Formulation, development, and in vitro evaluation of a nanoliposomal delivery system for mebendazole and gefitinib

Maram Kutkut Ashok K. Shakya Hamdi Nsairat Mohamed El-Tanani   

Open Access   

Published:  Jan 10, 2023

DOI: 10.7324/JAPS.2023.110512

Gefitinib (GEF) is the first-line therapy for lung cancer. Mebendazole (MBZ) is a synthetic antiparasite drug with reported cytotoxicity against lung cancer through Ran GTPase inhibition. Ran, a small G-protein, plays a vital role in cell growth. Since GEF therapy usually exhibits resistance and due to the low aqueous solubility of MBZ, this study was designed to investigate the anti-cancer effect of MBZ and GEF nanoliposomal formation compared to free MBZ and GEF, and the liposomal combination of the two drugs against lung cancer. The nanoliposomes were prepared using the thin-film hydration extrusion method and were fully characterized for their zeta sizer measurements and further investigated for their in vitro cytotoxicity and migration effects against A549 cell lines. The prepared nanoliposomes showed an average particle size of 176.52 ± 8.98 and 188.32 ± 5.28 nm with a zeta potential of −17.00 ± 0.15 and −17.16 ± 0.25 for MBZ and GEF, respectively, and a polydispersity index less than 0.2, indicating high stability over a 1-month period. MBZ and GEF had encapsulation efficiencies of 38.70% ± 1.98% and 55.06% ±1.98%, respectively. MBZ liposomes, GEF liposomes, and a liposomal mixture of both drugs had IC50 values of 283.4, 201.9, and 169.39 nM, respectively, after 72 hours, and demonstrated cytotoxic efficacy better than free drugs. In this study, MBZ and GEF were loaded into nanoliposomes with cytotoxicity that could make GEF more sensitive to A549 cell lines.

Keyword:     Mebendazole gefitinib nanoliposomes apoptosis adenocarcinoma


Kutkut M, Shakya AK, Nsairat H, El-Tanani M. Formulation, development, and in vitro evaluation of a nanoliposomal delivery system for mebendazole and gefitinib. J Appl Pharm Sci, 2023.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text


Aljabali AAA, Obeid MA, Bakshi HA, Alshaer W, Ennab RM, Al-Trad B, Al Khateeb W, Al-Batayneh KM, Al-Kadash A, Alsotari S, Nsairat H, Tambuwala MM. Synthesis, characterization, and assessment of anti-cancer potential of ZnO nanoparticles in an in vitro model of breast cancer. Molecules, 2022; 27(6):1827.

Alshaer W, Zraikat M, Amer A, Nsairat H, Lafi Z, Alqudah DA, Al Qadi E, Alsheleh T, Odeh F, Alkaraki A, Zihlif M, Bustanji Y, Fattal E, Awidi A. Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: in vitro anti-proliferative and anti-invasive activity in glioblastoma. RSC Adv, 2019; 9(53):30976-88.

Araki T, Yashima H, Shimizu K, Aomori T, Hashita T, Kaira K, Nakamura T, Yamamoto K. Review of the treatment of non-small cell lung cancer with gefitinib. Clin Med Insights Oncol, 2012; 6:CMO.S7340.

Bai R-Y, Staedtke V, Aprhys CM, Gallia GL, Riggins GJ. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neur Oncol, 2011; 13(9):974-82.

Borgers M, De Nollin S, De Brabander M, Thienpont D. Influence of the anthelmintic mebendazole on microtubules and intracellular organelle movement in nematode intestinal cells. Am J Vet Res, 1975; 36(08):1153-66.

Boudhraa Z, Carmona E, Provencher D, Mes-Masson A-M. Ran GTPase: a key player in tumor progression and metastasis. Front Cell Dev Biol, 2020; 8:345.

Chai J-Y, Jung B-K, Hong S-J. Albendazole and mebendazole as anti-parasitic and anti-cancer agents: an update. Korean J Parasitol, 2021; 59(3):189-225.

Chandrashekara KA, Udupi A, Reddy CG. Separation and estimation of process-related impurities of gefitinib by reverse-phase high-performance liquid chromatography. J Chromatogr Sci, 2014; 52(8):799-805.

Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R. FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist, 2003; 8(4):303-6.

Costa AP, Xu X, Burgess DJ. Freeze-Anneal-Thaw cycling of unilamellar liposomes: effect on encapsulation efficiency. Pharm Res, 2014; 31(1):97-103.

De La Torre-Iglesias PM, García-Rodriguez JJ, Torrado G, Torrado S, Torrado-Santiago S, Bolás-Fernández F. Enhanced bioavailability and anthelmintic efficacy of mebendazole in redispersible microparticles with low-substituted hydroxypropylcellulose. Drug Des Devel Ther, 2014; 8:1467-79.

De Witt M, Gamble A, Hanson D, Markowitz D, Powell C, Al Dimassi S, Atlas M, Boockvar J, Ruggieri R, Symons M. Repurposing mebendazole as a replacement for vincristine for the treatment of brain tumors. Mol Med, 2017; 23:50-6.

El-Tanani M, Dakir El H, Raynor B, Morgan R. Mechanisms of nuclear export in cancer and resistance to chemotherapy. Cancers (Basel), 2016; 8:3.

Faivre L, Gomo C, Mir O, Taieb F, Schoemann-Thomas A, Ropert S, Vidal M, Dusser D, Dauphin A, Goldwasser F, Blanchet B. A simple HPLC-UV method for the simultaneous quantification of gefitinib and erlotinib in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci, 2011; 879(23):2345-50.

Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 2005; 5(3):161-71.

Franken NAP, Rodermond HM, Stap J, Haveman J, Van Bree C. Clonogenic assay of cells in vitro. Nat Protoc, 2006; 1(5):2315-9.

Grimmig R, Babczyk P, Gillemot P, Schmitz K-P, Schulze M, Tobiasch E. Development and evaluation of a prototype scratch apparatus for wound assays adjustable to different forces and substrates. Appl Sci, 2019; 9(20):4414.

Guerini AE, Triggiani L, Maddalo M, Bonù ML, Frassine F, Baiguini A, Alghisi A, Tomasini D, Borghetti P, Pasinetti N, Bresciani R, Magrini SM, Buglione M. Mebendazole as a candidate for drug repurposing in oncology: an extensive review of current literature. Cancers (Basel), 2019; 11(9):1284.

Haeri A, Alinaghian B, Daeihamed M, Dadashzadeh S. Preparation and characterization of stable nanoliposomal formulation of fluoxetine as a potential adjuvant therapy for drug-resistant tumors. Iran J Pharm Res, 2014; 13(Suppl):3-14.

Hasan M, Iqbal J, Awan U, Xin N, Dang H, Waryani B, Saeed Y, Ullah K, Rongji D, Deng Y. LX loaded nanoliposomes synthesis, characterization and cellular uptake studies in H2O2 stressed SH-SY5Y cells. J Nanosci Nanotechnol, 2014; 14(6):4066-71.

Hasan M, Zafar A, Yousaf M, Gulzar H, Mehmood K, Hassan SG, Saeed A, Yousaf A, Mazher A, Rongji D, Mahmood N. Synthesis of loureirin B-loaded nanoliposomes for pharmacokinetics in rat plasma. ACS Omega, 2019; 4(4):6914-22.

Horiuchi N, Nakagawa K, Sasaki Y, Minato K, Fujiwara Y, Nezu K, Ohe Y, Saijo N. In vitro antitumor activity of mitomycin C derivative (RM-49) and new anticancer antibiotics (FK973) against lung cancer cell lines determined by tetrazolium dye (MTT) assay. Cancer Chemother Pharmacol, 1988; 22(3):246-50.

Hutchins JRA, Moore WJ, Clarke PR. Dynamic localisation of Ran GTPase during the cell cycle. BMC Cell Biol, 2009; 10(1):66.

Keystone JS, Murdoch JK. Mebendazole. Ann Intern Med, 1979; 91(4):582-6.

Khater D, Nsairat H, Odeh F, Saleh M, Jaber A, Alshaer W, Al Bawab A, Mubarak MS. Design, preparation, and characterization of effective dermal and transdermal lipid nanoparticles: a review. Cosmetics, 2021; 8:39.

Kumar S, Chawla G, Sobhia ME, Bansal AK. Characterization of solid-state forms of mebendazole. Pharmazie, 2008; 63(2):136-43.

Lafi Z, Alshaer W, Hatmal MMM, Zihlif M, Alqudah DA, Nsairat H, Azzam H, Aburjai T, Bustanji Y, Awidi A. Aptamer-functionalized pH-sensitive liposomes for a selective delivery of echinomycin into cancer cells. RSC Adv, 2021; 11(47):29164-77.

Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 2008; 130(33):10876-7.

Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull, 2017; 7(3):339-48.

Matchett KB, Mcfarlane S, Hamilton SE, Eltuhamy YS, Davidson MA, Murray JT, Faheem AM, El-Tanani M. Ran GTPase in nuclear envelope formation and cancer metastasis. Adv Exp Med Biol, 2014; 773:323-51.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983; 65(1-2):55-63.

Mudduluru G, Walther W, Kobelt D, Dahlmann M, Treese C, Assaraf YG, Stein U. Repositioning of drugs for intervention in tumor progression and metastasis: old drugs for new targets. Drug Resist Updat, 2016; 26:10-27.

Mukhopadhyay T, Sasaki J, Ramesh R, Roth JA. Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin Cancer Res, 2002; 8(9):2963-9.

Nsairat H, Khater D, Odeh F, Al-Adaileh F, Al-Taher S, Jaber AM, Alshaer W, Al Bawab A, Mubarak MS. Lipid nanostructures for targeting brain cancer. Heliyon, 2021; 7(9):e07994.

Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon, 2022; 8(5):e09394.

Nsairat H, Mahmoud IS, Odeh F, Abuarqoub D, Al-Azzawi H, Zaza R, Qadri MI, Ismail S, Al Bawab A, Awidi A, Alshaer W. Grafting of anti-nucleolin aptamer into preformed and remotely loaded liposomes through aptamer-cholesterol post-insertion. RSC Adv, 2020; 10(59):36219- 29.

Nurwidya F, Takahashi F, Takahashi K. Gefitinib in the treatment of nonsmall cell lung cancer with activating epidermal growth factor receptor mutation. J Nat Sci Biol Med, 2016; 7(2):119-23.

Odeh F, Nsairat H, Alshaer W, Alsotari S, Buqaien R, Ismail S, Awidi A, Al Bawab A. Remote loading of curcumin-in-modified β-cyclodextrins into liposomes using a transmembrane pH gradient. RSC Adv, 2019; 9(64):37148-61.

Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, Bawab AA, Ismail SI. Aptamers chemistry: chemical modifications and conjugation strategies. Molecules, 2020; 25(1):3.

Ono M, Hirata A, Kometani T, Miyagawa M, Ueda S, Kinoshita H, Fujii T, Kuwano M. Sensitivity to gefitinib (Iressa, ZD1839) in non-small cell lung cancer cell lines correlates with dependence on the epidermal growth factor (EGF) receptor/extracellular signal-regulated kinase 1/2 and EGF receptor/Akt pathway for proliferation. Mol Cancer Ther, 2004; 3(4):465-72.

Panic G, Duthaler U, Speich B, Keiser J. Repurposing drugs for the treatment and control of helminth infections. Int J Parasitol Drugs Drug Resist, 2014; 4(3):185-200.

Pinto LC, Soares BM, Pinheiro Jde J, Riggins GJ, Assumpção PP, Burbano RM, Montenegro RC. The anthelmintic drug mebendazole inhibits growth, migration and invasion in gastric cancer cell model. Toxicol In Vitro, 2015; 29(8):2038-44.

Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun, 2020; 11(1):2337.

Ren M, Coutavas E, D'eustachio P, Rush MG. Effects of mutant Ran/TC4 proteins on cell cycle progression. Mol Cell Biol, 1994; 14(6):4216-24.

Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol, 2012; 196(2):189-201.

Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol, 2015; 6:286.

Smith MC, Crist RM, Clogston JD, Mcneil SE. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal Bioanal Chem, 2017; 409(24):5779-87.

Van Der Koog L, Gandek TB, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv Healthcare Mater, 2022; 11(5):2100639.

Varbanov HP, Kuttler F, Banfi D, Turcatti G, Dyson PJ. Repositioning approved drugs for the treatment of problematic cancers using a screening approach. PLoS One, 2017; 12(2):e0171052.

Williamson T, Mendes TB, Joe N, Cerutti JM, Riggins GJ. Mebendazole inhibits tumor growth and prevents lung metastasis in models of advanced thyroid cancer. Endocr Relat Cancer, 2020; 27(3):123-36.

Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer, 2018; 17(1):38.

Yuen HF, Chan KK, Grills C, Murray JT, Platt-Higgins A, Eldin OS, O'byrne K, Janne P, Fennell D, Johnston PG, Rudland PS, El-Tanani M. Ran is a potential therapeutic target for cancer cells with molecular changes associated with activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. Clin Cancer Res, 2012; 18(2):380-91.

Zaleskis G, Garberyte S, Pavliukeviciene B, Krasko JA, Skapas M, Talaikis M, Darinskas A, Zibutyte L, Pasukoniene V. Comparative evaluation of cellular uptake of free and liposomal doxorubicin following short term exposure. Anticancer Res, 2021; 41(5):2363-70.

Zhang H. Three generations of epidermal growth factor receptor tyrosine kinase inhibitors developed to revolutionize the therapy of lung cancer. Drug Des Devel Ther, 2016; 10:3867-72.

Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol, 2017; 1522:17-22.

Article Metrics

0 Absract views 2 PDF Downloads 2 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required