Tetrahydrobisbenzylisoquinoline alkaloids from Phaeanthus ophthalmicus inhibit target enzymes associated with type 2 diabetes and obesity

Joe Anthony H. Manzano Lloyd Christian J. Llames Allan Patrick G. Macabeo   

Open Access   

Published:  Aug 24, 2023

DOI: 10.7324/JAPS.2023.154518
Abstract

Diabetes and obesity are metabolic comorbidities declared by WHO as epidemics. Owing to the purported pharmaceutical activities of plant-derived secondary metabolites, we assessed the inhibitory potentials of the Philippine native plant Phaeanthus ophthalmicus tetrahydrobisbenzylisoquinoline alkaloidal constituents tetrandrine (1) and limacusine (2) against enzymes implicated in type 2 diabetes (T2D) and obesity such as α-glucosidase, dipeptidyl peptidase-IV (DPP-IV), porcine pancreatic lipase (PPL), and human monoacylglycerol lipase (MAGL) using in vitro experiments and molecular docking. Both alkaloids 1 (IC50 = 2.29 μg/ml) and 2 (IC50 = 2.68 μg/ml) showed stronger inhibition against α-glucosidase compared to the drug control acarbose (IC50 = 4.12 μg/ml). Alkaloids 1 (IC50 = 4.92 μg/ml) and 2 (IC50 = 3.80 μg/ml) also exhibited better inhibitory activities against DPP-IV compared to the drug control sitagliptin (IC50 = 6.90 μg/ml). Molecular docking results revealed better binding propensities for both 1 and 2 onto the active pocket of α-glucosidase and DPP-IV compared to their respective control drugs. Meanwhile, alkaloid 2 showed better in vitro (IC50 = 0.70 μg/ml) and in silico inhibitory activity vs. PPL compared to orlistat. Both alkaloids 1 and 2 showed moderate bioactivity against MAGL. Both alkaloids were predicted to possess drug-likeness properties. Our present study suggests the potentials of the tetrahydrobisbenzylisoquinoline alkaloidal phytoconstituents tetrandrine (1) and limacusine (2) from P. ophthalmicus in developing new-generation prodrugs against T2D and obesity.


Keyword:     Phaeanthus ophthalmicus tetrandrine limacusine diabetes obesity molecular docking


Citation:

Manzano JAHH, Llames LCJ, Macabeo APG. Tetrahydrobisbenzylisoquinoline alkaloids from Phaeanthus ophthalmicus inhibit target enzymes associated with type 2 diabetes and obesity. J Appl Pharm Sci. 2023. http://doi.org/10.7324/JAPS.2023.154518

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Berdigaliyev N, Aljofan M. An overview of drug discovery and development. Future Med Chem. 2020;12(10):939-47. https://doi.org/10.4155/fmc-2019-0307

2. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200-16. https://doi.org/10.1038/s41573-020-00114-z

3. World Health Organization [Internet]. Diabetes [cited 2022 Dec 18] Available from https://www.who.int/health-topics/diabetes#tab=tab_1

4. World Health Organization [Internet]. Obesity [cited 2022 Dec 18]. Available from https://www.who.int/health-topics/obesity#tab=tab_1

5. Duante CA, Canag JL, Patalen CF, Austria RE, Acuin CC. Factors associated with overweight and obesity among adults 20.0 years and over: results from the 2013 national nutrition survey, Philippines. Philipp J Sci. 2019;148(1):7-20.

6. Kalligeros M, Shehadeh F, Mylona EK, Benitez G, Beckwith CG, Chan PA, et al. Association of obesity with disease severity among patients with coronavirus disease 2019. Obesity. 2020;28(7):1200-4. https://doi.org/10.1002/oby.22859

7. Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and mortality among black patients and white patients with Covid-19. N Engl J Med. 2020;382(26):2534-43. https://doi.org/10.1056/NEJMsa2011686

8. Quimque MT, Magsipoc RJ, Llames LC, Flores AI, Garcia KY, Ratzenbo?ck A, et al. Polyoxygenated cyclohexenes from Uvaria grandiflora with multi-enzyme targeting properties relevant in type 2 diabetes and obesity. ACS Omega. 2022;7(41):36856-64. https://doi.org/10.1021/acsomega.2c05544

9. Quimque MT, Notarte KI, Adviento XA, Cabunoc MH, de Leon VN, Lugtu EJ, et al. Polyphenolic natural products active in silico against SARS-CoV-2 spike receptor binding domains and non-structural proteins-a review. Comb Chem High Throughput Screen. 2023;26(3):459-88. https://doi.org/10.2174/1386207325666210917113207

10. Liu M, El-Hossary EM, Oelschlaeger TA, Donia MS, Quinn RJ, Abdelmohsen UR. Potential of marine natural products against drug-resistant bacterial infections. Lancet Infect Dis. 2019;19(7):e237-45. https://doi.org/10.1016/S1473-3099(18)30711-4

11. Malaluan IN, Manzano JA, Muñoz JE, Bautista TJ, Dahse HM, Quimque MT, et al. Antituberculosis and antiproliferative activities of the extracts and tetrahydrobisbenzylisoquinoline alkaloids from Phaeanthus ophthalmicus: in vitro and in silico investigations. Philipp J Sci. 2022;151(1):371-81.. https://doi.org/10.56899/151.01.28

12. Manzano JA, III CL, Quimque MT, Macabeo AP. In silico potentials of Alpinia galanga constituents against human placental aromatase vital in postmenopausal estrogen-dependent breast cancer pathogenesis. Philipp J Sci. 2022;151(6A):2101-15. https://doi.org/10.56899/151.6A.04

13. Macabeo AP, Pilapil LA, Garcia KY, Quimque MT, Phukhamsakda C, Cruz AJ, et al. Alpha-glucosidase-and lipase-inhibitory phenalenones from a new species of Pseudolophiostoma originating from Thailand. Molecules. 2020;25(4):965. https://doi.org/10.3390/molecules25040965

14. Macabeo AP, Rubio PY, Alejandro GJ, Knorn M. An α-glucosidase inhibitor from Drepananthus philippinensis. Procedia Chem. 2015;14:36-9. https://doi.org/10.1016/j.proche.2015.03.007

15. de Jesus MS, Macabeo AP, Ramos JD, de Leon VN, Asamitsu K, Okamoto T. Voacanga globosa spirobisindole alkaloids exert antiviral activity in HIV latently infected cell lines by targeting the NF-kB cascade: in vitro and in silico investigations. Molecules. 2022;27(3):1078. https://doi.org/10.3390/molecules27031078

16. Quimque MT, Notarte KI, de Leon VN, Manzano JA, Muñoz JE, Pilapil IV DY, et al. Computationally repurposed natural products targeting SARS-CoV-2 attachment and entry mechanisms. In: Adibi S, Griffin P, Sanicas M, Rashidi M, Lanfranchi F, editors. Frontiers of COVID-19: scientific and clinical aspects of the novel coronavirus 2019. Cham, Switzerland: Springer International Publishing; 2022. pp 505-37. https://doi.org/10.1007/978-3-031-08045-6_25

17. Gupta MK, Sharma PK. Textbook of Pharrmacognosy, 3rd ed. Meerut, India: Pragati Prakashan; 2014.

18. Kumar A, Aswal S, Semwal RB, Chauhan A, Joshi SK, Semwal DK. Role of plant-derived alkaloids against diabetes and diabetes-related complications: a mechanism-based approach. Phytochem Rev. 2019;18:1277-98. https://doi.org/10.1007/s11101-019-09648-6

19. Magpantay HD, Malaluan IN, Manzano JA, Quimque MT, Pueblos KR, Moor N, et al. Antibacterial and COX-2 inhibitory tetrahydrobisbenzylisoquinoline alkaloids from the Philippine medicinal plant Phaeanthus ophthalmicus. Plants. 2021;10(3):462. https://doi.org/10.3390/plants10030462

20. Fernandez RA, Quimque MT, Notarte KI, Manzano JA, Pilapil IV DY, de Leon VN, et al. Myxobacterial depsipeptide chondramides interrupt SARS-CoV-2 entry by targeting its broad, cell tropic spike protein. J Biomol Struct Dyn. 2022;40(22):12209-20. 21. Wang J, Wang W, Kollman PA, Case DA. Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model. 2006;25(2):247-60. https://doi.org/10.1016/j.jmgm.2005.12.005

22. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-12. https://doi.org/10.1002/jcc.20084

23. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. https://doi.org/10.1038/srep42717

24. de Leon VN, Manzano JA, Pilapil DY, Fernandez RA, Ching JK, Quimque MT, et al. Anti-HIV reverse transcriptase plant polyphenolic natural products with in silico inhibitory properties on seven non-structural proteins vital in SARS-CoV-2 pathogenesis. J Genet Eng Biotechnol. 2021;19(1):1-7. https://doi.org/10.1186/s43141-021-00206-2

25. Kurozumi A, Okada Y, Mori H, Arao T, Tanaka Y. Efficacy of α- glucosidase inhibitors combined with dipeptidyl-peptidase-4 inhibitor (alogliptin) for glucose fluctuation in patients with type 2 diabetes mellitus by continuous glucose monitoring. J Diabetes Investig. 2013;4(4):393-8. https://doi.org/10.1111/jdi.12059

26. Kumar S, Narwal S, Kumar V, Prakash O. α-Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev. 2011;5(9):19-29. https://doi.org/10.4103/0973-7847.79096

27. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm-2016 executive summary. Endocr Pract. 2016;22(1):84-113. https://doi.org/10.4158/EP151126.CS

28. Scheen AJ. DPP-4 inhibitors in the management of type 2 diabetes: a critical review of head-to-head trials. Diabetes Metab. 2012;38(2):89-101. https://doi.org/10.1016/j.diabet.2011.11.001

29. Chen KK. The acute toxicity of ephedrine. J Pharmacol Exp Therapeut. 1926;27(1):61-76.

30. Ojeda-Montes MJ, Ardid-Ruiz A, Tomás-Hernández S, Gimeno A, Cereto-Massagué A, Beltrán-Debón R, et al. Ephedrine as a lead compound for the development of new DPP-IV inhibitors. Future Med Chem. 2017;9(18):2129-46. 31. Macabeo AP, Aguinaldo A. Chemical and phytomedicinal investigations in Lunasia amara. Pharmacogn Rev. 2008;2(4):317 -25. https://doi.org/10.4155/fmc-2017-0080

32. Macabeo AP, Alejandro GJ, Hallare A, Vidar W, Villaflores O. Phytochemical survey and pharmacological activities of the indole alkaloids in the genus Voacanga thouars (apocynaceae) --an update. Pharmacogn Rev. 2009;3(5):143 -53.

33. Kurihara H, Mitani T, Kawabata J, Takahashi K. Inhibitory potencies of bromophenols from Rhodomelaceae algae against α-glucosidase activity. Fish Sci. 1999;65(2):300. https://doi.org/10.2331/fishsci.65.300

34. Gao H, Huang YN, Gao B, Xu PY, Inagaki C, Kawabata J. α-Glucosidase inhibitory effect by the flower buds of Tussilago farfara L. Food Chem. 2008;106(3):1195-201. https://doi.org/10.1016/j.foodchem.2007.07.064

35. Kumar A, Chauhan S. Pancreatic lipase inhibitors: the road voyaged and successes. Life Sci. 2021;271:119115. https://doi.org/10.1016/j.lfs.2021.119115

36. Matheson J, Zhou XM, Bourgault Z, Le Foll B. Potential of fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and diacylglycerol lipase (DAGL) enzymes as targets for obesity treatment: a narrative review. Pharmaceuticals. 2021;14(12):1316. https://doi.org/10.3390/ph14121316

37. Liu TT, Liu XT, Chen QX, Shi Y. Lipase inhibitors for obesity: a review. Biomed Pharmacother. 2020;128:110314. https://doi.org/10.1016/j.biopha.2020.110314

38. Bajes HR, Almasri I, Bustanji Y. Plant products and their inhibitory activity against pancreatic lipase. Rev Bras Farmacogn. 2020;30:321- 30. https://doi.org/10.1007/s43450-020-00055-z

Article Metrics

3 Absract views 12 PDF Downloads 15 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required