Abbot WS. A method of computing the effectiveness of an insecticide. J Econ Entomol, 1925; 18:265–7.https://doi.org/10.1093/jee/18.2.265a | | Ahmad R, Al-Shorgani NN, Hamid AA, Yusoff WMW, Daud F. Optimization of medium components using response surface methodology (RSM) for mycelium biomass and exopolysaccharide production by Lentinus squarrosulus. Adv Biosci Biotechnol, 2013; 4:1079–85.https://doi.org/10.4236/abb.2013.412144 | | | Box GEP, Behnken DW. Some new three level designs for the study of quantitative variables. Techno Metrics, 1960; 2:455–75.https://doi.org/10.1080/00401706.1960.10489912 | | | Brammacharry U, Paily K. Chitinase like activity of metabolites of Pseudomonas fluorescens Migula on immature stages of the mosquito, Culex quinquefasciatus (Diptera: Culicidae). Afr J Microbiol Res, 2012; 6:2718–26.https://doi.org/10.5897/AJMR11.1270 | | | Caldas C, Cherqui A, Pereira A, Simões N. Purification and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immunosuppression. Appl Environ Microbiol, 2002; 68:1297–304.https://doi.org/10.1128/AEM.68.3.1297-1304.2002 | | | Chandran R, Azeez PA. Outbreak of dengue in Tamil Nadu, India. Curr Sci India, 2015; 109:171–6. | | | Dans AL, Dans LF, Lansang MAD, Silvestre MAA, Guyatt GH. Controversy and debate on dengue vaccine series-paper 1: review of a licensed dengue vaccine: inappropriate subgroup analyses and selective reporting may cause harm in mass vaccination programs. J Clin Epidemiol, 2018; 95:137–9.https://doi.org/10.1016/j.jclinepi.2017.11.019 | | | Fang XL, Feng JT, Zhang WG, Wang YH, Zhang X. Optimization of growth medium and fermentation conditions for improved antibiotic activity of Xenorhabdus nematophila TB using a statistical approach. Afr J Biotechnol, 2010; 9:8068–77.https://doi.org/10.5897/AJB09.1939 | | | Fattah AYR, Soliman NA, Gaballa AA, Sary SA, Ei- Diwany AI. Lipase production from novel thermophilic Bacillus sp: application of Plackett Burman design for evaluating culture conditions affecting enzyme formation. Acta Microbiol Pol, 2002; 51:353–66. | | | Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandao GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL. Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta, 2007; 597:179–86.https://doi.org/10.1016/j.aca.2007.07.011 | | | Forst S, Dowds B, Boemare NE, Stackebrandt E. Xenorhabdus spp. and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol, 1997; 51:47–72.https://doi.org/10.1146/annurev.micro.51.1.47 | | | Fukruksa C, Yimthin T, Suwannaroj M, Muangpat P, Tandhavanant S, Thanwisai A, Vitta A. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti. Parasit Vectors, 2017; 10:440.https://doi.org/10.1186/s13071-017-2383-2 | | | Herbert EE, Goodrich-Blair H. Friend and foe: the two faces of Xenorhabdus nematophila. Nat Rev Microbiol, 2007; 5:634–46.https://doi.org/10.1038/nrmicro1706 | | | Huang YJS, Higgs S, Vanlandingham DL. Biological control strategies for mosquito vectors of arboviruses. Insects, 2017; 8:21.https://doi.org/10.3390/insects8010021 | | | Khandelwal P, Bhatnagar NB. Insecticidal Activity Associated with the Outer Membrane Vesicles of Xenorhabdus nematophilus. Appl Environ Microbiol, 2003; 69:2032–7.https://doi.org/10.1128/AEM.69.4.2032-2037.2003 | | | Khuri AI, Mukhopadhyay S. Response surface methodology. Comput Stat, 2010; 2:128–49.https://doi.org/10.1002/wics.73 | | | Kumar P, Singh S, Dutta D, Chaudhuri S, Ganguly S, Nain L. Statistical optimization of media components for production of fibrinolytic alkaline metalloproteases from Xenorhabdus indica KB-3. Biotechnol Res Int, 2014; Article ID 293434:11. | | | Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem, 1961; 193:265–75. | | | Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, New Jersey, 2009. | | | Owuama CI. Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes. World J Microbiol Biotechnol, 2001; 17:505–15.https://doi.org/10.1023/A:1011916021378 | | | Plackett RL, Burman JP. The design of optimum multifactorial. Biometrika, 1946; 33:305–25.https://doi.org/10.1093/biomet/33.4.305 | | | Seccacini E, Lucia A, Harburguer L, Zerba E, Licastro S, Masuh H. Effectiveness of pyriproxyfen and diflubenzuron formulations as larvicide against Aedes aegypti. J Am Mosq Control Assoc, 2008; 24:398–403.https://doi.org/10.2987/5697.1 | | | Silva Odd, Prado GR, Silva JLRd,Silva CE, Costa Md, Heermann R. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae). Parasitol Res, 2013; 112:2891–6.https://doi.org/10.1007/s00436-013-3460-x | | | Stowe RA, Mayer RP. Efficient screening of process variables. Ind Eng Chem, 1966; 56:36–40.https://doi.org/10.1021/ie50674a007 | | | Ramasamy B, Nadarajah VD, Soong ZK, Lee HL, Mohammed SM. A preliminary study of the bioactivity of vegetative proteins extracted from Malasyian Bacillus thurinjigiensis isolates. Trop Biomed, 2008; 25:64–74. | | | Walia S, Sharma K, Ganguli S. Entomopathogenic nematode-bacterium complex derived novel antibiotics and their pest control properties. In proceedings of short term National Training Course entitled "Advanced Techniques for Exploiting the ENBI Complexes (Entomopathogenic Nematodes-bacterial symbionts and the Insect hosts) for Biomanagement of Insect Pests of Crops, Indian Agricultural Research Institute, India, 2011. | | | Wang YH, Li YP, Zhang Q, Zhang X. Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization. Bioresour Technol, 2008; 99:1708–15.https://doi.org/10.1016/j.biortech.2007.03.053 | | | Yang XF, Yang HW, Jian H, Liu Z. Effect of fermentation conditions on antibiotic production of Xenorhabdus nematophilus. Chin Microbial, 2001; 28:12–6. | | |
|