Research Article | Volume: 8, Issue: 8, August, 2018

Production and characterization of exopolysaccharide from marine Bacillus sp. MSHN2016 with studying its effect on isoniazid/ rifampicin-induced hepatic and renal toxicities in rats

Manal S. Selim Sahar S. Mohamed Mohsen M. Asker Abeer A.A. Salama Heba M.I Abdallah Noha N. Yassen   

Open Access   

Published:  Aug 31, 2018

DOI: 10.7324/JAPS.2018.8801
Abstract

Exopolysaccharides (EPSs) are bioactive natural products used in different applications. A preliminary chemical analysis of EPSMSHN indicated that the monosaccharides were arabinose, xylose, glucose and glucuronic acid with a relative ratio of 1: 1: 2: 1, respectively, with a weight average molecular weight (Mw) of 5.50 × 105 g/mol and a number average molecular weight (Mn) of 3.45 × 105 g/mol. INH/RIF deteriorated hepatic and renal functions through decreased hepatic and renal GSH and increasing MDA contents that associated with hepatocellular apoptosis as well as degeneration and fibrosis in many tubules. The treatment with EPSMSHN at different doses (50 and 100 mg/kg) corrected all previously mentioned INH/RFP-induced changes. In conclusion, EPSMSHN at both doses protected from the hepatic and renal toxicity induced by INH/RFP through its antioxidant and antifibrotic influence.


Keyword:     Exopolysaccharide Bacillus sp. isoniazid/rifampicin hepatic and renal toxicity.


Citation:

Selim MS, Mohamed SS, Asker MM, Salama AAA, Abdullah HMI, Yassen NN. Production and characterization of exopolysaccharide from marine Bacillus sp. MSHN2016 with studying its effect on isoniazid/rifampicin-induced hepatic and renal toxicities in rats. J App Pharm Sci, 2018; 8(08): 001-011.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Al-Nahas MO, Darwish MM, Ali AE, Amin MA. Characterization of an exopolysaccharide-producing marine bacterium, isolate Pseudoalteromonas sp. AM. Afr J Microbiol Res, 2011; 5(22):3823- 3831.https://doi.org/10.5897/AJMR11.757

Asker MM, Shawky BT. Structural characterization and antioxidant activity of an extracellular polysaccharide isolated from Brevibacterium otitidis BTS44. Food Chem, 2010; 123:315-320.https://doi.org/10.1016/j.foodchem.2010.04.037

Bancroft JD, Gamble M. 2008. Hematoxlyin and eosin, connective tissue and stain, carbohydrates, Chapters 9-11. In: Theory and practice in histological techniques. 6th ed. Philadelphia, PA: Churchill Livingstone/ Elsevier, 121-186.

Cappuccino JG, Sherman N. 2004. Microbiology laboratory manual. Pearson Education Inc. New Delhi.

Casillo C, Lanzetta R, Parrilli M, Corsaro M. Exopolysaccharides from marine and marine extremophilic bacteria: structures, properties, ecological roles and applications. Mar Drugs, 2018; 16:1-34.

Cederbaum AI. Cytochrome P450 2E1-dependent oxidant stress and upregulation of anti-oxidant defense in liver cells. J Gastroenterol Hepatol, 2006; 21:S22-S25.https://doi.org/10.1111/j.1440-1746.2006.04595.x

Chen X, Xu J, Zhang C, Yu T, Wang H. The protective effects of ursodeoxycholic acid on isoniazid plus rifampicin induced liver injury in mice. Eur J Pharmacol, 2012; 659:53-60.https://doi.org/10.1016/j.ejphar.2011.03.007

Desoukey SY, El Kady WM, Salama AAA, Hagag EG, El- Shenawy SM, El-Shanawany MA. Hepatoprotection and antioxidant activity of Gazania longiscapa and G. rigens with the isolation and quantitative analysis of bioactive metabolites. Int J Pharmacogn and Phytochem Res, 2016; 8(7):1121-1131.

Dodgson KS, Price RG. A note on the determination of the ester sulfate content of sulfated polysaccharides. Biochem J, 1962; 84:106-110.https://doi.org/10.1042/bj0840106

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys, 1959; 82:70-77.https://doi.org/10.1016/0003-9861(59)90090-6

El-Sayed OH, Ismail SA, Ahmed YM, Abd El-Samei M, Asker MM. Studies on the production of sulfated polysaccharide by locally isolated bacteria. Egypt Pharm J, 2007; 4:439-452.

Fang BW, Liu P, Xu LM, Li FH, Gu HT, Wang HN, Hu YY, Liu C. The effect of cordyceps polysaccharides on liver fibrosis induced by BSA. Chin. J Tradit Med Sci Tech, 1997; 4:103-105.

Filisetti-Cozzi, TMC, Carpita C. Measurement of uronic acids without interference from neutral sugars. Anal Biochem, 1991; 197:157- 162.https://doi.org/10.1016/0003-2697(91)90372-Z

Ghoneim MA, Hassan AI, Mahmoud MG, Asker MS, Effect of polysaccharide from Bacillus subtilis sp. on cardiovascular diseases and atherogenic indices in diabetic rats. BMC Complement Alternat Med, 2016; 16:1-12.https://doi.org/10.1186/s12906-016-1093-1

Hashmi N, Muhammad F, Javed I, Khan JA, Muhammad MZ, Khaliq T, Aslam B. Nephroprotective effects of Ficus religiosa Linn. (Peepal) stem bark against isoniazid and rifampicin induced nephrotoxicity in albino rabbits. Pak Vet J, 2013; 33(3):330-334.

Hayakawa M, Nonomura H. Vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol, 1987; 65:501- 509.https://doi.org/10.1016/0385-6380(87)90108-7

Jensen PR, Fenical W. Strategies for the discovery of secondary metabolites from marine bacteria: Ecological perspectives. Annu Rev Microbiol, 1994; 48:559-584.https://doi.org/10.1146/annurev.mi.48.100194.003015

Jun HI, Lee H, Song GS, Kim YS. Characterization of the pectic polysaccharide from pumpkin peel. LWT - Food Sci Technol, 2006; 39:554- 556.https://doi.org/10.1016/j.lwt.2005.03.004

Kaplowitz N. Drug induced liver injury. Clin Infect Dis, 2004; 38:S44-S48.https://doi.org/10.1086/381446

Kaplowitz N. Drug-induced liver disorders: implications for drug development and regulation. Drug Safety, 2001; 24:483-490.https://doi.org/10.2165/00002018-200124070-00001

Kichemazova NV, Bukharova EN, Selivanov NY, Bukharova IA, Karpunina LV. Preparation, properties and potential applications of exopolysaccharides from bacteria of the genera Xanthobacter and Ancylobater. Appl Biochem Microbiol, 2017; 53:325-330.https://doi.org/10.1134/S0003683817030073

Kim JH, Nam WS, Kim SJ, Kwon OK, Seung EJ, Jo JJ, Shresha R, Lee TH, Jeon TW, Ki SH, Lee S. Mechanism investigation of rifampicin-induced liver injury using comparative toxicoproteomics in Mice. Int J Mol Sci, 2017; 18(7):1417-1427.https://doi.org/10.3390/ijms18071417

Laurienzo P. Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs, 2010; 8:2435-2465.https://doi.org/10.3390/md8092435

Li FH, Liu P, Xiong WG, Xu WF. Effects of cordyceps polysaccharide on liver fibrosis induced by DMN in rats. China J Chin Mater Med, 2006; 31:1968-1971.

Moure A, Dominguez H, Parajo JC. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem, 2006; 41:447-456.https://doi.org/10.1016/j.procbio.2005.07.014

Muthukumar T, Jayakumar M, Fernando EM, Muthusethupathi MA. Acute renal failure due to rifampicin: a study of 25 patients. Am J Kidney Dis, 2002; 40(4):690-696.https://doi.org/10.1053/ajkd.2002.35675

Nanashima K, Mawatari T, Tahara N, Higuchi N, Nakaura A. Genetic variants in antioxidant pathway: risk factors for hepatotoxicity intuberculosis patients. Tuberculosis. 2012; 92:253-259.https://doi.org/10.1016/j.tube.2011.12.004

Obogwu MB, Akindele AJ, Adeyemi OO. Hepatoprotective and in vivo antioxidant activities of the hydroethanolic leaf extract of Mucuna pruriens (Fabaceae) in antitubercular drugs and alcohol models. Chin J Nat Med, 2014; 12(4):273-283.https://doi.org/10.1016/S1875-5364(14)60054-6

Ohkawa H, Ohishi N, Yagi K, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 1979; 95:351-358.https://doi.org/10.1016/0003-2697(79)90738-3

Pessayre D, Berson A, Fromenty B, Mansouri A. Mitochondria in steatohepatitis. Semin Liver Dis, 2001; 21:57-69.https://doi.org/10.1055/s-2001-12929

Ray B. Polysaccharides from Enteromorpha campressa: isolation, purification and structural features. Carbohydr Polym, 2006; 66:408-416.https://doi.org/10.1016/j.carbpol.2006.03.027

Reed JC. Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med, 2001; 7:314-319.https://doi.org/10.1016/S1471-4914(01)02026-3

Robin MA, Le Roy M, Descatoire V, Pessayre D. Plasma membrane cytochromes-P450 as neoantigens and autoimmune targets in drug-induced hepatitis. J Hepatol, 1997; 26:23-30.https://doi.org/10.1016/S0168-8278(97)82329-X

Saad EI, El-Gowilly SM, Sherhaa MO, Bistawroos AE. Role of oxidative stress and nitric oxide in the protective effects of α-lipoic acid and aminoguanidine against isoniazid-rifampicin-induced hepatotoxicity in rats. Food Chem Toxicol, 2010; 48:1869-1875.https://doi.org/10.1016/j.fct.2010.04.026

Santhosh S, Sini TK, Anandan R, Mathew PT. Effect of chitosan supplementation on antitubercular drugs-induced hepatotoxicity in rats. Toxicology, 2006; 219:53-59.https://doi.org/10.1016/j.tox.2005.11.001

Santhosh S, Sini TK, Anandan R, Mathee PT. Hepatoprotective activity of chitosan against isoniazid and rifampicin-induced toxicity in experimental rats. Eur J Pharmacol, 2007; 572:69-73.https://doi.org/10.1016/j.ejphar.2007.05.059

Selim MS, Amer SK, Mohamed SS, Mounier MM, Rifaat HM. Production and characterisation of exopolysaccharide from Streptomyces carpaticus isolated from marine sediments in Egypt and its effect on breast and colon cell lines. J Genet Engin Biotechnol, 2018; 16:23-28.https://doi.org/10.1016/j.jgeb.2017.10.014

Sharma SK. Antituberculosis drugs and hepatotoxicity. Infect Genet Evol, 2004; 4:167-170.https://doi.org/10.1016/j.meegid.2003.01.001

Shene C, Canquil S, Rubilar M. Production of the exopolysaccharides by Streptococcus thermophilus: effect of growth conditions on fermentation kinetics and intrinsic viscosity. Int J Food Microbiol, 2008; 124(3):279-284.https://doi.org/10.1016/j.ijfoodmicro.2008.03.013

Shih TY, Young TH, Lee HS, Hsieh CB, Hu OY. Protective effects of kaempferol on isoniazid- and rifampicin-induced hepatotoxicity. AAPS J, 2013; 15(3):753-762.https://doi.org/10.1208/s12248-013-9490-6

Steele MA, Burk RF, Des Prez RM. Toxic hepatitis with isoniazid and rifampicin: A meta-analysis. Chest, 1991; 99:465-471.https://doi.org/10.1378/chest.99.2.465

Sudhamani, SR, Tharanathan RN, Prasad MS. Isolation and characterization of an extracellular polysaccharide from Pseudomonas caryophylli CFR 1705. Carbohydr Polym, 2004; 56:423-427.https://doi.org/10.1016/j.carbpol.2004.03.008

Tamura K, Dudley J, Nei M, Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007; 24:1596-1599.https://doi.org/10.1093/molbev/msm092

Tasduq SA, Peerzada K, Koul S, Bhat R, Johri RK, Biochemical manifestations of anti-tuberculosis drugs induced hepatotoxicity and the effect of silymarin. Heptol Res, 2005; 31: 132-135.https://doi.org/10.1016/j.hepres.2005.01.005

Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. New Engl J Med, 1998; 339:1217-1227.https://doi.org/10.1056/NEJM199810223391707

Tsiapali E, Whaley S, Kalbfleisch J, Ensley HE, Browder IW, Williams DL, Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radical Biol Medic, 2001; 30:393- 402.https://doi.org/10.1016/S0891-5849(00)00485-8

Vuilleumier N, Rossier MF, Chiappe A, Degoumois F, Dayer P, Mermillod B, Nicod L, Desmeules J, Hochstrasser D. CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Eur J Clin Pharmacol, 2006; 62:423-429.https://doi.org/10.1007/s00228-006-0111-5

Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 1991; 173:697-703.https://doi.org/10.1128/jb.173.2.697-703.1991

Yamamoto T, Kikkawa R, Yamada H, Horii I, Identification of oxidative stress-related proteins for predictive screening of hepatotoxicity using a proteomic approach. J Toxicol Sci, 2005; 30(3):213-227.https://doi.org/10.2131/jts.30.213

Yanardag H, Caner M, Gunes Y, Uygun S, Acutehemolysis and oligoanuric acute renal failure caused by interrupted. Internet J Nephrol, 2005; 2(1):1-3.

Ye S, Liu F, Wang J, Wang H, Zhang M. Antioxidant activities of an exopolysaccharide isolated and purified from marine Pseudomonas PF-6. Carbohydr Polym, 2012; 87:764-770.https://doi.org/10.1016/j.carbpol.2011.08.057

You L, Gao Q, Feng M, Yang B, Ren J, Gu L, Cui C, Zhao M. Structural characterization of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities. Food Chem, 2013; 138:2242-2249.https://doi.org/10.1016/j.foodchem.2012.11.140

Yun CH, Okerholm RA, Guengerich FP. Oxidation of the antihistaminic drug terfenadine in human liver microsomes: role of cytochrome P-450 3A(4) in N-dealkylation and C- hydroxylation. Drug Metab Dispos, 1993; 21:403-409.

Zhang Y, Zhou T, Wang H, Cui Z, Cheng F, Wang KP. Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv.) Diels. Carbohydr Polym, 2016; 20:147-144.https://doi.org/10.1016/j.carbpol.2016.04.002

Zhang ZH, Tang JH, Zhan ZL, Zhang XL, Wu HH. Cellular toxicity of isoniazid together with rifampicin and the metabolites of isoniazid on QSG-7701 hepatocytes. Asian Pac J Trop Med, 2012; 5:306- 309.https://doi.org/10.1016/S1995-7645(12)60044-3

Article Metrics
1411 Views 91 Downloads 1502 Total

Year

Month

Related Search

By author names