In vitro antiplasmodial activities of the fractions of Hyrtios reticulatus sponge extract

Mahfur Mahfur Indah Purwantini Subagus Wahyuono Erna Prawita Setyowati   

Open Access   

Published:  Jun 13, 2022

Abstract

The discovery of new compounds sourced from nature, which are active against malaria, is very important. Sponge Hyrtios reticulatus from Bali, Indonesia, is one of the examples that can be investigated. The sponge samples were extracted using ethanol, followed by trituration fractionation and vacuum liquid chromatography to get the samples. The nine samples obtained, their main extracts, chloroform fraction, residue, and SF 1–9 were tested for activities against Plasmodium falciparum variants 3D7 and FCR3. The results showed that all samples had a moderate antiplasmodial activity, where the most active sample was SF 3 with an IC50 of 12.98 ± 1.88 µg/ml on 3D7 and 19.81 ± 0.75 µg/ml on FCR3. This study discovered that H. reticulatus sponges had antiplasmodial activities and could be further used as a guide to finding a new antiplasmodial compound.


Keyword:     Hyrtios reticulatus antiplasmodial malaria 3D7 FCR3.


Citation:

Mahfur M, Purwantini I, Wahyuono S, Setyowati EP. In vitro antiplasmodial activities of the fractions of Hyrtios reticulatus sponge extract. J Appl Pharm Sci, 2022. Online First.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Anjum K, Abbas SQ, Shah SAA, Akhter N, Batool S, Hassan SSU. Marine sponges as a drug treasure. Biomol Therap, 2016; 24:347-62. https://doi.org/10.4062/biomolther.2016.067

Bourguet-Kondracki ML, Lacombe F, Guyot M. Methanol adduct of puupehenone, a biologically active derivative from the marine sponge Hyrtios species. J Nat Prod, 1999; 62:1304-5. https://doi.org/10.1021/np9900829

Capela R, Moreira R, Lopes F. An overview of drug resistance in protozoal diseases. Int J Mol Sci, 2019; 20(22):5748. https://doi.org/10.3390/ijms20225748

De Forges R. Compendium of marine species from New Caledonia, 2nd edition, 2007.

De Voogd NJ. An assessment of sponge mariculture potential in the Spermonde Archipelago, Indonesia. J Mar Biol Assoc UK, 2007; 87:1777-84. https://doi.org/10.1017/S0025315407057335

Fattorusso E, Taglialatela-Scafati O. Marine antimalarials. Mar Drugs, 2009; 7:130-52. https://doi.org/10.3390/md7020130

Fattorusso E, Taglialatela-Scafati O. The contribution of marine chemistry in the field of antimalarial research. Royal Soc Chem, 2012; 374-90. https://doi.org/10.1039/9781849734950-00374

Hikmawan BD, Wahyuono S, Setyowati EP, Marine sponge compounds with antiplasmodial properties: focus on in vitro study against Plasmodium falciparum. J Appl Pharm Sci, 2018; 8:001-11.

Hyde JE. Drug-resistant malaria - an insight. FEBS J, 2007; 274:4688-98. https://doi.org/10.1111/j.1742-4658.2007.05999.x

Imada K, Sakai E, Kato H, Kawabata T, Yoshinaga S. Reticulatins A and B and hyrtioreticulin F from the marine sponge Hyrtios reticulatus. Tetrahedron, 2013; 69:7051-5. https://doi.org/10.1016/j.tet.2013.06.043

Inman WD, Bray WM, Gassner NC, Lokey RS, Tenney K, Shen YY. A β-carboline alkaloid from the Papua New Guinea marine sponge Hyrtios reticulatus. J Nat Prod, 2010; 73:255-7. https://doi.org/10.1021/np9005426

Jensen JB, Trager W. Plasmodium falciparum in culture: use of outdated erythrocytes and description of the candle jar method. J Parasitol, 1977; 63:883-6. https://doi.org/10.2307/3279900

Ju E, Latif A, Kong CS, Seo Y, Lee YJ, Dalal SR. Antimalarial activity of the isolates from the marine sponge Hyrtios erectus against the chloroquine-resistant Dd2 strain of Plasmodium falciparum. Z Naturforsch C J Biosci, 2018; 73:397-400. https://doi.org/10.1515/znc-2018-0025

Kamaraj C, Rahuman AA, Roopan SM, Bagavan A, Elango G, Zahir AA. Bioassay-guided isolation and characterization of active antiplasmodial compounds from Murraya koenigii extracts against Plasmodium falciparum and Plasmodium berghei. Parasitol Res, 2014; 113:1657-72. https://doi.org/10.1007/s00436-014-3810-3

Kenangalem E, Poespoprodjo JR, Douglas NM, Burdam FH, Gdeumana K, Chalfein F, Prayoga, Thio F, Devine A, Marfurt J, Waramori G, Yeung S, Noviyanti R, Penttinen P, Bangs MJ, Sugiarto P, Simpson JA, Soenarto Y, Anstey NM, Price RN. Malaria morbidity and mortality following introduction of a universal policy of artemisinin-based treatment for malaria in Papua, Indonesia : a longitudinal surveillance study. Plos Med, 2019; 16(5):e1002815. https://doi.org/10.1371/journal.pmed.1002815

Kirsch G, Köng GM, Wright AD, Kaminsky R. A new bioactive sesterterpene and antiplasmodial alkaloids from the marine sponge Hyrtios cf. erecta. J Nat Prod, 2000; 63:825-9. https://doi.org/10.1021/np990555b

Kotepui M, Kotepui KU, De Jesus Milanez G, Masangkay FR. Plasmodium spp. mixed infection leading to severe malaria: a systematic review and meta-analysis. Sci Rep, 2020; 10:1-12. https://doi.org/10.1038/s41598-020-68082-3

Mahfur M, Setyowati EP, Wahyuono S, Purwantini I. Sponge Hyrtios reticulatus: phytochemicals and bioactivities. Res J Pharm Technol, 2022: 15(6).

Mayer AMS, Rodr AD, Taglialatela-Scafati O, Fusetani N. Marine pharmacology in 2014-2015: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and anthelmintic activities; affecting the immune and nervous systems, and other miscellaneous. Mar Drugs, 2020; 18:1-61. https://doi.org/10.3390/md18010005

Molina-Cruz A, DeJong RJ, Ortega C, Haile A, Abban E, Rodrigues J, Barillas-Mury C. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes. Proc Natl Acad Sci U S A, 2012; 109(28):1-6. https://doi.org/10.1073/pnas.1121183109

Nogueira CR, Lopes LMX. Antiplasmodial natural products. Molecules, 2011; 16:2146-90. https://doi.org/10.3390/molecules16032146

Rosenthal PJ. Antimalarial drug discovery: old and new approaches. J Exper Biol, 2003; 206:3735-44. https://doi.org/10.1242/jeb.00589

Setyowati EP, Jenie UA, Sudarsono, Kardono LBS, Rahmat R. Identification of cytotoxic constituent of Indonesian sponge Kaliapsis sp. (Bowerbank). J Pak Biol Sci, 2008; 11(22);2560-6. https://doi.org/10.3923/pjbs.2008.2560.2566

Setyowati EP, Jenie UA, Sudarsono, Kardono LBS, Rahmat R. Theonellapeptolide Id: structure identification of cytotoxic constituent from Kaliapsis sp. Sponge (Bowerbank) collected from West Bali Sea Indonesia. J Biol Sci, 2009; 9(1):29-36. https://doi.org/10.3923/jbs.2009.29.36

Shady NH, El-Hossary EM, Fouad MA, Gulder TAM, Kamel MS, Abdelmohsen UR. Bioactive natural products of marine sponges from the genus Hyrtios. Molecules, 2017; 22:781-802. https://doi.org/10.3390/molecules22050781

Tajuddeen N, Van Heerden FR. Antiplasmodial natural products: an update. Malar J, 2019; 18:1-62. https://doi.org/10.1186/s12936-019-3026-1

World Health Organization. Global Technical Strategy For Malaria 2016-2030. World Health Organization, Geneva, Switzerland, 2021.

Yamanokuchi R, Imada K, Miyazaki M, Kato H, Watanabe T, Watanabe M. Hyrtioreticulins A-E, indole alkaloids inhibiting the ubiquitinactivating enzyme, from the marine sponge Hyrtios reticulatus. Bioorg Med Chem, 2012; 20:4437-42. https://doi.org/10.1016/j.bmc.2012.05.044

Article Metrics

2 Absract views 0 PDF Downloads 2 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required