jafs/67719/2003

37. Jordan JJ. Real-time detection of PCR products and microbiology. Trends Guide. 2000;8:61–6.

38. Tennant SM, Toema D, Qamar F, Iqbal N, Boyd MA, Marshall JM, et al. Detection of Typhoidal and Paratyphoidal Salmonella in blood by real-time polymerase chain reaction. Clin Infect Dis. 2015;61(4):S241–50. doi: https://doi.org/10.1093/cid/civ726

Article Metrics
80 Views 18 Downloads 98 Total

Year

Month

Related Search

By author names