Adejoro IA, Babatunde DD, Tolufashe GF. Molecular docking and dynamic simulations of some medicinal plants compounds against SARS-CoV-2: an in silico study. J Taibah Univ Sci, 2020; 14(1):1563-70. https://doi.org/10.1080/16583655.2020.1848049 |
|
Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A, Munawar N. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med, 2020; 18(1):1-15. https://doi.org/10.1186/s12967-020-02439-0 | |
|
Alagu Lakshmi S, Shafreen RMB, Priya A, Shunmugiah KP. Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach. J Biomol Struct Dyn, 2021; 39(13):4594-609. https://doi.org/10.1080/07391102.2020.1778537 | |
|
Banerjee A, Czinn SJ, Reiter RJ, Blanchard TG. Crosstalk between endoplasmic reticulum stress and anti-viral activities: a novel therapeutic target for COVID-19. Life Sci, 2020; 255:117842; doi:10.1016/j.lfs.2020.117842. https://doi.org/10.1016/j.lfs.2020.117842 | |
|
Banerjee S, Wang X, Du S, Zhu C, Jia Y, Wang Y, Cai Q. Comprehensive role of SARS-CoV-2 spike glycoprotein in regulating host signaling pathway. J Med Virol, 2022; 94:4071-87. https://doi.org/10.1002/jmv.27820 | |
|
Cai W, Chen S, Li Y, Zhang A, Zhou H, Chen H, Jin M. 14-Deoxy- 11,12-didehydroandrographolide attenuates excessive inflammatory responses and protects mice lethally challenged with highly pathogenic A(H5N1) influenza viruses. Antiviral Res, 2016; 133:95-105. https://doi.org/10.1016/j.antiviral.2016.07.020 | |
|
Dey YN, Khanal P, Patil BM, Wanjari MM, Srivastava B, Gurav SS. The role of andrographolide and its derivative in COVID-19 associated proteins and immune system 2020. Available via https://doi.org/10.21203/ rs.3.rs-35800/v1 https://doi.org/10.21203/rs.3.rs-35800/v1 | |
|
Dound YA, Chaudhary S, Sehgal R, Chaudhary SS, Dound BA. Plant based molecules for the management of Covid-19 2020. Available via https://pubchem.ncbi.nlm.nih.gov/ | |
|
Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Front Immunol, 2019; (11):576622. https://doi.org/10.3389/fimmu.2020.576622 | |
|
Dwivedi MK, Sonter S, Mishra S, Singh P, Singh PK. Secondary metabolite profiling and characterization of diterpenes and flavones from the methanolic extract of Andrographis paniculata using HPLC-LC-MS/ MS. Futur J Pharm Sci, 2021; (1):1-28.. https://doi.org/10.1186/s43094-021-00292-6 | |
|
Enmozhi SK, Raja K, Sebastine I, Joseph J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J Biomol Struct Dyn, 2020; 39:1-7. https://doi.org/10.1080/07391102.2020.1760136 | |
|
Hiremath S, Kumar HDV, Nandan M, Mantesh M, Shankarappa KS, Venkataravanappa V, Basha CRJ, Reddy CNL. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in ayurveda medicine in inhibiting SARS-CoV-2. 3 Biotech, 2021; 11(2):44. https://doi.org/10.1007/s13205-020-02578-7 | |
|
Hu Q, Xiong Y, Zhu GH, Zhang YN, Zhang YW, Huang P, Ge GB. The SARS-CoV-2 main protease (Mpro): structure, function, and emerging therapies for COVID-19. MedComm (Beijing), 2022; 3(3):e151. https://doi.org/10.1002/mco2.151 | |
|
Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin, 2020; 41:1141-9. https://doi.org/10.1038/s41401-020-0485-4 | |
|
Ibrahim TM, Ismail MI, Bauer MR, Bekhit AA, Boeckler FM. Supporting SARS-CoV-2 papain-like protease drug discovery: in silico methods and benchmarking. Front Chem, 2020; 8:996. https://doi.org/10.3389/fchem.2020.592289 | |
|
Jiang Y, Yin W, Xu HE. RNA-dependent RNA polymerase: structure, mechanism, and drug discovery for COVID-19. Biochem Biophys Res Commun, 2021; 538:47. https://doi.org/10.1016/j.bbrc.2020.08.116 | |
|
Khare P, Sahu U, Pandey SC, Samant M. Current approaches for target-specific drug discovery using natural compounds against SARS-CoV-2 infection. Virus Res, 2020; 290:98169. https://doi.org/10.1016/j.virusres.2020.198169 | |
|
Kim Y, Jedrzejczak R, Maltseva NI, Wilamowski M, Endres M, Godzik A, Michalska K, Joachimiak A. Struktur kristal Nsp15 endoribonuklease NendoU dari SARS-CoV-2. Protein Sci, 2020; 29(7):1596-605. https://doi.org/10.1002/pro.3873 | |
|
Kiran G, Karthik L, Shree Devi MS, Sathiyarajeswaran P, Kanakavalli K, Kumar KM. In silico computational screening of kabasura kudineer - official siddha formulation and JACOM against SARS-CoV-2 spike protein. J Ayurveda Integr Med, 2022; 13(1): 100324. https://doi.org/10.1016/j.jaim.2020.05.009 | |
|
Kongsune P, Innok W, Rungrotmongkol T. In silico screening of potential inhibitor from Andrographis paniculata constituents against three targets of SARS-CoV-2: main protease, spike protein, and Nsp15. ASEAN J Sci Technol Rep, 2022; 25(1):69-76. https://doi.org/10.55164/ajstr.v25i1.245942 | |
|
Kumar MP, Sundaram KM, Ramasamy MS. Coronavirus spike (S) glycoprotein (2019-Ncov) targeted siddha medicines kabasura kudineer and thonthasura kudineer in silico evidence for corona viral drug. Asian J Pharm Res Health Care, 2020; 12(1):20-7. https://doi.org/10.18311/ajprhc/2020/25103 | |
|
Latha D, Hrishikesh D, Shiban G, Chandrashekar C, Bharath BR. In silico, in vitro screening of plant extracts for anti-SARS-CoV-2 activity and evaluation of their acute and sub-acute toxicity. Phytomedicine Plus, 2022; 2(2):100233. https://doi.org/10.1016/j.phyplu.2022.100233 | |
|
Laksmiani NP, Larasanty LP, Santika AA, Prayoga PA, Dewi AA, Dewi NP. Active compounds activity from the medicinal plants against SARS-CoV-2 using in silico assay. Biomed Pharmacol J, 2020; 13(2):873-81. https://doi.org/10.13005/bpj/1953 | |
|
Majumdar M, Singh V, Misra TK, Roy DN. In silico studies on structural inhibition of SARS-CoV-2 main protease Mpro by major secondary metabolites of Andrographis paniculata and Cinchona officinalis. Biologia (Bratisl), 2022; 77(5):1373-89. https://doi.org/10.1007/s11756-022-01012-y | |
|
Mengist HM, Dilnessa T, Jin T. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Front Chem, 2021; 9:7. https://doi.org/10.3389/fchem.2021.622898 | |
|
Murugan NA, Pandian CJ, Jeyakanthan J. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. J Biomol Struct Dyn, 2021; 39(12):4415-26. https://doi.org/10.1080/07391102.2020.1777901 | |
|
Nguyen DD, Gao K, Chen J, Wang R, Wei GW. Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning. Chem Sci, 2020; 11(44):12036-46. https://doi.org/10.1039/D0SC04641H | |
|
Pitakbut T. The Antiviral activity of andrographolide, the active metabolite from Andrographis paniculata (Burm. f.) Wall. ex Nees. against | |
|
SARS-CoV-2 by using bio-and chemoinformatic tools. Walailak J Sci Technol, 2020; 17(8):851-66. https://doi.org/10.48048/wjst.2020.9728 | |
|
Prabha T, Kapoor VK, Selvamani P, Latha S, Sivakumar T, Jubie S. Dual modulators of selected plant secondary metabolites targeting COVID-19 main protease and interleukin-2: an in-silico approach based novel hypothesis. Coronaviruses, 2020; 2(2):223-34. https://doi.org/10.2174/2666796701999200929124556 | |
|
Rajagopal K, Varakumar P, Baliwada A, Byran G. Activity of phytochemical constituents of curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach. Futur J Pharm Sci, 2020; 6(1):104. https://doi.org/10.1186/s43094-020-00126-x | |
|
Rathinavel T. Virtual screening of COVID-19 drug from three Indian traditional medicinal plants through in silico approach antioxidant assay of phytoconstituents from Eclipta alba view project hyaluronic acid-drug conjugation technology view project [Internet]. Article Res J Biotechnol, 2020. Available via www.rcsb.org | |
|
Rizma BRP, Ananto AD, Sunarwidhi AL. The study of potential antiviral compounds from Indonesian medicinal plants as anti-COVID-19 with molecular docking approach. J Mol Docking, 2021; 1(1):32-9. https://doi.org/10.33084/jmd.v1i1.2307 | |
|
Rizqillah RK, Fatriansyah JF, Fadilah F, Sulhadi S, Wahyuni S, Sudirman MA, Nafisah HC, Lestari SD. In silico molecular docking and molecular dynamics examination of Andrographis paniculata compounds of Andrographolide, Neoandrogra-pholide, and 5-hydroxy-7,8,2',3'- tetramethoxyflavone inhibition activity to SARS-CoV-2 main protease. BIO Web Conf, 2021; 41:07002. https://doi.org/10.1051/bioconf/20214107002 | |
|
Sa-Ngiamsuntorn K, Suksatu A, Pewkliang Y, Thongsri P, Kanjanasirirat P, Manopwisedjaroen S, Charoensutthivarakul S, Wongtrakoongate P, Pitiporn S, Chaopreecha J, Kongsomros S, Jearawuttanakul K, Wannalo W, Khemawoot P, Chutipongtanate S, Borwornpinyo S, Thitithanyanont A, Hongeng S. Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J Nat Prod, 2021; 84(4):1261-70. https://doi.org/10.1021/acs.jnatprod.0c01324 | |
|
Sahithya MD, Srinath M, Kumar BC, Giri CC. Molecular in silico docking interventions in various SARS-CoV-2 receptor targets involving bioactive herbal compounds of Andrographis paniculata (Burm. f.) Nees against COVID-19. Ann Phytomed Int J, 2021; 10(1) (COVID- 19):S4-12. https://doi.org/10.21276/ap.covid19.2021.10.1.4 | |
|
Saliu TP, Umar HI, Ogunsile OJ, Okpara MO, Yanaka N, Elekofehinti OO. Molecular docking and pharmacokinetic studies of phytocompounds from Nigerian medicinal plants as promising inhibitory agents against SARS-CoV-2 methyltransferase (nsp16). J Genet Eng Biotechnol, 2021; 19(1):172. https://doi.org/10.1186/s43141-021-00273-5 | |
|
Saramago M, Costa VG, Souza CS, Bárria C, Domingues S, Viegas SC, Lousa D, Soares CM, Arraiano CM, Matos RG. The nsp15 nuclease as a good target to combat SARS-CoV-2: mechanism of action and its inactivation with FDA-approved drugs. Microorganisms, 2022; 10(2):342. https://doi.org/10.3390/microorganisms10020342 | |
|
Sharma A, Vora J, Patel D, Sinha S, Jha PC, Shrivastava N. Identification of natural inhibitors against prime targets of SARS-CoV-2 using molecular docking, molecular dynamics simulation and MM-PBSA approaches. J Biomol Struct Dyn, 2022; 40(7):3296-11. https://doi.org/10.1080/07391102.2020.1846624 | |
|
Shi TH, Huang YL, Chen CC, Pi WC, Hsu YL, Lo LC, Chen WY, Fu SL, Lin CH. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochem Biophys Res Commun, 2020; 533(3):467-73. https://doi.org/10.1016/j.bbrc.2020.08.086 | |
|
Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdipour AR, Tascher G, Geurink PP, Wilhelm A, van der Heden van Noort GJ, Ovaa H, Müller S, Knobeloch KP, Rajalingam K, Schulman BA, Cinatl J, Hummer G, Ciesek S, Dikic I. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 2020; 587(7835):657-2. https://doi.org/10.1038/s41586-020-2601-5 | |
|
Srikanth L, Sarma PVGK. Andrographolide binds to spike glycoprotein and RNA-dependent RNA polymerase (NSP12) of SARS-CoV-2 by in silico approach: a probable molecule in the development of anti-coronaviral drug. J Genet Eng Biotechnol, 2021; 19(1). https://doi.org/10.1186/s43141-021-00201-7 | |
|
Sukardiman, Ervina M, Fadhil Pratama MR, Poerwono H, Siswodihardjo S. The coronavirus disease 2019 main protease inhibitor from Andrographis paniculata (Burm. f) Ness. J Adv Pharm Technol Res. 2020; 11(4):157-62. https://doi.org/10.4103/japtr.JAPTR_84_20 | |
|
Swaminathan K, Karunakaran KN, Vidyalakshmi S. SARS-CoV2 multiple target inhibitors from Andrographis paniculata: an in-silico report. Eur J Mol Clin Med, 2021; 08(03):1653-85. | |
|
Verma D, Mitra D, Paul M, Chaudhary P, Kamboj A, Thatoi H, Janmeda P, Jain D, Panneerselvam P, Shrivastav R, Pant K, Das Mohapatra PK. Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/ 3CLpro: molecular docking and simulation studies of three pertinent medicinal plant natural components. Curr Res Pharmacol Drug Discov, 2021; 2:100038. https://doi.org/10.1016/j.crphar.2021.100038 | |
|
Vijayakumar M, Janani B, Kannappan P, Renganathan S, Al- Ghamdi S, Alsaidan M, Abdelaziz MA, Peer Mohideen A, Shahid M, Ramesh T. In silico identification of potential inhibitors against main protease of SARS-CoV-2 6LU7 from Andrographis panniculata via molecular docking, binding energy calculations and molecular dynamics simulation studies. Saudi J Biol Sci, 2022; 29(1):18-29. https://doi.org/10.1016/j.sjbs.2021.10.060 | |
|
Vincent S, Arokiyaraj S, Saravanan M, Dhanraj M. Molecular docking studies on the anti-viral effects of compounds from Kabasura Kudineer on SARS-CoV-2 3CLpro. Front Mol Biosci, 2020; 7:613401. https://doi.org/10.3389/fmolb.2020.613401 | |
|
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B, 2020; 10(5):766-88. https://doi.org/10.1016/j.apsb.2020.02.008 | |