Evaluation on antioxidative and neuroprotective activity of bacoside- A, Asiatic acid and kaempferol in endothelin-1 induced cerebral ischemia in rat

Ashutosh Ghosh Nasima Khanam Debjani Nath   

Open Access   

Published:  Aug 01, 2023

DOI: 10.7324/JAPS.2023.153365
Abstract

The framework of the present study was mapped out to evaluate the neuroprotective efficacy of bacoside-A, Asiatic acid, and kaempferol as antioxidants in the endothelin-1 (ET-1) induced focal cerebral ischemic brain of rats. Oral administration of bacoside-A (50 mg/kg), Asiatic acid (50 mg/kg), and kaempferol (50 mg/kg) significantly reduced the infarct volume to 31.8% ± 1.30%, 32.3% ± 1.25%, and 34.06% ± 1.30%, respectively, compared to the vehicle–treated ischemic (I/R) group. The neurological deficit was significantly reduced and the neuropathological condition of microglia and astrocytes were also improved. Significant increases in calcium levels and malondialdehyde and reduction (p < 0.01) at the levels of antioxidative enzymes superoxide dismutase, catalase and reduced glutathione were observed. Considering the level of efficacy, Bacoside-A was found to be the most potent neuroprotective antioxidant among the three phytochemicals.


Keyword:     Cerebral ischemia bacoside-A asiatic acid kaempferol infarct volume neuroprotective


Citation:

Ghosh A, Khanam N, Nath D. Evaluation on antioxidative and neuroprotective activity of bacoside- A, Asiatic acid and kaempferol in endothelin-1 induced cerebral ischemia in rat. J Appl Pharm Sci, 2023. Online First. http://doi.org/10.7324/JAPS.2023.153365

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Aebi H. Catalase. Meth Enzymol, 1984; 105:125-6.

Anand T, Phani KG, Pandareesh MD, Swamy MS, Khanum F, Bawa AS. Effect of bacoside extract from Bacopa monniera on physical fatigue induced by forced swimming. Phytother Res, 2012; 26(4):587. https://doi.org/10.1002/ptr.3611

Anbarasi K, Vani G, Balakrishna K, Devi CS. Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats. Life Sci, 2006; 78(12):1378-84. https://doi.org/10.1016/j.lfs.2005.07.030

Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-Nonenal. Oxdid Med Cell Longev, 2014; 2014:360438. https://doi.org/10.1155/2014/360438

Awooda HA. Pathophysiology of cerebral ischemia: role of oxidative/nitrosative stress. J Biosci Med, 2019; 7(3):20-8. https://doi.org/10.4236/jbm.2019.73003

Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA, 1992; 87:1620-4. https://doi.org/10.1073/pnas.87.4.1620

Bhardwaj P, Jain CK, Mathur A. Comparative evaluation of four triterpenoid glycoside saponins of bacoside A in alleviating sub-cellular oxidative stress of N2a neuroblastoma cells. J Pharm Pharmacol, 2018; 70(11):1531-40. https://doi.org/10.1111/jphp.12993

Bolokadze N, Lobjanidze I, Momtselidze N, Solomonia R, Shakarishvili R. Blood rheological properties and lipid peroxidation in cerebral and systemic circulation of neurocritical patients. Clin Hemorheol Microcir, 2004; 30:99-105. Cheng X, Yang YL, Yang H, Wang YH, Du GH. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 re-lease and down-regulating TLR4/MyD88 pathway. Int Immunopharmacol, 2018; 56:29-35. https://doi.org/10.1016/j.intimp.2018.01.002

Chu K, Lee ST, Koo JS, Jung KH, Kim EH, Sinn DI, Kim JM, Ko SY, Kim SJ, Song EC, Kim M, Roh JK. Peroxisome proliferator-activated receptor-gamma-agonist, rosiglitazone, promotes angio-genesis after focal cerebral ischemia. Brain Res, 2006; 1093:208-18. https://doi.org/10.1016/j.brainres.2006.03.114

Del Zoppo GJ. The neurovascular unit in the setting of stroke. J Intern Med, 2010; 267(2):156-71. https://doi.org/10.1111/j.1365-2796.2009.02199.x

Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav, 2007; 87(1):179-97. https://doi.org/10.1016/j.pbb.2007.04.015

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys, 1959; 82:70-7. https://doi.org/10.1016/0003-9861(59)90090-6

Farbiszewski R, Bielawski K, Bielawska A, Sobaniec W. Spermine protects in vivo the anti-oxidant enzymes in transiently hypoperfused rat brain. Acta Neurobiol Expermentalis, 1995; 55:253-8.

Fujii J, Takujiro H, Tsukasa O. Superoxide radicals in the execution of cell death. Antioxidants, 2022; 11(3):501. https://doi.org/10.3390/antiox11030501

Gariballa SE, Hutchin TP, Sinclair AJ. Antioxidant capacity after acute ischemic stroke. QJM, 2002; 95:685-90. https://doi.org/10.1093/qjmed/95.10.685

Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, MohlerIII ER, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey GK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation, 2014; 129:e28-92. https://doi.org/10.1161/01.cir.0000442015.53336.12

Horie N, Maag AL, Hamilton SA, Shichinohe H, Bliss TM, Steinberg GK. Mouse model of focal cerebral ischemia using endothelin-1. J Neurosci Methods, 2008; 173(2):286-90. https://doi.org/10.1016/j.jneumeth.2008.06.013

Janani P, Sivakumari K, Geetha A, Ravisankar B, Parthasarathy C. Chemopreventive effect of bacoside A on N-nitrosodiethylamine-induced hepatocarcinogenesis in rats. J Cancer Res Clin Oncol, 2010; 136(5):759-70. https://doi.org/10.1007/s00432-009-0715-0

Janani P, Sivakumari K, Parthasarathy C. Hepatoprotectiveactivity of bacoside A against N-nitrosodiethylamine-induced liver toxicity in adult rats. Cell Biol Toxicol, 2009; 25(5):425-34. https://doi.org/10.1007/s10565-008-9096-4

Jelinek M, Jurajda M, Duris K. Oxidative stress in the brain: basic concepts and treatment strategies in stroke. Antioxidants, 2021; 10(12):1886. https://doi.org/10.3390/antiox10121886

Jenner P. Oxidative damage in neurodegenerating diseases. Lancet, 1994; 344:796-8. https://doi.org/10.1016/S0140-6736(94)92347-7

Kamkaew N, Scholfield CN, Ingkaninan K, Maneesai P, Parkington HC, Tare M, Chootip K. Bacopa monnieri and its constituents is hypotensive in anaesthetized rats and vasodilator in various artery types. J. Ethnopharmacol, 2011; 137(1):790-5. https://doi.org/10.1016/j.jep.2011.06.045

Krishnamurthy RG, Senut MC, Zemke D, Min J, Frenkel MB, Greenberg EJ, Yu SW, Ahn N, Goudreau J, Kassab M, Panickar KS, Majid A. Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia. J Neurosci Res, 2009; 87(11):2541-50. https://doi.org/10.1002/jnr.22071

Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J, 2016; 15:71. https://doi.org/10.1186/s12937-016-0186-5

Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med, 2009; 7:97. https://doi.org/10.1186/1479-5876-7-97

Lee KH, Cha M, Lee BH. Neuroprotective effect of antioxidants in the brain. Int J Mol Sci, 2020; 21(19):7152. https://doi.org/10.3390/ijms21197152

Li R, Guo M, Zhang G, Xu X, Li Q. Nicotiflorin reduces cerebral ischemic damage and upregulates endothelial nitric oxide synthase in primarily cultured rat cerebral blood vessel endothelial cells. J Ethnopharmacol, 2006; 107:143-50. https://doi.org/10.1016/j.jep.2006.04.024

Lorentz K. Improved determination of serum calcium with orthocresolpthalein complex one. Clin Chem Acta, 1982; 126:327-33. https://doi.org/10.1016/0009-8981(82)90308-4

Madhu K, Prakash T, Maya S. Bacoside-A inhibits inflammatory cytokines and chemokine in experimental autoimmune encephalomyelitis. Biomed Pharmacother, 2019; 109:1339-45. https://doi.org/10.1016/j.biopha.2018.10.188

Misra HP, Fridovich J. The role of superoxide anion in the autooxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem, 1979; 247:3170-5. https://doi.org/10.1016/S0021-9258(19)45228-9

Moreno JJ, Pryor WA. Inactivation of alpha 1-proteinase inhibitor by peroxynitrite. Chem Res Toxicol, 1992; 5:425-31. https://doi.org/10.1021/tx00027a017

Muir KW, Tyrrell P, Sattar N, Warburton E. Inflammation and ischemic stroke. Curr Opin Neurol, 2007; 20:334-42. https://doi.org/10.1097/WCO.0b013e32813ba151

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animals and tissue by thiobarbituric acid reaction. Ana Biochem, 1979; 95:351-8. https://doi.org/10.1016/0003-2697(79)90738-3

Parikh V, Mohammad Khan M, Mahadik SP. Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res, 2003; 37:43-51. https://doi.org/10.1016/S0022-3956(02)00048-1

Park SE, Sapkota K, Kim S, Kim H, Kim SJ. Kaempferol acts through mi-togen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol, 2011; 164:1008-25. https://doi.org/10.1111/j.1476-5381.2011.01389.x

Park JH, Seo YH, Jang JH, Jeong CH, Lee S, Park B. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway. J Neuroinflammation, 2017; 14(1):240. https://doi.org/10.1186/s12974-017-1009-0

Paxion G, Watson C. The rat brain in stereotaxic coordinates. 4th edition, Academic Press, San Diego, CA, 1998.

Peng HY, Du JR, Zhang GY, Kuang X, Liu YX. Effect of Z-ligustilide against permanent focal ischemic damage in rats. Biol Pharm Bull, 2007; 30:309-12. https://doi.org/10.1248/bpb.30.309

Polidori MC, Cherubini A, Stahl W, Senin U, Sies H. Plasma carotenoid and malondialdehyde levels ischemic stroke patients: relationship to early outcome. Free Radic Res, 2002; 36:265-8. https://doi.org/10.1080/10715760290019273

Re G, Azzimondi G, Lanzarini C, Bassein L, Vaona I. Plasma lipoperoxidative markers in ischaemic stroke suggest brain embolism. Eur J Emerg Med, 1997; 4:5-9.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods, 2012; 9:676-82. https://doi.org/10.1038/nmeth.2019

Sekhar VC, Viswanathan G, Baby S. Insights into the molecular aspects of neuroprotective bacoside A and bacopaside l. Curr Neuropharmacol, 2019; 17(5):438-46. https://doi.org/10.2174/1570159X16666180419123022

Shahid M, Subhan F, Ullah I, Ali G, Alam J, Shah R. Beneficial effects of Bacopa monnieri extract on opioid induced toxicity. Heliyon, 2016; 2(2):e00068. https://doi.org/10.1016/j.heliyon.2016.e00068

Sharath R, Harish BG, Krishna V, Sathyanarayana BN, Swamy HM. Wound healing and protease inhibition activity of bacoside-A, isolated from Bacopa monnieri wettest. Phytother Res, 2010; 24(8):1217-22. https://doi.org/10.1002/ptr.3115

Sharpe PC, Mulholland C, Trinick T. Ascorbate and malondialdehyde in stroke patients. Ir J Med Sci, 1994; 163:488-91. https://doi.org/10.1007/BF02967089

Shivakumar BR, Kolluri SV, Ravindranath V. Glutathione and protein thiol homeostasis in brain during reperfusion after cerebral ischemia. J Pharmacol Exp Ther, 1995; 274:1167-73.

Viglino P, Scara M, Rotilio G, Rigo A. A kinectic study of the reactions between H2O2 and Cu, Zn superoxide dismutase, evidence for an electrostatic control of the reaction rate. Biochem Biophys Acta, 1998; 952:77-82. https://doi.org/10.1016/0167-4838(88)90103-3

Volcho KP, Laev SS, Ashraf GM, Aliev G, Salakhutdinov NF. Application of monoterpenoids and their derivatives for treatment of neurodegenerative disorders. Curr Med Chem, 2018; 25(39):5327-46. Xu S, Lu J, Shao A, Zhang JH. Glial cells: role of the immune response in ischemic stroke. Front Immunol, 2020; 11:294. https://doi.org/10.2174/0929867324666170112101837

Yang YL, Cheng X, Li WH, Liu M, Wang YH, Du GH. Kaempferol attenuates LPS-induced striatum injury in mice involving chen-neuroinflammation, maintaining BBB integrity, and down-regulating the HMGB1/TLR4 pathway. Int J Mol Sci, 2019; 20:491. https://doi.org/10.3390/ijms20030491

Yi JH, Park SW, Kapadia R, Vemuganti R. Role of transcription factors in mediating post ischemic cerebral inflammation and brain damage. Neuro Chem Int, 2007; 50:1014-27. https://doi.org/10.1016/j.neuint.2007.04.019

Yu L, Chen C, Wang LF, Kuang X, Liu K, Zhang H, Du JR. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-κB and STAT3 in transient focal stroke. PLoS One, 2013; 8(2):e55839. https://doi.org/10.1371/journal.pone.0055839

Article Metrics

2 Absract views 4 PDF Downloads 6 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required