Ahmed Z, Saeed Khan S, Khan M. In vitro trials of some antimicrobial combinations against Staphylococcus aureus and Pseudomonas aeruginosa. Saudi J Biol Sci, 2013; 20(1):79-83. https://doi.org/10.1016/j.sjbs.2012.10.005 |
|
Badiger NP, Gaonkar SL, Shetty NS. Synthesis of some new thienopyrimidines and triazole fused thienopyrimidines and their antimicrobial activities. Internat J Chem Pharm Sci, 2015; 6(1):58-62. | |
|
Brown DG, Wobst HJ. A decade of FDA-approved drugs (2010- 2019): trends and future directions. J Med Chem, 2021; 64(5):2312-38. https://doi.org/10.1021/acs.jmedchem.0c01516 | |
|
Cercenado E. Espectro antimicrobiano de dalbavancina. Mecanismo de accion y actividad in vitro frente a microorganismos Gram positivos. Enferm Infecc Microbiol Clin, 2017; 35(1):9-14. https://doi.org/10.1016/S0213-005X(17)30029-0 | |
|
Coyle MB. Manual of antimicrobial susceptibility testing. American Society for Microbiology, Washington, DC, 241 c p, 2005. | |
|
De Schutter JW, Morrison JP, Morrison MJ, Ciulli A, Imperiali B. Targeting Bacillosamine biosynthesis in bacterial pathogens: development of inhibitors to a bacterial amino-sugar acetyltransferase from Campylobacter jejuni. J Med Chem, 2017; 60(5):2099-118. https://doi.org/10.1021/acs.jmedchem.6b01869 | |
|
El-Gamal M, Kim S, Oh CH. Synthesis and in vitro antibacterial activity of new meropenem analogs. J Antibiot, 2011; 64:687-8. https://doi.org/10.1038/ja.2011.70 | |
|
Falb E, Ulanenko K, Tor A, Gottesfeld R, Weitman M, Afri M, Gottlieb HE, Hassner A. A highly efficient Suzuki-Miyaura methylation of pyridines leading to the drug pirfenidone and its CD3 version (SD-560). Green Chem, 2017; 19:5046-53. https://doi.org/10.1039/C7GC01740E | |
|
Fernandez-Mato A, Peinador C, Quintal JM. Convenient one-pot synthesis of functionalized thieno[3,2-d]pyrimidine and thieno[2,3-d] pyrimidine derivatives. Synthesis, 2011; (20):3323-31. https://doi.org/10.1055/s-0030-1260217 | |
|
Gamper HB, Masuda I, Frenkel-Morgenstern M, Hou YM. Maintenance of protein synthesis reading frame by EF-P and m(1)G37- tRNA. Nat Commun, 2015; 6:7226. https://doi.org/10.1038/ncomms8226 | |
|
Goto-Ito S, Ito T, Yokoyama S. Trm5 and TrmD: two enzymes from distinct origins catalyze the iIdentical tRNA modification, m¹G37. Biomolecules, 2017; 7(1):32. https://doi.org/10.3390/biom7010032 | |
|
Hill PJ, Abibi A, Albert R, Andrews B, Gagnon MM, Gao N, Grebe T, Hajec LI, Huang J, Livchak S, Lahiri SD, McKinney DC, Thresher J, Wang H, Olivier N, Buurman ET. Selective inhibitors of bacterial t-RNA- (N(1)G37) methyltransferase (TrmD) that demonstrate novel ordering of the lid domain. J Med Chem, 2013; 56(18):7278-88. https://doi.org/10.1021/jm400718n | |
|
Jansen G, Mahrt N, Tueffers L, Barbosa C, Harjes M, Adolph G, Friedrichs A, Krenz-Weinreich A, Rosenstiel P, Schulenburg H. Association between clinical antibiotic resistance and susceptibility of Pseudomonas in the cystic fibrosis lung. Evol Med Public Health, 2016; 2016(1):182-94. https://doi.org/10.1093/emph/eow016 | |
|
Jones F, Hu Y, Coates A. The efficacy of using combination therapy against multi-drug and extensively drug-resistant Pseudomonas aeruginosa in clinical settings. Antibiotics (Basel), 2022; 11(3):323. https://doi.org/10.3390/antibiotics11030323 | |
|
Karroum NB, Patinote C, Deleuze-Masquefa C, Moarbess G, Diab-Assaf M, Cuq P, Kassab I. Methylation of imidazopyrazine, imidazoquinoxaline, and pyrazoloquinoxaline through Suzuki-Miyaura cross coupling. Chem Heterocyc Comp, 2018; 54(2):183-7. https://doi.org/10.1007/s10593-018-2252-8 | |
|
Khan M, Stapleton F, Summers S, Rice SA, Willcox MDP. Antibiotic resistance characteristics of Pseudomonas aeruginosa isolated from keratitis in Australia and India. Antibiotics (Basel), 2020; 9(9):600. https://doi.org/10.3390/antibiotics9090600 | |
|
Lin S, Wang C, Ji M, Wu D, Lv Y, Sheng L, Han F, Dong Y, Zhang K, Yang Y, Li Y, Chen X, Xu H. Discovery of new thienopyrimidine derivatives as potent and orally efficacious phosphoinositide 3-kinase inhibitors. Bioorg Med Chem, 2018; 26(3):637-46. https://doi.org/10.1016/j.bmc.2017.12.025 | |
|
Magaldi S, Mata-Essayag S, Hartung de Capriles C, Perez C, Colella MT, Olaizola C, Ontiveros Y. Well diffusion for antifungal susceptibility testing. Int J Infect Dis, 2004; 8(1)39-45. https://doi.org/10.1016/j.ijid.2003.03.002 | |
|
Malasala S, Polomoni A, Ahmad Md N, Shukla M, Kaul G, Dasgupta A, Chopra S, Nanduri S. Structure based design, synthesis and evaluation of new thienopyrimidine derivatives as anti-bacterial agents. J Molec Struct, 2021; 1234:130168. https://doi.org/10.1016/j.molstruc.2021.130168 | |
|
Manhas MS, Sharma SD. Hetcrocyclic compounds III. Synthesis of some substituted thienopyrimidines. J Heterocyc Chem, 1971; 8:1051-3. https://doi.org/10.1002/jhet.5570080633 | |
|
Masuda I, Matsubara R, Christian T, Rojas ER, Yadavalli SS, Zhang L, Goulian M, Foster LJ, Huang KC, Hou YM. tRNA methylation Is a global determinant of dacterial multi-drug resistance. Cell Syst, 2019; 8(4):302-14.e8. https://doi.org/10.1016/j.cels.2019.03.008 | |
|
McFarland J. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J A Med Assoc, 1907; 49(14):1176-8. https://doi.org/10.1001/jama.1907.25320140022001f | |
|
Ministry of Public Health of Ukraine (MHU). Bacteriological control of culture media; Newsletter ? 05.4.1/1670. Ministry of Public Health of Ukraine, Kiev, Ukraine, 45 p, 2001. | |
|
Mitra S, Saeed U, Havlichek DH, Stein GE. Profile of oritavancin and its potential in the treatment of acute bacterial skin structure infections. Infect Drug Resist, 2015; 8:189-97. https://doi.org/10.2147/IDR.S69412 | |
|
Nekrasova LS, Svita VM, Glushkevich TG, Tomchuk VV, Zherebko NM, Yanovs'ka VV. Methodological guidelines "Determination of the Sensitivity of Microorganisms to Antibiotics"; ? MB 9.9.5-143- 2007. Ministry of Public Health of Ukraine, Kiev, Ukraine, 24 p, 2007. | |
|
Olsson A, Wistrand-Yuen P, Nielsen EI, Friberg LE, Sandegren L, Lagerbäck P, Tängdén T. Efficacy of antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa in automated time-lapse microscopy and static time-kill experiments. Antimicrob Agents Chemother, 2020; 64(6):e02111-9. https://doi.org/10.1128/AAC.02111-19 | |
|
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv, 2019; 37(1):177-92; doi:10.1016/j. biotechadv.2018.11.013 https://doi.org/10.1016/j.biotechadv.2018.11.013 | |
|
Protein Data Bank. Available via http://www.rcsb.org/pdb/home/ home.do (Accessed 10 April 2022). | |
|
Richter MF, Drown BS, Riley AP, Garcia A, Shirai T, Svec RL, Hergenrother PJ. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature, 2017; 545(7654):299-304. https://doi.org/10.1038/nature22308 | |
|
Sakamoto T, Kondo Y, Watanabe R, Yamanaka H. Condensed heteroaromatic ring systems. VII: synthesis of thienopyridines, thienopyrimidines, and furopyridines from o-substituted N-heteroarycetylenes. Chem Pharm Bull, 1986; 34(7):2719-24. https://doi.org/10.1248/cpb.34.2719 | |
|
Severina HI, Skupa OO, Voloshchuk NI, Georgiyants VA. Synthesis, docking study, and pharmacological evaluation of S-acetamide derivatives of 4,6-dimethyl-2-thiopyrimidine as anticonvulsant agents. J Appl Pharm S, 2020; 10(07):001-8. https://doi.org/10.7324/JAPS.2020.10701 | |
|
Tereshko V, Skripkin E, Patel DJ. Encapsulating streptomycin within a small 40-mer RNA. Chem Biol, 2003; 10(2):175-87. https://doi.org/10.1016/S1074-5521(03)00024-3 | |
|
Therkelsen FD, Rottlaender M, Thorup N, Bjerregaard PE. 4-Metalated condensed pyrimidines: their preparation and reaction with aldehydes under barbier-type conditions. Org Lett, 2004; 6(12):1991-4. https://doi.org/10.1021/ol049432v | |
|
Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA. ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov, 2015; 14(8):529-42. https://doi.org/10.1038/nrd4572 | |
|
Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP. Key topics in molecular docking for drug design. Int J Mol Sci, 2019; 20(18):4574-603. https://doi.org/10.3390/ijms20184574 | |
|
Triloknadh S, Venkata Rao C, Nagaraju K, Hari Krishna N, Venkata Ramaiah C, Rajendra W, Trinath D, Suneetha Y. Design, synthesis, neuroprotective, antibacterial activities and docking studies of novel thieno[2,3-d]pyrimidine-alkyne Mannich base and oxadiazole hybrids. Bioorg Med Chem Lett, 2018; 28(9):1663-9. https://doi.org/10.1016/j.bmcl.2018.03.030 | |
|
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P & T, 2015; 40(4):277-83. | |
|
Vlasov SV, Vlasova OD, Severina HI, Krolenko KY, Borysov OV, Abu Sharkh AIM., Vlasov VS, Georgiyants VA. Design, synthesis and in vitro antimicrobial activity of 6-(1H-Benzimidazol-2-yl)-3,5-dimethyl- 4-oxo-2-thio-3,4-dihydrothieno[2,3-d]pyrimidines. Sci Pharm, 2021; 89(4):49. https://doi.org/10.3390/scipharm89040049 | |
|
Vlasov SV, Severina HI, Borysov OV, Krolenko KY, Shynkarenko PE, Saidov NB, Vlasov VS, Georgiyants VA. Synthesis and antimicrobial evaluation of 2-(6-Imidazo[1,2-a]pyridin-2-yl-5-methyl- 2,4-dioxo-3-phenyl-3,4-dihydrothieno[2,3-d]pyrimidin-1(2H)-yl)-N-arylacetamide derivatives. Molbank, 2022; 1:M1331. https://doi.org/10.3390/M1331 | |
|
Vlasova OD, Krolenko KYu, Nechayev MA, Shynkarenko PE, Kabachnyy VI, Vlasov SV. Efficient method for the synthesis of novel substituted thieno[2,3-d]pyrimidine-4-carboxylic acids, their derivatization, and antimicrobial activity. Chem Heterocycl Comp, 2019; 55(2):184-8. https://doi.org/10.1007/s10593-019-02437-1 | |
|
Wagenlehner FME, Cloutier DJ, Komirenko AS, Cebrik DS, Krause KM, Keepers TR, Connolly LE, Miller LG, Friedland I, Dwyer JP. Once-daily Plazomicin for complicated urinary tract infections. New Engl J Med, 2019; 380(8):729-40. https://doi.org/10.1056/NEJMoa1801467 | |
|
Whitehouse AJ, Thomas SE, Brown KP, Fanourakis A, Chan DS, Libardo MDJ, Mendes V, Boshoff HIM, Floto RA, Abell C, Blundell TL, Coyne AG. Development of inhibitors against Mycobacterium abscessus tRNA (m1G37) methyltransferase (TrmD) using fragment-based approaches. J Med Chem, 2019; 62(15):7210-32. https://doi.org/10.1021/acs.jmedchem.9b00809 | |
|
Yakout MA, Abdelwahab IA. Diabetic foot ulcer infections and Pseudomonas aeruginosa biofilm production during the COVID-19 pandemic. J Pure Appl Microbiol, 2022; 16(1):138-46. https://doi.org/10.22207/JPAM.16.1.02 | |
|
Zhang G, Meredith, TC, Kahne D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr Opin Microbiol, 2013; 16(6):779-85. https://doi.org/10.1016/j.mib.2013.09.007 | |
|
ZhongW, Koay A, Ngo A, Li Y, Nah Q, Wong YH, Chionh YH, Ng HQ, Koh-Stenta X, Poulsen A, Foo K, McBee M, Choong ML, El Sahili A, Kang C, Matter A, Lescar J, Hill J, Dedon P. Targeting the bacterial epitranscriptome for antibiotic development: discovery of novel tRNA- (N1G37) methyltransferase (TrmD) inhibitors. ACS Infect Dis, 2019a; 5(3):326-35. https://doi.org/10.1021/acsinfecdis.8b00275 | |