In silico design and expression of anti-E1E2 CHIKV scFv in biotinylated form using Escherichia coli Origami B (DE3) for immunochromatographic detection of the Indonesian Chikungunya variant

Korry Novitriani Ari Hardianto Bevi Lidya Ade Rizki Ridwan Firdaus Bahti Alisjahbana Muhammad Yusuf Nur Akmalia Hidayati Toto Subroto Shabarni Gaffar   

Open Access   

Published:  Sep 04, 2022

DOI: 10.7324/JAPS.2022.121208
Abstract

Chikungunya is caused by the Chikungunya virus (CHIKV), which is transmitted to humans via the mosquitoes Aedes aegypti or Aedes albopictus. Infected individuals may develop temporary to permanent paralysis; thus, a rapid and accurate detection method is urgently required. The target antigen for the CHIKV antibody recognition is E1E2 glycoprotein which is involved in the attachment of CHIKV to the host cells. This study aimed to design an antiE1E2 CHIKV single-chain variable fragment (scFv) that specifically recognizes the Indonesian CHIKV variant for expression in a biotinylated form using Escherichia coli Origami B (DE3). The recombinant scFv was then applied to detect the E1E2 CHIKV protein by immunochromatography using a streptavidin-biotin system. The scFv protein structure was designed using the anti-E1E2 antigen-binding fragment template and then docked with African E1E2 CHIKV, and the molecular dynamics were simulated using Amber16. The scFv was expressed in fusion form with the biotin acceptor domain using E. coli Origami B (DE3). Biotinylated scFv with a molecular weight of 30 kDa was successfully expressed as characterized by SDS-PAGE, western blotting, and enzyme-linked immunosorbent assay. The immunochromatographic assay showed that anti-E1E2 CHIKV scFv could specifically recognize the E2 CHIKV protein indicated by the positive stains on the nitrocellulose paper.


Keyword:     scFv-BAD fusion protein Chikungunya rapid test immunochromatography


Citation:

Novitriani K, Hardianto A, Lidya B, Firdaus ARR, Alisjahbana B, Yusuf M, Hidayati NA, Subroto T, Gaffar S. In silico design and expression of anti-E1E2 CHIKV scFv in biotinylated form using Escherichia coli Origami B (DE3) for immunochromatographic detection of the Indonesian Chikungunya variant. J Appl Pharm Sci, 2022. https://doi.org/10.7324/JAPS.2022.121208

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Asai, T., Trinh, R., Ng, P. P., Penichet, M. L., Wims, L. A., Morrison, S. L. A., 2005. Human biotin acceptor domain allows site-specific conjugation of an enzyme to an antibody-avidin fusion protein for targeted drug delivery. Biomol. Eng. 21, 145-155. https://doi: 10.1016/j.bioeng.2004.10.001 https://doi.org/10.1016/j.bioeng.2004.10.001

Bach, H., Mazor, Y., Shaky, S., Shoham-Lev, A., Berdichevsky, Y., Gutnick, D. L., Benhar, I., 2001. Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single chain antibodies. J. Mol. Biol. 312, 79-93. https://doi: 10.1006/jmbi.2001.4914 https://doi.org/10.1006/jmbi.2001.4914

Bahadir E. B., Sezgintürk, M. K., 2016. Lateral flow assays: Principles, designs and labels. TrAC Trends in Analytical Chemistry. 82, 286-306. https://doi.org/10.1016/j.trac.2016.06.006 https://doi.org/10.1016/j.trac.2016.06.006

Burdino, E., Calleri, G., Caramello, P., Ghisetti, V., 2016. Unmet needs for a rapid diagnosis of Chikungunya virus infection. Emerg. Infect. Dis. 22, 1837-1839. https://doi:10.3201/eid2210.151784 https://doi.org/10.3201/eid2210.151784

Chattopadhaya, S., Tan, L., Yao, S., 2006. Strategies for site-specific protein biotinylation using in vitro, in vivo and cell-free systems: toward functional protein arrays. Nat Protoc. 1, 2386-2398. https://doi: 10.1038/nprot.2006.338 https://doi.org/10.1038/nprot.2006.338

Cho, B., Jeon, B. Y., Kim, J., Noh, J., Kim, J., Park, M., Park S., 2008. Expression and evaluation of Chikungunya virus E1 and E2 envelope proteins for serodiagnosis of Chikungunya virus infection. Yonsei Med. J. 49, 828-835. https:// doi: 10.3349/ymj.2008.49.5.828 https://doi.org/10.3349/ymj.2008.49.5.828

Enserink, M., 2006. Infectious diseases. Massive outbreak draws fresh attention to little-known virus. Science. 311, 1085. https://doi: 10.1126/science.311.5764.1085a https://doi.org/10.1126/science.311.5764.1085a

Fairhead, M., Howarth, M., 2015. Site-specific biotinylation of purified proteins using BirA. Methods Mol. Biol. 1266, 171-184. https://doi: 10.1007/978-1-4939-2272-7_12 https://doi.org/10.1007/978-1-4939-2272-7_12

Fields, W., Kielian, M., 2013. A key interaction between the alphavirus envelope proteins responsible for initial dimer dissociation during fusion. J. Virol. 87, 3774-3781. https:// doi: 10.1128/JVI.03310-12 https://doi.org/10.1128/JVI.03310-12

Fong, R. H., Banik, S. S., Mattia, K., Barnes, T., Tucker, D., Liss, N., Lu, K., Selvarajah, S., Srinivasan, S., Mabila, M., Miller, A., Muench, M. O., Michault, A., Rucker, J. B., Paes, C., Simmons, G., Kahle, K. M., Doranz, B. J., 2014. Exposure of epitope residues on the outer face of the chikungunya virus envelope trimer determines antibody neutralizing efficacy. J. Virol. 88,14364-14379. https:// doi: 10.1128/JVI.01943-14 https://doi.org/10.1128/JVI.01943-14

Froger, A., Hall, J. E., 2007. Transformation of plasmid DNA into E. coli using the heat shock method. J. Vis. Exp. 6, 253. https://doi: 10.3791/253 https://doi.org/10.3791/253

Ganesan, V. K., Duan, B., Reid, S. P., 2017. Chikungunya Virus: Pathophysiology, Mechanism, and Modeling. Viruses. 9, 368. https://doi: 10.3390/v9120368 https://doi.org/10.3390/v9120368

Green, N. M., 1975. Avidin. Adv. Prot. Chem. 29, 85-133. https://doi.org/10.1016/S0065-3233(08)60411-8 https://doi.org/10.1016/S0065-3233(08)60411-8

Gupta, V., Sudhakaran, I. P., Islam, Z., Vaikath, N. N., Hmila, I., Lukacsovich, T., Kolatkar, P. R., El-Agnaf, O. M. A., 2020. Expression, purification and characterization of α-synuclein fibrillar specific scFv from inclusion bodies. PLoS One. 15, 1-17. https://doi.org/10.1371/journal.pone.0241773 https://doi.org/10.1371/journal.pone.0241773

Harapan, H., Michie, A., Mudatsir, M. et al., 2019. Chikungunya virus infection in Indonesia: a systematic review and evolutionary analysis. BMC Infect Dis. 19, 243. https://doi.org/10.1186/s12879-019-3857-y https://doi.org/10.1186/s12879-019-3857-y

Hardianto, A., Yusuf, M., Liu, F., Ranganathan, S., 2017. Exploration of charge states of balanol analogues acting as ATP-competitive inhibitors in kinases, BMC Bioinformatics. 18, 572. https://doi: 10.1186/s12859-017-1955-7 https://doi.org/10.1186/s12859-017-1955-7

Hermanson, G., 2013. Bioconjugate Techniques. 3rd Edition. Elsevier. Ebook ISBN 9780123822406

Johnson, B. W., Russell, B. J., Goodman, C. H. 2016. Laboratory Diagnosis of Chikungunya Virus Infections and Commercial Sources for Diagnostic Assays. J. Infect. Dis. 214, S471-S474. https://doi: 10.1093/infdis/jiw274 https://doi.org/10.1093/infdis/jiw274

Keshvari, F., Bahram, M., Farhadi, K., 2016. Sensitive and selective colorimetric sensing of acetone based on gold nanoparticles capped with l?cysteine. JICS. 13, 1-6. https:// doi: 10.1007/s13738-016-0856-4 https://doi.org/10.1007/s13738-016-0856-4

Kim, B., 2017. Western Blot Techniques. Methods Mol. Biol.1606, 133-139. https://doi: 10.1007/978-1-4939-6990-6_9 https://doi.org/10.1007/978-1-4939-6990-6_9

Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., Plech, A., 2006. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B. 110, 15700-15707. https://doi.org/10.1021/jp061667w https://doi.org/10.1021/jp061667w

Kosasih, H., de Mast, Q., Widjaja, S., Sudjana, P., Antonjaya, U., Ma'roef, C., Riswari, S. F., Porter, K. R., Burgess, T. H., Alisjahbana, B., van der Ven, A., Williams, M., 2013. Evidence for endemic chikungunya virus infections in Bandung, Indonesia. PLoS negl. Trop. Dis. 7, e2483. https://doi: 10.1371/journal.pntd.0002483 https://doi.org/10.1371/journal.pntd.0002483

Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685. https://doi: 10.1038/227680a0 https://doi.org/10.1038/227680a0

Laras, K., Sukri, N. C., Larasati, R. P., Bangs, M. J., Kosim, R., et al., 2005. Tracking the re-emergence of epidemic chikungunya virus in Indonesia. Trans R Soc Trop. Med. Hyg 99: 128-141. https://doi: 10.1016/j.trstmh.2004.03.013 https://doi.org/10.1016/j.trstmh.2004.03.013

Levy, R., Weiss, R., Chen, G., Iverson, B. L., Georgiou, G., 2001. Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr. Purif. 23, 338-347. https://doi: 10.1006/persiapan.2001.1520 https://doi.org/10.1006/prep.2001.1520

Machado, M. R., Barrera, E. E., Klein, F., Sónora, M., Silva, S., Pantano, S., 2019. The SIRAH 2.0 Force Field: Altius, Fortius, Citius. J. Chem. Theory Comput. 15, 2719-2733. https://doi: 10.1021/acs.jctc.9b00006 https://doi.org/10.1021/acs.jctc.9b00006

Maynard, J., Georgiou, G., 2000. Antibody engineering. Annu. Rev. Biomed. Eng. 2, 339-376. https://doi: 10.1146/annurev.bioeng.2.1.339 https://doi.org/10.1146/annurev.bioeng.2.1.339

Norman, R. A., Ambrosetti, F., Bonvin, A. M. J. J. Colwell, L. J. Kelm, S., Kumar, S., Krawczyk, K., 2020. Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief. Bioinform. 21, 1549-1567. https://doi: 10.1093/bib/bbz095 https://doi.org/10.1093/bib/bbz095

Okabayashi, T., Sasaki, T., Masrinoul, P., Chantawat, N., Yoksan, S., Nitatpattana, N., Chusri, S., Vargas, R. E. M., Grandadam, M., Brey, P. T., Soegijanto, S., Mulyantno, K. C., Churrotin, S., Kotaki, T., Faye, O., Faye, O., Sow, A., Sall, A. A., Puiprom, O., Chaichana, P., Kurosu, T., Kato, S., Kosaka, M., Ramasoota, P., Ikuta, K., 2015. Detection of chikungunya virus antigen by a novel rapid immunochromatographic test. J. Clin. Microbiol. 53, 382-388. https://doi: 10.1128/JCM.02033-14 https://doi.org/10.1128/JCM.02033-14

Prat, C. M., Flusin, O., Panella, A., Tenebray, B., Lanciotti, R., Leparc-Goffart, I., 2014. Evaluation of commercially available serologic diagnostic tests for chikungunya virus. Emerg Infect Dis. 20, 2129-2132. https://doi: 10.3201/eid2012.141269 https://doi.org/10.3201/eid2012.141269

Rosano, G. L., Ceccarelli, E. A., 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172. https://doi.org/10.3389/fmicb.2014.00172 https://doi.org/10.3389/fmicb.2014.00172

Santala V., Lamminmaki, U., 2004. Production of a biotinylated single-chain antibody fragment in the cytoplasm of Escherichia coli. J. Immunol. Methods. 284, 165- 175. https://doi: 10.1016/j.jim.2003.10.008 https://doi.org/10.1016/j.jim.2003.10.008

Sebastian, C., William, H., 2016. Immunochromatografi: Format and Aplications. IAJPR. 6 (07).

Solignat, M., Gay, B., Higgs, S., Briant, L., Devaux, C., 2009. Replication cycle of chikungunya: a re-emerging arbovirus. Virology. 393, 183-197. https://doi: 10.1016/j.virol.2009.07.024 https://doi.org/10.1016/j.virol.2009.07.024

Sun, S., Xiang, Y., Akahata, W., Holdaway, H., Pal, P., Zhang, X., Diamond, M. S., Nabel, G. J., Rossmann, m. G., 2013. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. eLife. 2, e00435. https://doi.org/10.7554/eLife.00435.001 https://doi.org/10.7554/eLife.00435.001

Venturi, M., Seifert, C., Hunte, C., 2002. High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. J. Mol. Biol. 315, 1-8. https://doi: 10.1006/jmbi.2001.5221 https://doi.org/10.1006/jmbi.2001.5221

Voss, J. E., Vaney, M. C., Duquerroy, S., Vonrhein, C., Blanc, C. G., Crublet, E., Thompson, A., Bricogne, G., Rey, F. A., 2010. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature. 468, 709-714. https://doi: 10.1038/nature09555 https://doi.org/10.1038/nature09555

Weaver, S.C., Lecuit, M., 2015. Chikungunya virus and the global spread of a mosquito-borne disease. N. Engl. J. Med. 372, 1231-1239. https://doi: 10.1056/NEJMra1406035 https://doi.org/10.1056/NEJMra1406035

Yamashita, T., 2018. Toward rational antibody design: recent advancements in molecular dynamics simulations. Int. Immunol. 30, 133-140. https://doi.org/10.1093/intimm/dxx077 https://doi.org/10.1093/intimm/dxx077

Zhang, J. L., Gou, J. J., Zhang, Z. Y., Jing, Y. X., Zhang, L., Guo, R., Yan, P., Cheng, Y. L., Niu, B., Xie, J., 2006. Screening and evaluation of human single-chain fragment variable antibody against hepatitis B virus surface antigen. Hepatobiliary Pancreat. Dis. Int. 5, 237-241.

Article Metrics

1 Absract views 2 PDF Downloads 3 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required
Similar Articles