Overexpression of soluble recombinant Thermus thermophilus (Tth) DNA polymerase in Escherichia coli BL21(DE3) using an MBP fusion tag as a solubility enhancer

Iman Permana Maksum Diandra Firdiani Utami Eva Annisa Nurhakim Yosua Sriwidodo Muhammad Yusuf Muhammad Fadhlillah Ryan Adibagus Haryanto   

Open Access   

Published:  Jun 13, 2022


Tth DNA polymerase is a thermostable enzyme derived from Thermus thermophilus and acts as a DNA polymerase and reverse transcriptase. Escherichia coli is used for large-scale enzyme production because of its cost-effectiveness, rapid growth, and increased recombinant protein expression, but inclusion bodies can be formed during intracellular protein expression, so the maltose-binding protein (MBP) tag was used to improve the expression of soluble protein. The Tth DNA polymerase gene was optimized to have a codon adaptive index of 1.00% and 60.64% Guanine and Cytosine (GC) content, then inserted into E. coli BL21(DE3), which harbors pD861-His-Tth DNA polymerase and pD861-MBP-Tth DNA polymerase. The induction and postinduction incubation time were optimized to express pD861-His-Tth DNA polymerase and pD861-MBP-Tth DNA polymerase in the soluble form. The total protein concentration of His-Tth DNA polymerase is 3.9095 mg/ml while for MBP-Tth DNA polymerase it is 33.541 mg/ml; protein levels after optimization based on densitometry analysis show MBP-Tth DNA polymerase is seven times higher than His-Tth DNA polymerase. This indicates that MBP tag fusion increases the amount of soluble protein produced.

Keyword:     Escherichia coli BL21(DE3) pD861-His pD861-MBP RTPCR Tth DNA polymerase.


Maksum IP, Utami DF, Nurhakim EA, Yosua Y, Yusuf M, Fadhlillah M, Haryanto RA. Overexpression of soluble recombinant Thermus thermophilus (Tth) DNA polymerase in Escherichia coli BL21(DE3) using an MBP fusion tag as a solubility enhancer. J Appl Pharm Sci, 2022. Online First.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text


Ahmad I, Nawaz N, Darwesh NM, Rahman SU, Mustafa MZ, Khan SB, Patching SG. Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expr Purif, 2018; 144:12-8. https://doi.org/10.1016/j.pep.2017.11.005

Auer T, Landre PA. Properties of the 5′→3′ exonuclease/ ribonuclease H activity of Thermus thermophilus DNA polymerase. Biochemistry, 1995; 34(15):4994-5002. https://doi.org/10.1021/bi00015a010

Chae YK, Kim SH, Markley JL. Relationship between recombinant protein expression and host metabolome as determined by two-dimensional NMR spectroscopy. PLoS One, 2017; 12(5):1-12. https://doi.org/10.1371/journal.pone.0177233

Choi JH, Lee SY. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol, 2004; 64(5):625-35. https://doi.org/10.1007/s00253-004-1559-9

Dabrowski S, Kur J. Recombinant His-tagged DNA polymerase. I. Cloning, purification and partial characterization of Thermus thermophilus recombinant DNA polymerase. Acta biochimica Polonica. 1998; 45:653-660. https://doi.org/10.18388/abp.1998_4258

Guo Y, Yu M, Jing N, Zhang S. Production of soluble bioactive mouse leukemia inhibitory factor from Escherichia coli using MBP tag. Protein Expression and Purification. 2018; 150: 86-91. https://doi.org/10.1016/j.pep.2018.05.006

Fazaeli A, Golestani A, Lakzaei M, Varaei SSR, Aminian M. Expression optimization, purification, and functional characterization of cholesterol oxidase from Chromobacterium sp. DS1. PLoS One, 2019; 14(2):1-15. https://doi.org/10.1371/journal.pone.0212217

Gomes A, Byregowda S, Veeregowda B, Vinayagamurthy BA. An overview of heterologous expression host systems for the production of recombinant proteins. Adv Anim Vet Sci, 2016; 4(4):346-56. https://doi.org/10.14737/journal.aavs/2016/4.7.346.356

Jang CW, Magnuson T. A novel selection marker for efficient DNA cloning and recombineering in E. coli. PLoS One, 2013; 8(2):1-7. https://doi.org/10.1371/journal.pone.0057075

Jeong H, Barbe V, Lee CH, Vallenet D, Yu DS, Choi SH, Couloux A, Lee SW, Yoon SH, Cattolico L, Hur CG, Park HS, Ségurens B, Kim SC, Oh TK, Lenski RE, Studier FW, Daegelen P, Kim JF. Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J Mol Biol, 2009; 394(4):644-52. https://doi.org/10.1016/j.jmb.2009.09.052

Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: roadblocks and reinforcements. Int J Biol Macromol, 2018; 106:803-22. https://doi.org/10.1016/j.ijbiomac.2017.08.080

Liu X, Liu L, Wang Y, Wang X, Ma Y, Li Y. The study on the factors affecting transformation efficiency of E. coli competent cells. Pak J Pharm Sci, 2014; 27(3):679-84.

Maksum IP, Lestari A, Fauzia RP, Rachman DS, Soedjanaatmadja UMS. Escherichia coli BL21(DE3) expression system using TorA signal peptide for recombinant human albumin (rHA) secretion. Int J Res Pharm Sci, 2019; 10(4):3319-24. https://doi.org/10.26452/ijrps.v10i4.1640

Maksum IP, Utama E, Sriwidodo, Subroto T. Extracellular secretion of recombinant human epidermal growth factor by using trimethylamine N-Oxide reductase a (TORA) signal peptide in escherichia coli BL21 (DE3). Journal of Pharmaceutical Sciences and Research. 2017; 9(6):1007-1016.

Moreno R, Haro A, Castellanos A, Berenguer J. Highlevel overproduction of his-tagged Tth DNA polymerase in Thermus thermophilus. Appl Environ Microbiol, 2005; 71(1):591-3. https://doi.org/10.1128/AEM.71.1.591-593.2005

Myers TW, Gelfand DH. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry, 1991; 30(31):7661-6. https://doi.org/10.1021/bi00245a001

Noi NV, Chung YC. Optimization of expression and purification of recombinant S1 domain of the porcine epidemic diarrhea virus spike (PEDV- S1) protein in Escherichia coli. Biotechnol Biotechnol Equip, 2017; 31(3):619-29. https://doi.org/10.1080/13102818.2017.1308231

Parret AH, Besir H, Meijers R. Critical reflections on synthetic gene design for recombinant protein expression. Curr Opin Struct Biol, 2016; 38:155-62. https://doi.org/10.1016/j.sbi.2016.07.004

Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res, 2007; 35:126-31. https://doi.org/10.1093/nar/gkm219

Raran-Kurussi S, Waugh DS. The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated. PLoS One, 2012; 7(11):1-10. https://doi.org/10.1371/journal.pone.0049589

Silaban S, Gaffar S, Simorangkir M, Maksum IP, Subroto T. Construction and optimization of prethrombin-2 human genes in E. coli for the production of active thrombin. J Phys Conf Ser, 2019; 1374:012047. https://doi.org/10.1088/1742-6596/1374/1/012047

Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Factories, 2015; 14(1):1-10. https://doi.org/10.1186/s12934-015-0222-8

Sriwidodo S, Maksum IP, Riswanto N, Rostinawati T, Subroto T. Extracellular secretion recombinant of human epidermal growth factor (hEGF) using pectate lyase B (PelB) signal peptide in Escherichia coli BL21 (DE3). Int J Res Pharm Sci, 2017; 8:33-40.

Sriwidodo S, Subroto T, Maksum IP, Wathoni N, Rostinawati T, Ulya H. Optimization of secreted recombinant human epidermal growth factor production using pectate lyase B from Escherichia coli BL21(DE3) by central composite design and its production in high cell density culture. J Pharm Bioallied Sci, 2019; 11(Suppl 4):S562-6. https://doi.org/10.4103/jpbs.JPBS_207_19

Su Z, Huang Y, Zhou Q, Wu Z, Wu X, Zheng Q, Ding C, Li X. High-level expression and purification of human epidermal growth factor with SUMO fusion in Escherichia coli. Protein Peptide Lett, 2006; 13(8):785-92. https://doi.org/10.2174/092986606777841280

Tripathi NK. Production and purification of recombinant proteins from Escherichia coli. ChemBioEng Rev, 2016; 3(3):116-33. https://doi.org/10.1002/cben.201600002

Wegerer A, Sun T, Altenbuchner J. Optimization of an E. coli L-rhamnose-inducible expression vector: test of various genetic module combinations. BMC Biotechnol, 2008; 8:1-12. https://doi.org/10.1186/1472-6750-8-2

Yosua Y, Melati R, Sriwidodo S, Maksum IP. Expression of human epidermal growth factor using Ssp DnaB mini-intein as fusion partner in Escherichia coli BL21(DE3). J Appl Pharm Sci, 2021; 11(04):40-5. https://doi.org/10.7324/JAPS.2021.110406

Article Metrics

1 Absract views 0 PDF Downloads 1 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required
Similar Articles