Employing an in-silico approach in the evaluation of Aloe vera metabolites as inhibitors of Omicron RBD and the ROS-dependent cellular signaling processes

Billy Johnson Kepel Marko Jeremia Kalalo Trina Ekawati Tallei Fatimawali   

Open Access   

Published:  Nov 29, 2022

DOI: 10.7324/JAPS.2023.130304
Abstract

The pathogenesis of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is related to increased reactive oxygen species (ROS) formation. This increasing ROS formation can mediate ROS-dependent cellular signaling processes inducing cytokines and inflammations that worsen the disease. The severity of coronavirus disease 2019 (COVID-19) can progress due to the self-sustaining cycle of ROS release, inflammatory mediators, and cellular damage. For the treatment, Aloe vera is a promising plant that has the potential to be used. In this study, therefore, we identified the metabolite composition of A. vera peel and gel using liquid chromatography-mass spectrometry (LC-MS). The metabolites were molecularly docked to Omicron receptor-binding domain (RBD) and ROS-producing enzymes to obtain medicinal compounds to inhibit these targets. The LC-MS analysis revealed the peel and gel compositions are distinct, in which 13 metabolites are identified in the peel and 12 in the gel. Furthermore, these metabolites might be promising inhibitors against Omicron variant SARS-CoV-2 RBD and ROS-producing enzymes based on the docking scores and the number of bonds formed. Thus, A. vera is one promising candidate for COVID-19 treatment due to its potential to alter the RBD function of forming a complex with ACE2 and inhibit the ROS-dependent cellular signaling processes related to COVID-19 pathogenesis and disease severity progression.


Keyword:     Aloe vera in silico ROS Omicron RBD COVID-19 SARS-CoV-2


Citation:

Kepel BJ, Kalalo MJ, Tallei TE, Fatimawali. Employing an in-silico approach in the evaluation of Aloe vera metabolites as inhibitors of Omicron RBD and the ROS-dependent cellular signaling processes. J Appl Pharm Sci, 2022. https://doi.org/10.7324/JAPS.2023.130304

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Ahmad L. Implication of SARS-CoV-2 immune escape spike variants on secondary and vaccine breakthrough infections. Front Immunol, 2021; 12:742167; https://doi.org/10.3389/fimmu.2021.742167 https://doi.org/10.3389/fimmu.2021.742167

Alzoghaibi MA. Concepts of oxidative stress and antioxidant defense in Crohn's disease. World J Gastroenterol, 2013; 19(39):6540-7; https://doi.org/10.3748/wjg.v19.i39.6540 https://doi.org/10.3748/wjg.v19.i39.6540

André-Lévigne D, Modarressi A, Pepper MS, Pittet-Cuénod B. Reactive oxygen species and NOX enzymes are emerging as key players in cutaneous wound repair. Int J Mol Sci, 2017; 18(10):2149; https://doi. org/10.3390/ijms18102149 https://doi.org/10.3390/ijms18102149

Archambault A-S, Zaid Y, Rakotoarivelo V, Doré E, Dubuc I, Martin C, Amar Y, Cheikh A, Fares H, El Hassan A, Tijani Y, Laviolette M, Boilard E, Flamand L, Flamand N. Lipid storm within the lungs of severe COVID-19 patients: extensive levels of cyclooxygenase and lipoxygenase-derived inflammatory metabolites. MedRxiv; https://doi.org/10.1101/2020.1 2.04.20242115

Ayola-Serrano NC, Roy N, Fathah Z, Anwar MM, Singh B, Ammar N, Sah R, Elba A, Utt RS, Pecho-Silva S, Rodriguez-Morales AJ, Dhama K, Quraishi S. The role of 5-lipoxygenase in the pathophysiology of COVID-19 and its therapeutic implications. Inflamm Res, 2021; 70(8):877- 89; https://doi.org/10.1007/s00011-021-01473-y https://doi.org/10.1007/s00011-021-01473-y

Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, Millán C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov- Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Garcia KC, Grishin NV, Adams PD, Read RJ, Baker D. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021; 373(6557):871-6; https://doi.org/10.1126/science.abj8754 https://doi.org/10.1126/science.abj8754

Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol, 2020; 153(6):725-33; https://doi.org/10.1093/ajcp/aqaa062 https://doi.org/10.1093/ajcp/aqaa062

Bista R, Ghimire A, Subedi S. Phytochemicals and antioxidant activities of Aloe Vera (Aloe Barbadensis). J Nut Sci Heal Diet, 2020; 1(1):25-36; https://doi.org/10.47890/JNSHD/2020/RBista/10243803 https://doi.org/10.47890/JNSHD/2020/RBista/10243803

Casas AI, Nogales C, Mucke HAM, Petraina A, Cuadrado A, Rojo AI, Ghezzi P, Jaquet V, Augsburger F, Dufrasne F, Soubhye J, Deshwal S, Di Sante M, Kaludercic N, Di Lisa F, Schmidt HHHW. On the clinical pharmacology of reactive oxygen species. Pharmacol Rev, 2020; 72(4):801-28; https://doi.org/10.1124/pr.120.019422 https://doi.org/10.1124/pr.120.019422

Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses, 2020; 143:110102; https://doi.org/10.1016/j.mehy.2020.110102 https://doi.org/10.1016/j.mehy.2020.110102

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020; 395(10223):507-13; https://doi. org/10.1016/S0140-6736(20)30211-7 https://doi.org/10.1016/S0140-6736(20)30211-7

Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and oxidative stress. Biochem, 2020; 85(12):1543-53; https://doi.org/10.1134/S0006297920120068 https://doi.org/10.1134/S0006297920120068

Cheshire DR, Åberg A, Andersson GMK, Andrews G, Beaton HG, Birkinshaw TN, Boughton-Smith N, Connolly S, Cook TR, Cooper A, Cooper SL, Cox D, Dixon J, Gensmantel N, Hamley PJ, Harrison R, Hartopp P, Käck H, Leeson PD, Luker T, Mete A, Millichip I, Nicholls DJ, Pimm AD, St-Gallay SA, Wallace AV. The discovery of novel, potent and highly selective inhibitors of inducible nitric oxide synthase (iNOS). Bioorg Med Chem Lett, 2011; 21(8):2468-71; https://doi.org/10.1016/j.bmcl.2011.02.061 https://doi.org/10.1016/j.bmcl.2011.02.061

Cinelli MA, Reidl CT, Li H, Chreifi G, Poulos TL, Silverman RB. First contact: 7-phenyl-2-aminoquinolines, potent and selective neuronal nitric oxide synthase inhibitors that target an isoform-specific aspartate. J Med Chem, 2020; 63(9):4528-54; https://doi.org/10.1021/acs. jmedchem.9b01573 https://doi.org/10.1021/acs.jmedchem.9b01573

Cingolani G, Panella A, Perrone MG, Vitale P, Di Mauro G, Fortuna CG, Armen RS, Ferorelli S, Smith WL, Scilimati A. Structural basis for selective inhibition of cyclooxygenase-1 (COX-1) by diarylisoxazoles mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6). Eur J Med Chem, 2017; 138:661-8; https://doi.org/10.1016/j. ejmech.2017.06.045 https://doi.org/10.1016/j.ejmech.2017.06.045

Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood, 2020; 135(23):2033-40; https://doi. org/10.1182/blood.2020006000 https://doi.org/10.1182/blood.2020006000

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol, 2015; 1263:243-50; https://doi. org/10.1007/978-1-4939-2269-7_19 https://doi.org/10.1007/978-1-4939-2269-7_19

Damiani S, Fiorentino M, De Palma A, Foschini MP, Lazzarotto T, Gabrielli L, Viale PL, Attard L, Riefolo M, D'Errico A. Pathological post-mortem findings in lungs infected with SARS-CoV-2. J Pathol, 2021; 253(1):31-40; https://doi.org/10.1002/path.5549 https://doi.org/10.1002/path.5549

Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res, 2020; 51(5):384-7; https://doi.org/10.1016/j.arcmed.2020.04.019 https://doi.org/10.1016/j.arcmed.2020.04.019

Derouiche S. Oxidative stress associated with SARS-Cov-2 (COVID-19) increases the severity of the lung disease - a systematic review. J Infect Dis Epidemiol, 2020; 6:121; https://doi.org/10.23937/2474- 3658/1510121 https://doi.org/10.23937/2474-3658/1510121

Dharajiya D, Pagi N, Jasani H, Patel P. Antimicrobial activity and phytochemical screening of Aloe vera (Aloe barbadensis Miller). Int J Curr Microbiol Appl Sci, 2017; 6(3):2152-62; https://doi.org/10.20546/ ijcmas.2017.603.246 https://doi.org/10.20546/ijcmas.2017.603.246

Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol, 2014; 4:177; https://doi.org/10.3389/fphar.2013.00177 https://doi.org/10.3389/fphar.2013.00177

Ewer KJ, Barrett JR, Belij-Rammerstorfer S, Sharpe H, Makinson R, Morter R, Flaxman A, Wright D, Bellamy D, Bittaye M, Dold C, Provine NM, Aboagye J, Fowler J, Silk SE, Alderson J, Aley PK, Angus B, Berrie E, Bibi S, Cicconi P, Clutterbuck EA, Chelysheva I, Folegatti PM, Fuskova M, Green CM, Jenkin D, Kerridge S, Lawrie A, Minassian AM, Moore M, Mujadidi Y, Plested E, Poulton I, Ramasamy NM, Robinson H, Song R, Snape MD, Tarrant R, Voysey M, Watson MEE, Douglas AD, Hill AVS, Gilbert SC, Pollard AJ, Lambe T, Oxford COVID Vaccine Trial Group. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nat Med, 2021; 27(2):270-8; https://doi.org/10.1038/s41591-020-01194-5 https://doi.org/10.1038/s41591-020-01194-5

Fang W, Jiang J, Su L, Shu T, Liu H, Lai S, Ghiladi RA, Wang J. The role of NO in COVID-19 and potential therapeutic strategies. Free Radic Biol Med, 2021; 163:153-62; https://doi.org/10.1016/j. freeradbiomed.2020.12.008 https://doi.org/10.1016/j.freeradbiomed.2020.12.008

Funk CD, Ardakani A. A novel strategy to mitigate the hyperinflammatory response to COVID-19 by targeting leukotrienes. Front Pharmacol, 2020; 11:1214; https://doi.org/10.3389/fphar.2020.01214 https://doi.org/10.3389/fphar.2020.01214

Giannakoudakis DA, Hosseini-Bandegharaei A, Tsafrakidou P, Triantafyllidis KS, Kornaros M, Anastopoulos I. Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: a review. J Environ Manage, 2018; 227:354-64; https://doi.org/10.1016/j.jenvman.2018.08.064 https://doi.org/10.1016/j.jenvman.2018.08.064

Gilbert NC, Gerstmeier J, Schexnaydre EE, Börner F, Garscha U, Neau DB, Werz O, Newcomer ME. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat Chem Biol, 2020; 16(7):783-90; https://doi.org/10.1038/s41589-020-0544-7 https://doi.org/10.1038/s41589-020-0544-7

Guan SP, Seet RCS, Kennedy BK. Does eNOS derived nitric oxide protect the young from severe COVID-19 complications? Ageing Res Rev, 2020; 64:101201; https://doi.org/10.1016/j.arr.2020.101201 https://doi.org/10.1016/j.arr.2020.101201

Häfner A-K, Kahnt AS, Steinhilber D. Beyond leukotriene formation-the noncanonical functions of 5-lipoxygenase. Prostaglandins Other Lipid Mediat, 2019; 142:24-32; https://doi.org/10.1016/j. prostaglandins.2019.03.003 https://doi.org/10.1016/j.prostaglandins.2019.03.003

Halpin DMG, Criner GJ, Papi A, Singh D, Anzueto A, Martinez FJ, Agusti AA, Vogelmeier CF. Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease. The 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2020; 203(1):24-36; https://doi.org/10.1164/rccm.202009-3533SO https://doi.org/10.1164/rccm.202009-3533SO

Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, COVID-19 Genomics UK (COG-UK) Consortium, Peacock SJ, Robertson DL. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol, 2021; 19(7):409- 24; https://doi.org/10.1038/s41579-021-00573-0 https://doi.org/10.1038/s41579-021-00573-0

H?? M, Dziedzic K, Górecka D, J?drusek-Goli?ska A, Gujska E. Aloe vera (L.) Webb.: natural sources of antioxidants - a review. Plant Foods Hum Nutr, 2019; 74(3):255-65; https://doi.org/10.1007/s11130-019- 00747-5 https://doi.org/10.1007/s11130-019-00747-5

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020; 395(10223):497-506; https:// doi.org/10.1016/S0140-6736(20)30183-5Kazybay B, Ahmad A, Mu C, Mengdesh D, Xie Y. Omicron N501Y mutation among SARS-CoV-2 lineages: insilico analysis of potent binding to tyrosine kinase and hypothetical repurposed medicine. Travel Med Infect Dis, 2022; 45:102242; https://doi.org/10.1016/j.tmaid.2021.102242 https://doi.org/10.1016/j.tmaid.2021.102242

Komaravelli N, Casola A. Respiratory viral infections and subversion of cellular antioxidant defenses. J Pharmacogenomics Pharmacoproteomics, 2014; 5(4):1000141; https://doi.org/10.4172/2153- 0645.1000141

Kumar S, Yadav M, Yadav A, Yadav JP. Impact of spatial and climatic conditions on phytochemical diversity and in vitro antioxidant activity of Indian Aloe vera (L.) Burm.f. South Afr J Bot, 2017; 111:50-9; https://doi.org/10.1016/j.sajb.2017.03.012 https://doi.org/10.1016/j.sajb.2017.03.012

Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G. Omicron and delta variant of SARS-CoV-2: a comparative computational study of spike protein. J Med Virol, 2021; 1-9; https://doi.org/10.1002/ jmv.27526 https://doi.org/10.1101/2021.12.02.470946

Li H, Evenson RJ, Chreifi G, Silverman RB, Poulos TL. Structural basis for isoform selective nitric oxide synthase inhibition by thiophene-2-carboximidamides. Biochemistry, 2018; 57(44):6319-25; https://doi.org/10.1021/acs.biochem.8b00895 https://doi.org/10.1021/acs.biochem.8b00895

Lin H-C, Lin T-H, Wu M-Y, Chiu Y-C, Tang C-H, Hour M-J, Liou H-C, Tu H-J, Yang R-S, Fu W-M. 5-Lipoxygenase inhibitors attenuate TNF-α-induced inflammation in human synovial fibroblasts. PLoS One, 2014; 9(9):e107890; https://doi.org/10.1371/journal.pone.0107890 https://doi.org/10.1371/journal.pone.0107890

Lippi G, Mattiuzzi C. Hemoglobin value may be decreased in patients with severe coronavirus disease 2019. Hematol Transfus Cell Ther, 2020; 42(2):116-7; https://doi.org/10.1016/j.htct.2020.03.001 https://doi.org/10.1016/j.htct.2020.03.001

Liu Y, Liu J, Plante KS, Plante JA, Xie X, Zhang X, Ku Z, An Z, Scharton D, Schindewolf C, Widen SG, Menachery VD, Shi PY, Weaver SC. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature, 2021; https://doi.org/10.1038/s41586-021-04245-0 https://doi.org/10.1038/s41586-021-04245-0

Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, Zuo L. Role of ROS and nutritional antioxidants in human diseases. Front Physiol, 2018; 9:477; https://doi.org/10.3389/fphys.2018.00477 https://doi.org/10.3389/fphys.2018.00477

López A, de Tangil MS, Vega-Orellana O, Ramírez AS, Rico M. Phenolic constituents, antioxidant and preliminary antimycoplasmic activities of leaf skin and flowers of Aloe vera (L.) Burm. f. (syn. A. barbadensis Mill.) from the Canary Islands (Spain). Molecules, 2013; 18(5):4942-54; https://doi.org/10.3390/molecules18054942. https://doi.org/10.3390/molecules18054942

Mantzarlis K, Tsolaki V, Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies. Oxid Med Cell Longev, 2017; 2017:5985209; https://doi.org/10.1155/2017/5985209 https://doi.org/10.1155/2017/5985209

McCarthy MK, Weinberg JB. Eicosanoids and respiratory viral infection: coordinators of inflammation and potential therapeutic targets. Mediators Inflamm, 2012; 2012:236345; https://doi. org/10.1155/2012/236345 https://doi.org/10.1155/2012/236345

Mengist HM, Kombe Kombe AJ, Mekonnen D, Abebaw A, Getachew M, Jin T. Mutations of SARS-CoV-2 spike protein: implications on immune evasion and vaccine-induced immunity. Semin Immunol, 2021; 55:101533; https://doi.org/10.1016/j.smim.2021.101533 https://doi.org/10.1016/j.smim.2021.101533

Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol, 2020; 20(6):355-62; https://doi.org/10.1038/s41577-020-0331-4 https://doi.org/10.1038/s41577-020-0331-4

Moriyama M, Moriyama H, Uda J, Kubo H, Nakajima Y, Goto A, Akaki J, Yoshida I, Matsuoka N, Hayakawa T. Beneficial effects of the genus aloe on wound healing, cell proliferation, and differentiation of epidermal keratinocytes. PLoS One, 2016; 11(10):1-15; https://doi. org/10.1371/journal.pone.0164799 https://doi.org/10.1371/journal.pone.0164799

Mousavi SS, Karami A, Haghighi TM, Tumilaar SG, Fatimawali, Idroes R, Mahmud S, Celik I, A?agündüz D, Tallei TE, Emran TB, Capasso R. In silico evaluation of Iranian medicinal plant phytoconstituents as inhibitors against main protease and the receptor-binding domain of SARS-CoV-2. Molecules, 2021; 26(18):5724; https://doi.org/10.3390/ molecules26185724 https://doi.org/10.3390/molecules26185724

Muthukumaran P, Divya R, Indhumathi E, Keerthika C. Total phenolic and flavonoid content of membrane processed Aloe vera extract: a comparative study. Int Food Res J, 2018; 25(4):1450-6; http://ifrj.upm.edu. my/25%20(04)%202018/(17).pdf

Nalimu F, Oloro J, Kahwa I, Ogwang PE. Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox. Futur J Pharm Sci, 2021; 7(1):145; https://doi.org/10.1186/s43094-021-00296-2 https://doi.org/10.1186/s43094-021-00296-2

Nur S, Aisyah AN, Lukitaningsih E, Rumiyati, Juhardi RI, Andirah R, Hajar AS. Evaluation of antioxidant and cytotoxic effect against cancer cells line of Angiopteris ferox Copel tuber and its compounds by LC-MS analysis. J Appl Pharm Sci, 2021; 11(8):54-61; https://doi.org/10.7324/ JAPS.2021.110808

O'Flaherty JT, Hu Y, Wooten RE, Horita DA, Samuel MP, Thomas MJ, Sun H, Edwards IJ. 15-Lipoxygenase metabolites of docosahexaenoic acid inhibit prostate cancer cell proliferation and survival. PLoS One, 2012; 7(9):e45480; https://doi.org/10.1371/journal.pone.0045480 https://doi.org/10.1371/journal.pone.0045480

Omotuyi O, Olubiyi O, Nash O, Afolabi E, Oyinloye B, Fatumo S, Femi-Oyewo M, Bogoro S. SARS-CoV-2 Omicron spike glycoprotein receptor binding domain exhibits super-binder ability with ACE2 but not convalescent monoclonal antibody. Comput Biol Med, 2022; 142:105226; https://doi.org/10.1016/j.compbiomed.2022.105226 https://doi.org/10.1016/j.compbiomed.2022.105226

Ortega JT, Jastrzebska B, Rangel HR. Omicron SARS-CoV-2 variant spike protein shows an increased affinity to the human ACE2 receptor: an in silico analysis. Pathog, 2022; 11(1):45; https://doi. org/10.3390/pathogens11010045 https://doi.org/10.3390/pathogens11010045

Ortega JT, Pujol FH, Jastrzebska B, Rangel HR. Mutations in the SARS-CoV-2 spike protein modulate the virus affinity to the human ACE2 receptor, an in silico analysis. EXCLI J, 2021; 20:585-600; https:// doi.org/10.17179/excli2021-3471 https://doi.org/10.3390/pathogens11010045

Ottolenghi S, Zulueta A, Caretti A. Iron and sphingolipids as common players of (Mal) adaptation to hypoxia in pulmonary diseases. Int J Mol Sci, 2020;21(1):307; https://doi.org/10.3390/ijms21010307 https://doi.org/10.3390/ijms21010307

Pieretti JC, Rubilar O, Weller RB, Tortella GR, Seabra AB. Nitric oxide (NO) and nanoparticles - potential small tools for the war against COVID-19 and other human coronavirus infections. Virus Res, 2021; 291:198202; https://doi.org/10.1016/j.virusres.2020.198202 https://doi.org/10.1016/j.virusres.2020.198202

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev, 2017; 2017:8416763; https://doi. org/10.1155/2017/8416763 https://doi.org/10.1155/2017/8416763

Poeckel D, Funk CD. The 5-lipoxygenase/leukotriene pathway in preclinical models of cardiovascular disease. Cardiovasc Res, 2010; 86(2):243-53; https://doi.org/10.1093/cvr/cvq016 https://doi.org/10.1093/cvr/cvq016

Raad B, Ali S, Rehman K, Akhtar N, Ullah B, Wali S. Phytochemical screening and biological activities of Aloe vera (L.) Burm. F. Pure Appl Biol, 2020; 10(2):360-7; http://dx.doi.org/10.19045/ bspab.2021.100039

Rådmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids, 2015; 1851(4):331-9; https://doi.org/10.1016/j.bbalip.2014.08.012 https://doi.org/10.1016/j.bbalip.2014.08.012

Ravichandran S, Coyle EM, Klenow L, Tang J, Grubbs G, Lie S, Wang T, Golding H, Khurana S. Antibody signature induced by SARS-CoV-2 spike protein immunogens in rabbits. Sci Transl Med, 2020; 12(550):eabc3539; https://doi.org/10.1126/scitranslmed.abc3539 https://doi.org/10.1126/scitranslmed.abc3539

Sammar M, Abu Farich B, Rayan I, Falah M, Rayan A. Correlation between cytotoxicity in cancer cells and free radical scavenging activity: in vitro evaluation of 57 medicinal and edible plant extracts. Oncol Lett, 2019; 18(6):6563-71; https://doi.org/10.3892/ol.2019.11054 https://doi.org/10.3892/ol.2019.11054

Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological update properties of Aloe Vera and its major active constituents. Molecules, 2020; 25(6):1324; https://doi.org/10.3390/molecules25061324 https://doi.org/10.3390/molecules25061324

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol, 2020; 21(7):363- 83; https://doi.org/10.1038/s41580-020-0230-3 https://doi.org/10.1038/s41580-020-0230-3

Stuehr DJ, Vasquez-Vivar J. Nitric oxide synthases-from genes to function. Nitric oxide Biol Chem, 2017; 63:29; https://doi.org/10.1016/j. niox.2017.01.005 https://doi.org/10.1016/j.niox.2017.01.005

Tallei TE, Tumilaar SG, Niode NJ, Fatimawali, Kepel BJ, Idroes R, Effendi Y, Sakib SA, Emran TB. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: a molecular docking study. Scientifica (Cairo), 2020; 2020:6307457; https:// doi.org/10.1155/2020/6307457 https://doi.org/10.20944/preprints202004.0102.v1

Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, Psaltopoulou T, Gerotziafas G, Dimopoulos MA. Hematological findings and complications of COVID-19. Am J Hematol, 2020; 95(7):834-47; https://doi.org/10.1002/ajh.25829 https://doi.org/10.1002/ajh.25829

Uddin MJ, Xu S, Crews BC, Aleem AM, Ghebreselasie K, Banerjee S, Marnett LJ. Harmaline analogs as substrate-selective cyclooxygenase-2 inhibitors. ACS Med Chem Lett, 2020; 11(10):1881-5; https://doi.org/10.1021/acsmedchemlett.9b00555 https://doi.org/10.1021/acsmedchemlett.9b00555

Zhang H, Lei Y, Yuan P, Li L, Luo C, Gao R, Tian J, Feng Z, Nice EC, Sun J. ROS-mediated autophagy induced by dysregulation of lipid metabolism plays a protective role in colorectal cancer cells treated with gambogic acid. PLoS One, 2014; 9(5):1-14; https://doi.org/10.1371/ journal.pone.0096418 https://doi.org/10.1371/journal.pone.0096418

Zhang H, Zhou P, Wei Y, Yue H, Wang Y, Hu M, Zhang S, Cao T, Yang C, Li M, Guo G, Chen X, Chen Y, Lei M, Liu H, Zhao J, Peng P, Wang CY, Du R. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med, 2020; 172(9):629- 32; https://doi.org/10.7326/M20-0533 https://doi.org/10.7326/M20-0533

Article Metrics

1 Absract views 5 PDF Downloads 6 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required