Formulation, development, and in vitro evaluation of a nanoliposomal delivery system for mebendazole and gefitinib

Maram Kutkut Ashok K. Shakya Hamdi Nsairat Mohamed El-Tanani   

Open Access   

Published:  Jan 10, 2023

DOI: 10.7324/JAPS.2023.110512
Abstract

Gefitinib (GEF) is the first-line therapy for lung cancer. Mebendazole (MBZ) is a synthetic antiparasite drug with reported cytotoxicity against lung cancer through Ran GTPase inhibition. Ran, a small G-protein, plays a vital role in cell growth. Since GEF therapy usually exhibits resistance and due to the low aqueous solubility of MBZ, this study was designed to investigate the anti-cancer effect of MBZ and GEF nanoliposomal formation compared to free MBZ and GEF, and the liposomal combination of the two drugs against lung cancer. The nanoliposomes were prepared using the thin-film hydration extrusion method and were fully characterized for their zeta sizer measurements and further investigated for their in vitro cytotoxicity and migration effects against A549 cell lines. The prepared nanoliposomes showed an average particle size of 176.52 ± 8.98 and 188.32 ± 5.28 nm with a zeta potential of −17.00 ± 0.15 and −17.16 ± 0.25 for MBZ and GEF, respectively, and a polydispersity index less than 0.2, indicating high stability over a 1-month period. MBZ and GEF had encapsulation efficiencies of 38.70% ± 1.98% and 55.06% ±1.98%, respectively. MBZ liposomes, GEF liposomes, and a liposomal mixture of both drugs had IC50 values of 283.4, 201.9, and 169.39 nM, respectively, after 72 hours, and demonstrated cytotoxic efficacy better than free drugs. In this study, MBZ and GEF were loaded into nanoliposomes with cytotoxicity that could make GEF more sensitive to A549 cell lines.


Keyword:     Mebendazole gefitinib nanoliposomes apoptosis adenocarcinoma


Citation:

Kutkut M, Shakya AK, Nsairat H, El-Tanani M. Formulation, development, and in vitro evaluation of a nanoliposomal delivery system for mebendazole and gefitinib. J Appl Pharm Sci, 2023. https://doi.org/10.7324/JAPS.2023.110512

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Aljabali AAA, Obeid MA, Bakshi HA, Alshaer W, Ennab RM, Al-Trad B, Al Khateeb W, Al-Batayneh KM, Al-Kadash A, Alsotari S, Nsairat H, Tambuwala MM. Synthesis, characterization, and assessment of anti-cancer potential of ZnO nanoparticles in an in vitro model of breast cancer. Molecules, 2022; 27(6):1827. https://doi.org/10.3390/molecules27061827

Alshaer W, Zraikat M, Amer A, Nsairat H, Lafi Z, Alqudah DA, Al Qadi E, Alsheleh T, Odeh F, Alkaraki A, Zihlif M, Bustanji Y, Fattal E, Awidi A. Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: in vitro anti-proliferative and anti-invasive activity in glioblastoma. RSC Adv, 2019; 9(53):30976-88. https://doi.org/10.1039/C9RA05636J

Araki T, Yashima H, Shimizu K, Aomori T, Hashita T, Kaira K, Nakamura T, Yamamoto K. Review of the treatment of non-small cell lung cancer with gefitinib. Clin Med Insights Oncol, 2012; 6:CMO.S7340. https://doi.org/10.4137/CMO.S7340

Bai R-Y, Staedtke V, Aprhys CM, Gallia GL, Riggins GJ. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neur Oncol, 2011; 13(9):974-82. https://doi.org/10.1093/neuonc/nor077

Borgers M, De Nollin S, De Brabander M, Thienpont D. Influence of the anthelmintic mebendazole on microtubules and intracellular organelle movement in nematode intestinal cells. Am J Vet Res, 1975; 36(08):1153-66.

Boudhraa Z, Carmona E, Provencher D, Mes-Masson A-M. Ran GTPase: a key player in tumor progression and metastasis. Front Cell Dev Biol, 2020; 8:345. https://doi.org/10.3389/fcell.2020.00345

Chai J-Y, Jung B-K, Hong S-J. Albendazole and mebendazole as anti-parasitic and anti-cancer agents: an update. Korean J Parasitol, 2021; 59(3):189-225. https://doi.org/10.3347/kjp.2021.59.3.189

Chandrashekara KA, Udupi A, Reddy CG. Separation and estimation of process-related impurities of gefitinib by reverse-phase high-performance liquid chromatography. J Chromatogr Sci, 2014; 52(8):799-805. https://doi.org/10.1093/chromsci/bmt116

Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R. FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist, 2003; 8(4):303-6. https://doi.org/10.1634/theoncologist.8-4-303

Costa AP, Xu X, Burgess DJ. Freeze-Anneal-Thaw cycling of unilamellar liposomes: effect on encapsulation efficiency. Pharm Res, 2014; 31(1):97-103. https://doi.org/10.1007/s11095-013-1135-z

De La Torre-Iglesias PM, García-Rodriguez JJ, Torrado G, Torrado S, Torrado-Santiago S, Bolás-Fernández F. Enhanced bioavailability and anthelmintic efficacy of mebendazole in redispersible microparticles with low-substituted hydroxypropylcellulose. Drug Des Devel Ther, 2014; 8:1467-79. https://doi.org/10.2147/DDDT.S65561

De Witt M, Gamble A, Hanson D, Markowitz D, Powell C, Al Dimassi S, Atlas M, Boockvar J, Ruggieri R, Symons M. Repurposing mebendazole as a replacement for vincristine for the treatment of brain tumors. Mol Med, 2017; 23:50-6. https://doi.org/10.2119/molmed.2017.00011

El-Tanani M, Dakir El H, Raynor B, Morgan R. Mechanisms of nuclear export in cancer and resistance to chemotherapy. Cancers (Basel), 2016; 8:3. https://doi.org/10.3390/cancers8030035

Faivre L, Gomo C, Mir O, Taieb F, Schoemann-Thomas A, Ropert S, Vidal M, Dusser D, Dauphin A, Goldwasser F, Blanchet B. A simple HPLC-UV method for the simultaneous quantification of gefitinib and erlotinib in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci, 2011; 879(23):2345-50. https://doi.org/10.1016/j.jchromb.2011.06.026

Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 2005; 5(3):161-71. https://doi.org/10.1038/nrc1566

Franken NAP, Rodermond HM, Stap J, Haveman J, Van Bree C. Clonogenic assay of cells in vitro. Nat Protoc, 2006; 1(5):2315-9. https://doi.org/10.1038/nprot.2006.339

Grimmig R, Babczyk P, Gillemot P, Schmitz K-P, Schulze M, Tobiasch E. Development and evaluation of a prototype scratch apparatus for wound assays adjustable to different forces and substrates. Appl Sci, 2019; 9(20):4414. https://doi.org/10.3390/app9204414

Guerini AE, Triggiani L, Maddalo M, Bonù ML, Frassine F, Baiguini A, Alghisi A, Tomasini D, Borghetti P, Pasinetti N, Bresciani R, Magrini SM, Buglione M. Mebendazole as a candidate for drug repurposing in oncology: an extensive review of current literature. Cancers (Basel), 2019; 11(9):1284. https://doi.org/10.3390/cancers11091284

Haeri A, Alinaghian B, Daeihamed M, Dadashzadeh S. Preparation and characterization of stable nanoliposomal formulation of fluoxetine as a potential adjuvant therapy for drug-resistant tumors. Iran J Pharm Res, 2014; 13(Suppl):3-14.

Hasan M, Iqbal J, Awan U, Xin N, Dang H, Waryani B, Saeed Y, Ullah K, Rongji D, Deng Y. LX loaded nanoliposomes synthesis, characterization and cellular uptake studies in H2O2 stressed SH-SY5Y cells. J Nanosci Nanotechnol, 2014; 14(6):4066-71. https://doi.org/10.1166/jnn.2014.8201

Hasan M, Zafar A, Yousaf M, Gulzar H, Mehmood K, Hassan SG, Saeed A, Yousaf A, Mazher A, Rongji D, Mahmood N. Synthesis of loureirin B-loaded nanoliposomes for pharmacokinetics in rat plasma. ACS Omega, 2019; 4(4):6914-22. https://doi.org/10.1021/acsomega.9b00119

Horiuchi N, Nakagawa K, Sasaki Y, Minato K, Fujiwara Y, Nezu K, Ohe Y, Saijo N. In vitro antitumor activity of mitomycin C derivative (RM-49) and new anticancer antibiotics (FK973) against lung cancer cell lines determined by tetrazolium dye (MTT) assay. Cancer Chemother Pharmacol, 1988; 22(3):246-50. https://doi.org/10.1007/BF00273419

Hutchins JRA, Moore WJ, Clarke PR. Dynamic localisation of Ran GTPase during the cell cycle. BMC Cell Biol, 2009; 10(1):66. https://doi.org/10.1186/1471-2121-10-66

Keystone JS, Murdoch JK. Mebendazole. Ann Intern Med, 1979; 91(4):582-6. https://doi.org/10.7326/0003-4819-91-4-582

Khater D, Nsairat H, Odeh F, Saleh M, Jaber A, Alshaer W, Al Bawab A, Mubarak MS. Design, preparation, and characterization of effective dermal and transdermal lipid nanoparticles: a review. Cosmetics, 2021; 8:39. https://doi.org/10.3390/cosmetics8020039

Kumar S, Chawla G, Sobhia ME, Bansal AK. Characterization of solid-state forms of mebendazole. Pharmazie, 2008; 63(2):136-43.

Lafi Z, Alshaer W, Hatmal MMM, Zihlif M, Alqudah DA, Nsairat H, Azzam H, Aburjai T, Bustanji Y, Awidi A. Aptamer-functionalized pH-sensitive liposomes for a selective delivery of echinomycin into cancer cells. RSC Adv, 2021; 11(47):29164-77. https://doi.org/10.1039/D1RA05138E

Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 2008; 130(33):10876-7. https://doi.org/10.1021/ja803688x

Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull, 2017; 7(3):339-48. https://doi.org/10.15171/apb.2017.041

Matchett KB, Mcfarlane S, Hamilton SE, Eltuhamy YS, Davidson MA, Murray JT, Faheem AM, El-Tanani M. Ran GTPase in nuclear envelope formation and cancer metastasis. Adv Exp Med Biol, 2014; 773:323-51. https://doi.org/10.1007/978-1-4899-8032-8_15

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983; 65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-4

Mudduluru G, Walther W, Kobelt D, Dahlmann M, Treese C, Assaraf YG, Stein U. Repositioning of drugs for intervention in tumor progression and metastasis: old drugs for new targets. Drug Resist Updat, 2016; 26:10-27. https://doi.org/10.1016/j.drup.2016.03.002

Mukhopadhyay T, Sasaki J, Ramesh R, Roth JA. Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin Cancer Res, 2002; 8(9):2963-9.

Nsairat H, Khater D, Odeh F, Al-Adaileh F, Al-Taher S, Jaber AM, Alshaer W, Al Bawab A, Mubarak MS. Lipid nanostructures for targeting brain cancer. Heliyon, 2021; 7(9):e07994. https://doi.org/10.1016/j.heliyon.2021.e07994

Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon, 2022; 8(5):e09394. https://doi.org/10.1016/j.heliyon.2022.e09394

Nsairat H, Mahmoud IS, Odeh F, Abuarqoub D, Al-Azzawi H, Zaza R, Qadri MI, Ismail S, Al Bawab A, Awidi A, Alshaer W. Grafting of anti-nucleolin aptamer into preformed and remotely loaded liposomes through aptamer-cholesterol post-insertion. RSC Adv, 2020; 10(59):36219- 29. https://doi.org/10.1039/D0RA07325C

Nurwidya F, Takahashi F, Takahashi K. Gefitinib in the treatment of nonsmall cell lung cancer with activating epidermal growth factor receptor mutation. J Nat Sci Biol Med, 2016; 7(2):119-23. https://doi.org/10.4103/0976-9668.184695

Odeh F, Nsairat H, Alshaer W, Alsotari S, Buqaien R, Ismail S, Awidi A, Al Bawab A. Remote loading of curcumin-in-modified β-cyclodextrins into liposomes using a transmembrane pH gradient. RSC Adv, 2019; 9(64):37148-61. https://doi.org/10.1039/C9RA07560G

Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, Bawab AA, Ismail SI. Aptamers chemistry: chemical modifications and conjugation strategies. Molecules, 2020; 25(1):3. https://doi.org/10.3390/molecules25010003

Ono M, Hirata A, Kometani T, Miyagawa M, Ueda S, Kinoshita H, Fujii T, Kuwano M. Sensitivity to gefitinib (Iressa, ZD1839) in non-small cell lung cancer cell lines correlates with dependence on the epidermal growth factor (EGF) receptor/extracellular signal-regulated kinase 1/2 and EGF receptor/Akt pathway for proliferation. Mol Cancer Ther, 2004; 3(4):465-72. https://doi.org/10.1158/1535-7163.465.3.4

Panic G, Duthaler U, Speich B, Keiser J. Repurposing drugs for the treatment and control of helminth infections. Int J Parasitol Drugs Drug Resist, 2014; 4(3):185-200. https://doi.org/10.1016/j.ijpddr.2014.07.002

Pinto LC, Soares BM, Pinheiro Jde J, Riggins GJ, Assumpção PP, Burbano RM, Montenegro RC. The anthelmintic drug mebendazole inhibits growth, migration and invasion in gastric cancer cell model. Toxicol In Vitro, 2015; 29(8):2038-44. https://doi.org/10.1016/j.tiv.2015.08.007

Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun, 2020; 11(1):2337. https://doi.org/10.1038/s41467-020-15889-3

Ren M, Coutavas E, D'eustachio P, Rush MG. Effects of mutant Ran/TC4 proteins on cell cycle progression. Mol Cell Biol, 1994; 14(6):4216-24. https://doi.org/10.1128/MCB.14.6.4216

Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol, 2012; 196(2):189-201. https://doi.org/10.1083/jcb.201103008

Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol, 2015; 6:286. https://doi.org/10.3389/fphar.2015.00286

Smith MC, Crist RM, Clogston JD, Mcneil SE. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal Bioanal Chem, 2017; 409(24):5779-87. https://doi.org/10.1007/s00216-017-0527-z

Van Der Koog L, Gandek TB, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv Healthcare Mater, 2022; 11(5):2100639. https://doi.org/10.1002/adhm.202100639

Varbanov HP, Kuttler F, Banfi D, Turcatti G, Dyson PJ. Repositioning approved drugs for the treatment of problematic cancers using a screening approach. PLoS One, 2017; 12(2):e0171052. https://doi.org/10.1371/journal.pone.0171052

Williamson T, Mendes TB, Joe N, Cerutti JM, Riggins GJ. Mebendazole inhibits tumor growth and prevents lung metastasis in models of advanced thyroid cancer. Endocr Relat Cancer, 2020; 27(3):123-36. https://doi.org/10.1530/ERC-19-0341

Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer, 2018; 17(1):38. https://doi.org/10.1186/s12943-018-0777-1

Yuen HF, Chan KK, Grills C, Murray JT, Platt-Higgins A, Eldin OS, O'byrne K, Janne P, Fennell D, Johnston PG, Rudland PS, El-Tanani M. Ran is a potential therapeutic target for cancer cells with molecular changes associated with activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. Clin Cancer Res, 2012; 18(2):380-91. https://doi.org/10.1158/1078-0432.CCR-11-2035

Zaleskis G, Garberyte S, Pavliukeviciene B, Krasko JA, Skapas M, Talaikis M, Darinskas A, Zibutyte L, Pasukoniene V. Comparative evaluation of cellular uptake of free and liposomal doxorubicin following short term exposure. Anticancer Res, 2021; 41(5):2363-70. https://doi.org/10.21873/anticanres.15011

Zhang H. Three generations of epidermal growth factor receptor tyrosine kinase inhibitors developed to revolutionize the therapy of lung cancer. Drug Des Devel Ther, 2016; 10:3867-72. https://doi.org/10.2147/DDDT.S119162

Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol, 2017; 1522:17-22. https://doi.org/10.1007/978-1-4939-6591-5_2

Article Metrics

0 Absract views 2 PDF Downloads 2 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required