Pomolic acid: A short review on its chemistry, plant sources, pharmacological properties, and patents

Eric Wei Chiang Chan Ying Ki Ng Carine Shu Shien Lim Vania Septa Anggraeni Zhi Zhou Siew Chen Wai Wong Siu Kuin Wong   

Open Access   

Published:  Jan 06, 2023

DOI: 10.7324/JAPS.2023.114932

In this article, the chemistry, plant sources, pharmacological properties, and patents of pomolic acid (PA) are reviewed for the first time. Also known as benthic acid, PA is a pentacyclic triterpenoid of the ursane type. Its chemical structure has a 30-carbon skeleton comprising five six-membered rings AE with seven methyl groups and two hydroxyl groups. PA was first isolated from the peels of apples. The compound is commonly reported in species of the families Rosaceae and Lamiaceae. Anti-cancer activities represent the major pharmacological properties of PA with breast cancer and leukaemia cells being the most susceptible. A wide array of other pharmacological properties of PA have been reported. PA has two patents filed by the same group of scientists from the Federal University of Rio de Janeiro in Brazil. Some areas for further research on PA are suggested. Sources of information were from Google Scholar, PubMed, PubMed Central, Science Direct, J-Stage, and PubChem.

Keyword:     Pentacyclic triterpenoids benthamic acid anti-cancer


Chan EWC, Ng YK, Lim CSS, Anggraeni VS, Siew ZZ, Wong CW, Wong SK. Pomolic acid: A short review on its chemistry, plant sources, pharmacological properties, and patents. J Appl Pharm Sci, 2023. https://doi.org/10.7324/JAPS.2023.114932

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text


Akihisa T, Kamo S, Uchiyama T, Akazawa H, Banno N, Taguchi Y, Yasukawa K. Cytotoxic activity of Perilla frutescens var. japonica leaf extract is due to high concentrations of oleanolic and ursolic acids. J Nat Med, 2006; 60(4):331−3. https://doi.org/10.1007/s11418-006-0015-9

Alvarado-Castillo C, Estrada O, Carvajal E. Pomolic acid, triterpenoid isolated from Licania pittieri, as competitive antagonist of ADP-induced aggregation of human platelets. Phytomedicine, 2012; 19(6):484−7. https://doi.org/10.1016/j.phymed.2011.12.011

An RB, Kim HC, Jeong GS, Oh SH, Oh HC, Kim YC. Constituents of the aerial parts of Agrimonia pilosa. Nat Prod Sci, 2005; 11(4):196−8.

Apaza T, Antognoni F, Potente G, Sánchez ÁR. Triterpenoids isolated from Jatropha macrantha (Müll. Arg.) inhibit the NF-κB and HIF- 1α pathways in tumor cells. Nat Prod Res, 2021; 35(24):5843−7. https://doi.org/10.1080/14786419.2020.1795851

Bai L, Zhang H, Liu Q, Zhao Y, Cui X, Guo S, Zhang L, Ho CT, Bai N. Chemical characterization of the main bioactive constituents from fruits of Ziziphus jujuba. Food Funct, 2016; 7(6):2870−7. https://doi.org/10.1039/C6FO00613B

Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M, Watanabe K, Kimura Y, Hasegawa JI, Nishino H. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci Biotechnol Biochem, 2004; 68(1):85−90. https://doi.org/10.1271/bbb.68.85

Borrás-Linares I, Stojanovi? Z, Quirantes-Piné R, Arráez-Román D, Švarc-Gaji? J, Fernández-Gutiérrez A, Segura-Carretero A. Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int J Mol Sci, 2014; 15(11):20585−606. https://doi.org/10.3390/ijms151120585

Brieskorn CH, Wunderer H. Chemical composition of apple peels. IV. Pomolic and pomonic acids. Chem Ber, 1967; 100:1252-65. https://doi.org/10.1002/cber.19671000426

Chan EWC, Soon CY, Tan JBL, Wong SK, Hui YW. Ursolic acid: an overview on its cytotoxic activities against breast and colorectal cancer cells. J Integr Med, 2019; 17(3):155−60. https://doi.org/10.1016/j.joim.2019.03.003

Chan EWC, Wong SK, Chan HT. An overview of the phenolic constituents and pharmacological properties of extracts and compounds from Lagerstroemia speciosa leaves. Trop J Nat Prod Res, 2022; 6(4):470−9.

Cheng DL, Cao XP. Pomolic acid derivatives from the root of Sanguisorba officinalis. Phytochemistry, 1992; 31(4):1317−20. https://doi.org/10.1016/0031-9422(92)80499-5

Dzoyem JP, Nganteng DN, Melong R, Wafo P, Ngadjui B, Allémann E, Delie F. Bioguided identification of pentacyclic triterpenoids as anti-inflammatory bioactive constituents of Ocimum gratissimum extract. J Ethnopharmacol, 2021; 268:113637. https://doi.org/10.1016/j.jep.2020.113637

Eltamany EE, Goda MS, Nafie MS, Abu-Elsaoud AM, Hareeri RH, Aldurdunji MM, Elhady SS, Badr JM, Eltahawy NA. Comparative assessment of the antioxidant and anticancer activities of Plicosepalus acacia and Plicosepalus curviflorus: metabolomic profiling and in silico studies. Antioxidants, 2022; 11(7):1249−71. https://doi.org/10.3390/antiox11071249

Estrada O, Alvarado-Castillo C, Fernandez AZ, López M, Romero-Vecchione E, Vásquez J, Mendez J, Conde D, Cardozo A. Pomolic acid isolated from the leaves of Licania pittieri inhibits ADP- and epinephrine-induced platelet aggregation and has hypotensive effect on rats. Curr Bioact Compd, 2009; 5(3):219−25. https://doi.org/10.2174/157340709789054786

Estrada O, González-Guzmán JM, Salazar-Bookaman M, Fernández AZ, Cardozo A, Alvarado-Castillo C. Pomolic acid of Licania pittieri elicits endothelium-dependent relaxation in rat aortic rings. Phytomedicine, 2011; 18(6):464−9. https://doi.org/10.1016/j.phymed.2010.10.008

Fernandes J, Castilho RO, Costa MR, Wagner-Souza K, Kaplan MA, Gattass CR. Pentacyclic triterpenes from Chrysobalanaceae species: cytotoxicity on multidrug resistant and sensitive leukemia cell lines. Cancer Lett, 2003; 190(2):165−9. https://doi.org/10.1016/S0304-3835(02)00593-1

Fernandes J, Weinlich R, Castilho RO, Amarante-Mendes GP, Gattass CR. Pomolic acid may overcome multidrug resistance mediated by overexpression of anti-apoptotic Bcl-2 proteins. Cancer Lett, 2007; 245(1- 2):315−20. https://doi.org/10.1016/j.canlet.2006.01.009

Fernandes J, Weinlich R, Castilho RO, Kaplan MA, Amarante- Mendes GP, Gattass CR. Pomolic acid triggers mitochondria-dependent apoptotic cell death in leukemia cell line. Cancer Lett, 2005; 219(1):49−55. https://doi.org/10.1016/j.canlet.2004.09.001

Frolova TS, Lipeeva AV, Baev DS, Tsepilov YA, Sinitsyna OI. Apoptosis as the basic mechanism of cytotoxic action of ursolic and pomolic acids in glioma cells. Mol Biol, 2017; 51(5):705−11. https://doi.org/10.1134/S0026893317050090

Frolova TS, Sal'nikova OI, Dudareva TA, Kukina TP, Sinitsyna OI. Isolation of pomolic acid from Chamaenerion angustifolium and the evaluation of its potential genotoxicity in bacterial test systems. Russ J Bioorg Chem, 2014;40(1):82−8. https://doi.org/10.1134/S1068162013060046

Fujiwara Y, Hayashida A, Tsurushima K, Nagai R, Yoshitomi M, Daiguji N, Sakashita N, Takeya M, Tsukamoto S, Ikeda T. Triterpenoids isolated from Zizyphus jujuba inhibit foam cell formation in macrophages. J Agric Food Chem, 2011; 59(9):4544−52. https://doi.org/10.1021/jf200193r

Furtado NAJC, Pirson L, Edelberg H, Miranda LM, Loira- Pastoriza C, Preat V, Larondelle Y, André CM. Pentacyclic triterpene bioavailability: an overview of in vitro and in vivo studies. Molecules, 2017; 22(3):400−24. https://doi.org/10.3390/molecules22030400

Garg A, Sharma R, Dey P, Kundu A, Kim HS, Bhakta T, Kumar A. Analysis of triterpenes and triterpenoids. In: Silva AS, Nabavi SF, Saeedi M, Nabavi SM, (eds.). Recent advances in natural products analysis, Elsevier, Amsterdam, The Netherlands, pp 393−426, 2020. https://doi.org/10.1016/B978-0-12-816455-6.00011-1

Gattass CR, Rumjanek VMD, Fernandes J, Castilho RO, Kaplan MAC. Pomolic acid, its isomers, derivatives and their uses, pharmaceutical composition, method to prepare the pharmaceutical composition, and method for treating multidrug resistant tumors. World Intellectual Property Organization (WIPO) Patent WO 2004/030682 A1. 2004-04.

Gattass CR, Rumjanek VMD, Fernandes J, Castilho RO, Kaplan MAC. Pomolic acid for treating multidrug resistant tumors. European Patent EP 1 549 330 B1. 2008-01.

Ghante MH, Jamkhande PG. Role of pentacyclic triterpenoids in chemoprevention and anticancer treatment: an overview on targets and underling mechanisms. J Pharmacopunct, 2019; 22(2):55−67. https://doi.org/10.3831/KPI.201.22.007

Guimarães LP, Rocha GD, Queiroz RM, Martins CA, Takiya CM, Gattass CR. Pomolic acid induces apoptosis and inhibits multidrug resistance protein MRP1 and migration in glioblastoma cells. Oncol Rep, 2017; 38(4):2525−34. https://doi.org/10.3892/or.2017.5895

Hou Y, Chen M, Ruan H, Sun Z, Wu H, Xu X, Yang J, Ma G, Zhou X. A new supramolecular natural product gel based on self-assembled pomolic acid from traditional Chinese medicine. Colloid Interface Sci Commun, 2022; 46:100583. https://doi.org/10.1016/j.colcom.2021.100583

Hu WL, Li ZL, Chen QJ, Sun YW, Zhai S, Lu F, Li F, Zhang CF. Triterpenes and lignans from the leaves of Styrax tonkinensis. Biochem Syst Ecol, 2019; 86:103891. https://doi.org/10.1016/j.bse.2019.04.009

Izuchi R, Katsuki T. Pomolic acid in persimmon peel suppresses the increase in glycerol-3 phosphate dehydrogenase activity in 3T3-L1 adipocytes. Biosci Biotechnol Biochem, 2021; 85(3):691−6. https://doi.org/10.1093/bbb/zbaa079

Jó?wiak A, Jó?wiak G, Waksmundzka-Hajnos M. Simultaneous HPLC determination of pomolic, ursolic and euscaphic/tormentic acids in roots and rhizomes of various Potentilla species. Acta Chromatogr, 2014; 26(1):97−110. https://doi.org/10.1556/AChrom.26.2014.1.14

Kadioglu O, Efferth T. Pharmacogenomic characterization of cytotoxic compounds from Salvia officinalis in cancer cells. J Nat Prod, 2015; 78(4):762−75. https://doi.org/10.1021/np501007n

Kashiwada Y, Wang HK, Nagao T, Kitanaka S, Yasuda I, Fujioka T, Yamagishi T, Cosentino LM, Kozuka M, Okabe H, Ikeshiro Y. Anti- AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J Nat Prod, 1998; 61(9):1090−5. https://doi.org/10.1021/np9800710

Katsumi E, Oshima N, Kagawa N, Ohara H, Hada N. Changes in the extracted amounts and seasonally variable constituents of Diospyros kaki at different growth stages. J Nat Med, 2021; 75(1):105−15. https://doi.org/10.1007/s11418-020-01456-z

Kim B, Kim JH, Park B. Pomolic acid inhibits invasion of breast cancer cells through the suppression of CXC chemokine receptor type 4 expression. J Cell Biochem, 2016a; 117(6):1296−307. https://doi.org/10.1002/jcb.25417

Kim B, Kim YC, Park B. Pomolic acid inhibits metastasis of HER2 overexpressing breast cancer cells through inactivation of the ERK pathway. Int J Oncol, 2016b; 49(2):744−52. Kraft O, Wiemann J, Al-Harrasi A, Csuk R. En route to anti-glioblastoma active pomolic acid. Phytochem Lett, 2019; 32:29−32. https://doi.org/10.3892/ijo.2016.3568

Kuete V, Sandjo LP, Seukep JA, Zeino M, Mbaveng AT, Ngadjui B, Efferth T. Cytotoxic compounds from the fruits of Uapaca togoensis towards multifactorial drug-resistant cancer cells. Planta Med, 2015; 81(1):32−8. https://doi.org/10.1055/s-0034-1383362

Le DD, Lee YE, Lee M. Triterpenoids from the leaves of Osmanthus fragrans var. aurantiacus with their anti-melanogenesis and anti-tyrosinase activities. Nat Prod Res, 2022; 1−7; DOI: 10.1080/14786419.2022.2035384 https://doi.org/10.1080/14786419.2022.2035384

Lee JS, Lee MS, Kim JR, Chang ES. Pomolic acid enhances the growth inhibition and apoptosis in human breast cancer cell. Breast, 2011; 20(1):S26. https://doi.org/10.1016/S0960-9776(11)70078-9

Lee MS, Thuong PT. Stimulation of glucose uptake by triterpenoids from Weigela subsessilis. Phytother Res, 2010; 24(1):49−53. https://doi.org/10.1002/ptr.2865

Lei Y, Shi SP, Song YL, Bi D, Tu PF. Triterpene saponins from the roots of Ilex asprella. Chem Biodiver, 2014; 11(5):767−75. https://doi.org/10.1002/cbdv.201300155

Li Y, Li K, Yao H. Chemical constituents from Potentilla fragarioides L. Biochem Syst Ecol, 2020; 93:104172. https://doi.org/10.1016/j.bse.2020.104172

Lin LP, Wei QU, Liang JY. Chemical constituents from the stems of Ilex pubescens var. glabra. Chin J Nat Med, 2011; 9(3):176−9.

Lopez R, Bolanos P, Guillen A, Fernandez MC, Ramos M, Granados S, Milan AF, Caputo C, Alvarado-Castillo C, Estrada O, Calderon JC. Pomolic acid reduces contractility and modulates excitation-contraction coupling in rat cardiomyocytes. Eur J Pharmacol, 2019; 851:88−98. https://doi.org/10.1016/j.ejphar.2019.02.016

Mahmoud AH, Mahmoud BK, Samy MN, Fouad MA, Kamel MS, Matsunami K. Cytotoxic and anti-leishmanial triterpenes of Tabebuia aurea (Silva Manso) leaves. Nat Prod Res, 2022; 1−5; doi:10.1080/147864 19.2022.2062350 https://doi.org/10.1080/14786419.2022.2114474

Martins CD, Rocha GD, Gattass CR, Takiya CM. Pomolic acid exhibits anticancer potential against a docetaxel resistant PC3 prostate cell line. Oncol Rep, 2019; 42(1):328−38. https://doi.org/10.3892/or.2019.7132

Mioc M, Prodea A, Racoviceanu R, Mioc A, Ghiulai R, Milan A, Voicu M, Mardale G, ?oica C. Recent advances regarding the molecular mechanisms of triterpenic acids: a review (Part II). Int J Mol Sci, 2022; 23(16):8896−944. https://doi.org/10.3390/ijms23168896

Nakatani M, Miyazaki Y, Iwashita T, Naoki H, Hase T. Triterpenes from Ilex rotunda fruits. Phytochemistry, 1989; 28(5):1479−82. https://doi.org/10.1016/S0031-9422(00)97768-9

Neto CC, Vaisberg AJ, Zhou BN, Kingston DG, Hammond GB. Cytotoxic triterpene acids from the Peruvian medicinal plant Polylepis racemosa. Planta Med, 2000; 66(5):483−4. https://doi.org/10.1055/s-2000-8583

Nganteng DN, Melong R, Mbiekop EP, Maffo T, Allémann É, Delie F, Wafo P, Tchaleu BN, Dzoyem JP. Chemical constituents and cytotoxic activity of Ocimum gratissimum L. S Afr J Bot, 2022; 150:330−3. https://doi.org/10.1016/j.sajb.2022.07.029

Numata A, Yang P, Takahashi C, Fujiki R, Nabae M, Fujita E. Cytotoxic triterpenes from a Chinese medicine, Goreishi. Chem Pharm Bull, 1989; 37(3):648−51. https://doi.org/10.1248/cpb.37.648

Papanov G, Bozov P, Malakov P. Triterpenoids from Lavandula spica. Phytochemistry, 1992; 31(4):1424−6. https://doi.org/10.1016/0031-9422(92)80309-3

Park JH, Cho YY, Yoon SW, Park B. Suppression of MMP-9 and FAK expression by pomolic acid via blocking of NF-κB/ERK/mTOR signaling pathways in growth factor-stimulated human breast cancer cells. Int J Oncol, 2016a; 49(3):1230−40. https://doi.org/10.3892/ijo.2016.3585

Park JH, Jang KM, An HJ, Kim JY, Gwon MG, Gu H, Park B, Park KK. Pomolic acid ameliorates fibroblast activation and renal interstitial fibrosis through inhibition of SMAD-STAT signaling pathways. Molecules, 2018; 23(9):2236−47. https://doi.org/10.3390/molecules23092236

Park JH, Yoon J, Park B. Pomolic acid suppresses HIF1α/VEGF-mediated angiogenesis by targeting p38-MAPK and mTOR signaling cascades. Phytomedicine, 2016b; 23(14):1716−26. https://doi.org/10.1016/j.phymed.2016.10.010

Patlolla JMR, Rao CV. Triterpenoids for cancer prevention and treatment: current status and future prospects. Curr Pharm Biotechnol, 2012; 13(1):147−55. https://doi.org/10.2174/138920112798868719

Pereira MX, Hammes AS, Vasconcelos FC, Pozzo AR, Pereira TH, Caffarena ER, Gattass CR, Maia RC. Antitumor effect of pomolic acid in acute myeloid leukemia cells involves cell death, decreased cell growth and topoisomerases inhibition. Anti Cancer Agents Med Chem, 2018; 18(10):1457−68. https://doi.org/10.2174/1871520618666180412120128

Ramabulana T, Ndlovu M, Mosa RA, Sonopo MS, Selepe MA. Phytochemical profiling and isolation of bioactive compounds from Leucosidea sericea (Rosaceae). ACS Omega, 2022; 7(14):11964−72. https://doi.org/10.1021/acsomega.2c00096

Salvador JA, Moreira VM, Gonçalves BM, Leal AS, Jing Y. Ursane-type pentacyclic triterpenoids as useful platforms to discover anticancer drugs. Nat Prod Rep, 2012; 29(12):1463−79. https://doi.org/10.1039/c2np20060k

Schinella G, Aquila S, Dade M, Giner R, Carmen Recio M, Spegazzini E, Buschiazzo P, Tournier H, Ríos JL. Anti-inflammatory and apoptotic activities of pomolic acid isolated from Cecropia pachystachya. Planta Med, 2008; 74(3):215−20. https://doi.org/10.1055/s-2008-1034301

Shanmugam MK, Nguyen AH, Kumar AP, Tan BK, Sethi G. Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: potential role in prevention and therapy of cancer. Cancer Lett, 2012; 320(2):158−70. https://doi.org/10.1016/j.canlet.2012.02.037

Siddiqui BS, Raza SM, Begum S, Siddiqui S, Firdous S. Pentacyclic triterpenoids from Lantana camara. Phytochemistry, 1995; 38(3):681−5. https://doi.org/10.1016/0031-9422(94)00691-L

Tan H, Ashour A, Katakura Y, Shimizu K. A structure-activity relationship study on anti-osteoclastogenesis effect of triterpenoids from the leaves of loquat (Eriobotrya japonica). Phytomedicine, 2015; 22(4):498−503. https://doi.org/10.1016/j.phymed.2015.03.002

Tan H, Sonam T, Shimizu K. The potential of triterpenoids from loquat leaves (Eriobotrya japonica) for prevention and treatment of skin disorder. Int J Mol Sci, 2017; 18(5):1030−42. https://doi.org/10.3390/ijms18051030

Tedonkeu AT, Tamokou JD, Mpetga JD, Nzogong RT, Kengne IC, Hao XJ, Tene M. A new antimicrobial nor-friedelane-type triterpenoid and other constituents from Plectranthus glandulosus Hook. (Lamiaceae). Nat Prod Res, 2021; DOI: 10.1080/14786 419.2021.1999946. https://doi.org/10.1080/14786419.2021.1999946

Thuong PT, Min BS, Jin W, Na M, Lee J, Seong R, Lee YM, Song K, Seong Y, Lee HK, Bae K. Anti-complementary activity of ursane-type triterpenoids from Weigela subsessilis. Biol Pharm Bull, 2006; 29(4):830−3. https://doi.org/10.1248/bpb.29.830

Tra NT, Son NT, Van Tuyen N, Cuong PV, Thu Ha NT, Anh LT, Huong DT, Ngan TB, Litaudon M. A new cytotoxic compound from the leaves of Styrax annamensis Guillaumin. Nat Prod Res, 2022; 36(6):1616−20. https://doi.org/10.1080/14786419.2021.1887868

Uzoigwe J, R Sauter E. SENP1 as a biomarker for the diagnosis of cancer: review of the science and published patents. Recent Pat Biomark, 2012; 2(1):29−35. https://doi.org/10.2174/2210309011202010029

Vasconcelos FC, Gattas CR, Fernandes J, Rumjanek VM, Maia RC. Pomolic acid-induced apoptosis in cells from chronic myeloid leukemic patients is not affected by the MDR phenotype and status of disease. Blood, 2005; 106(11):4889−91. https://doi.org/10.1182/blood.V106.11.4889.4889

Vasconcelos FC, Gattass CR, Rumjanek VM, Maia RC. Pomolic acid-induced apoptosis in cells from patients with chronic myeloid leukemia exhibiting different drug resistance profile. Invest New Drugs, 2007; 25(6):525−33. https://doi.org/10.1007/s10637-007-9064-5

Wei H, Guo J, Sun X, Gou W, Ning H, Shang H, Liu Q, Hou W, Li Y. Discovery of natural ursane-type SENP1 inhibitors and the platinum resistance reversal activity against human ovarian cancer cells: a structure- activity relationship study. J Nat Prod, 2022; 85(5):1248−55. https://doi.org/10.1021/acs.jnatprod.1c01166

Wiemann J, Deckelmann AM, Csuk R. A remarkably simple and convergent partial synthesis of pomolic acid. Tetrahedron Lett, 2016; 57(35):3952−3. https://doi.org/10.1016/j.tetlet.2016.07.068

Wo?niak ?, Sk?pska S, Marsza?ek K. Ursolic acid - a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules, 2015; 20(11):20614−41. https://doi.org/10.3390/molecules201119721

Wu J, Zhang ZQ, Zhou XD, Yao QY, Chen ZL, Chu LL, Yu HH, Yang YP, Li B, Wang W. New terpenoids from Potentilla freyniana Bornm. and their cytotoxic activities. Molecules, 2022; 27(12):3665−77. https://doi.org/10.3390/molecules27123665

Yang G, Fen W, Xiao W, Sun H. Study on determination of pentacyclic triterpenoids in Chaenomeles by HPLC-ELSD. J Chromatogr Sci, 2009; 47(8):718−22. Yang L, Guo Y, Hao Q, Li D, Qiao Z, Cui Y, Li J. Pomolic acid inhibits proliferation of human lung carcinoma cells via induction of apoptosis and suppression of cell migration and invasion. Trop J Pharm Res, 2022; 21(6):1201−7. https://doi.org/10.4314/tjpr.v21i6.10

Yang ZG, Wen XF, Li YH, Matsuzaki K, Kitanaka S. Inhibitory effects of the constituents of Hippophae rhamnoides on 3T3-L1 cell differentiation and nitric oxide production in RAW 264.7 cells. Chem Pharm Bull, 2013; 61(3):279−85. https://doi.org/10.1248/cpb.c12-00835

Yoo KH, Park JH, Lee DK, Fu YY, Baek NI, Chung IS. Pomolic acid induces apoptosis in SKOV-3 human ovarian adenocarcinoma cells through the mitochondrial-mediated intrinsic and death receptor-induced extrinsic pathways. Oncol Lett, 2013; 5(1):386−90. https://doi.org/10.3892/ol.2012.985

Yoshida M, Fuchigami M, Nagao T, Okabe H, Matsunaga K, Takata J, Karube Y, Tsuchihashi R, Kinjo J, Mihashi K, Fujioka T. Antiproliferative constituents from Umbelliferae plants VII. Active triterpenes and rosmarinic acid from Centella asiatica. Biol Pharm Bull, 2005; 28(1):173−5. https://doi.org/10.1248/bpb.28.173

Youn SH, Lee JS, Lee MS, Cha EY, Thuong PT, Kim JR, Chang ES. Anticancer properties of pomolic acid-induced AMP-activated protein kinase activation in MCF7 human breast cancer cells. Biol Pharm Bull, 2012; 35(1):105−10. https://doi.org/10.1248/bpb.35.105

Article Metrics

0 Absract views 1 PDF Downloads 1 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required