Journal of Applied Pharmaceutical Science

Available online at: https://japsonline.com

A systematic review of secretome-based therapies for Alzheimer's disease: Bridging the preclinical and clinical gap

Yetty Hambarsari^{1,2}, Suroto1,2, Diah Kurnia Mirawati^{1,2}, Soetrisno^{1,3}, Brian Wasita^{1,4}, Vitri Widyaningsih^{1,5}, Eti Poncorini Pamungkasari1^{,5}, Subandi^{1,2}, Rivan Danuaji^{1,2}, Baarid Luqman Hamidi², Ervina Arta Jayanti Hutabarat^{1,2}, Ira Ristinawati², Teddy Tejomuktⁱ², Raden Andi Ario Tedjo², Aiman Hilmi Asaduddin⁶, Muhammad Hafizhan², Stefanus Erdana Putra²

¹Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia.

²Department of Neurology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia.

³Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia.

⁴Department of Pathology Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia.

⁵Department of Public Health, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia.

⁶Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia.

Doi: <u>https://doi.org/10.7324/JAPS.2024.194976</u>

SUPPLEMENTARY MATERIAL

No.	Types of	Author	Year	Animal	Age/	Sex	Sample	Exposure	Grouping
	Intervention			model	BW		size		
1	Secretome	Kim et al.	2018	5XFAD	6 mo	NR	9	-	$1 = CTRL: MEM\alpha$ -administrated 5XFAD
				mice					2 = MSC: hUCB-MSC-administered 5XFAD
2		Santamaria et al.	2021	WT & APP/PS1 mice	12 & 22 mo	male	129	-	1 = 12-month-old APP/PS1 mice received one IV injection of either PBS, MSC-CS or MSC-UCS 2 = 12-month-old APP/PS1 mice and age-matched WT received one IV injection of PBS or MSC-CS 3 = 12-two-month-old APP/PS1 mice received one IV injection of MSC-CS 4 = 22-month-old APP/PS1 and age-matched WT underwent a repeated IN treatment regimen 5 = 22-month-old and 25-month-old APP/PS1 and age-matched WT mice underwent a repeated IN treatment regimen with MSC-CS
3		Hijroudi <i>et</i> al.	2022	BALB/c mice	8 wk	male	36	Aβ1-42 was injected into the ICV space using stereotaxic surgery	1 = Control 2 = AD + vehicle 3 = AD + NSCs-CM
4		Mo et al.	2023	WT & 5XFAD mice	11 wk	male	24 (5xFAD mice)	-	1 = WT group 2 = 5×FAD AD mouse model 3 = CNSC-SE-treated 5×FAD mice 4 = MSC-treated 5×FAD mice
5	Exosomes	Ding <i>et al</i> .	2018	APP/PS1 mice	7 mo	male	36	-	1 = Control 2 = hucMSC-exosomes
7		Micci et al.	2019	C57BL/6 J and Nestin- δ-HSV-TK mice	6 - 8 wk	male and female	20	NR	1 = PBS 2 = Exosomes $3 = PBS + A\beta o$ $4 = Exosomes + A\beta o$
8		Cui et al.	2019	APP/PS1 mice	7 mo	NR	39	-	1 = PBS (AD) 2 = exosomes derived from MSCs (MSC-Exo) 3 = RVG-conjugated MSC-Exo (MSC-RVG-Exo)
9		Reza- Zaldivar <i>et</i> <i>al</i> .	2019	C57BL/6 mice	7 - 8 wk	NR	48	A β aggregates (A β 1– 42) were administered in the dentate gyrus bilaterally in 14 days	1 = Control $2 = AD$ $3 = exosomes$ $4 = MSC$

Table S1. Characteristics of Animal Studies

10	C	Chen <i>et al</i> .	2021	WT and J20 mouse model of AD	9 mo	NR	24	-	1 = WT-PBS 2 = WT-Exosomes 3 = Tg-PBS 4 = Tg-Exosomes
11	P. et	Poltavtsesa t al.	2021	NMRI mice	6 mo	male	23	-	 1 = Sham operated + Saline 2 = Sham operated + Exosomes 3 = Olfactory bulbectomized + Saline 4 = Olfactory bulbectomized + Exosomes
12		Zhdanova <i>et</i> 1.	2021	NMRI mice	6 mo	male	23	-	 1 = Sham operated + Saline 2 = Sham operated + Exosomes 3 = Olfactory bulbectomized + Saline 4 = Olfactory bulbectomized + Exosomes
13	L	iu H <i>et al</i> .	2022	APP/PS1 mice	2 mo	male	40	-	1 = PBS (AD) 2 = exosomes derived from ADSCs (Exo) 3 = hypoxia-pretreated ADSCs (HExo) 4 = circ-Epc1- expressing ADSCs (circ-Epc1-Exo)
14	L	.iu S <i>et al</i> .	2022	C57BL/6 mice	4 wk	male	24	STZ was injected into the lateral ventricle of mice by the autosampler in the STZ group (dose of 0.3 mg/kg, speed of 0.5 μ L/min, the volume of 1 μ L/side, and the STZ was dissolved in ACSF and prepared for current use).	1 = Control 2 = model group 3 = exosomal lateral ventricle injection (Lv) group 4 = exosomal caudal vein injection (Cv) group
15	Siet	bheykhhasan <i>t al.</i>	2022	Wistar rats	250- 300 g	N/R	40	To induce AD model, dissolution of STZ was performed in 0.9% saline solution. Then, STZ was maintained at - 20°C before use. STZ (3 mg/kg, twice) was injected ICV using a Hamilton syringe after perforation of the recent site.	1 = Control $2 = AD$ $3 = coQ10$ $4 = Exo$ $5 = Exo+coQ10$

16		Hou <i>et al</i> .	2023	WT & 5XFAD mice	female	4 mo	24	-	1 = 5 ×FAD group 2 = MSCs-exo group 3 = co-housed group 4 = MSCs-exo + Abx group
17		Pourhadi <i>et</i> <i>al</i> .	2023	Wistar rats	250- 300 g	male	8-10/group	STZ or normal saline was injected directly into the intracerebral ventricle (ICV) using a 10 μ l Hamilton syringe (gauge 30) with the polyethylene tube (AP – 0.8, ML 1.5, DV – 3.5). STZ (3 mg/kg) or the vehicle was administered at a rate of 1 μ l/min.	1 = Sham (PBS), 2 = STZ 3 = STZ+Exosomes 0.7 4 = STZ+Exosomes 7 5 = STZ+Exosomes 70
18		Li et al.	2024	WT and SKO-AD mice	9 mo/25- 25 g	male	75	-	WT group, SKO-AD-Veh group, AD-Veh group, SKO-AD-ex group, and AD-ex group
19	Mico- vesicles	Elia <i>et al</i> .	2019	APP/PS1 mice	3 mo	male	11	-	1 = Control 2 = MSC-EVs
20		Losurdo <i>et al.</i>	2020	triple- transgenic AD mice	7 mo	female	8	-	1 = Control 2 = MSC-EVs
21		Cone <i>et al</i> .	2021	5XFAD and C57BL/6J mice	6 wk	male and female	56	-	1 = NT - Saline 2 = NT - EV 3 = AD - Saline 4 = AD = EV
22		Zhdanova <i>et al</i> .	2022	NMRI mice	6 mo	male	6	-	1 = Control 2 = cytochalasin B-induced membrane vesicles (CIMVs) of MSCs

Table S2. In vivo study results

		5			
No.	Author	Year	Outcome Measures	Results	Mechanism of action

1	Kim et al.	2018	Synaptic Density Markers, TSP-1 Secretion	 Significant increase in synaptic markers SYP and PSD-95 throughout the brain. hUCB-MSCs can rescue synaptic density loss induced by Aβ42 peptide in vivo 	 The protective effect of hUCB-MSCs against synaptic dysfunction (mediated by TSP-1) hUCB-MSCs increases the expression of NLGN1 and α2δ-1
2	Santamaria et al.	2021	NORT, Amyloid Plaques, Microglial Activation, Astrogliosis, Cytokine Levels	 Memory recovery in 12-month-old APP/PS1 mice was observed 7 days post a single IV injection of MSC-CS, but the improvement was not sustained beyond 14 days. A 30% reduction in hippocampal and cortical amyloid plaques was noted following the same treatment (decreased amyloidosis). Microglial activation was significantly reduced, evidenced by decreased IBA1 positivity and CD68-marked area The treatment did not affect astrogliosis. Levels of cytokines IL-1β and TNF were not significantly altered 	 MSC-CS mimics the neuroreparative effects of MSCs through paracrine action, releasing bioactive components in response to the AD brain environment. Decrease in amyloidosis Reduce neuroinflammation through decreasing microglial activation
3	Hijroudi <i>et</i> <i>al.</i>	2022	Passive Avoidance Test and MWM test, RT-PCR, ELISA, Western blot, Double-IF Staining (BrdU/Nestin and BrdU/NeuN co- expressing cells), Nissl staining	 Improved memory retention in AD mice treated with NSCs-CM, by increased step-through latency compared to untreated group. Reduced escape latency and increased time spent in the target quadrant for AD mice treated with NSCs-CM There was a significant increase in the expression levels of PI3K, Akt, MAPK, ERK, Wnt3a, β-Catenin, and GSK3β genes in NSCs-CM group compared to untreated AD mice NSCs-CM increased levels of BDNF and NGF Reduction in Aβ plaque formation in the brains of AD mice treated with NSCs-CM Increased cells co-expressing BrdU/Nestin and BrdU/NeuN in NSCs-CM group. Decreased neurotoxicity and cell death in the hippocampus of NSCs-CM group. 	 NSCs ability to form neurospheres and express the stem cell marker nestin NSCs-CM modulated the Wnt/β-catenin signaling pathway (neuroprotection and neurogenesis) Support neuronal survival and function based on levels of BDNF and NGF Reduce Aβ plaque formation Improved neural tissue integrity
4	Mo et al.	2023	Neural markers (NEUN, vGLUT, and MAP2), growth factors (BDNF, GDNF, and VEGF), IF staining, Multielectrode array recording, RT-PCR, Western blot	 Intranasal delivery of iPSC-derived CNSC-SE improved spatial memory and cognitive impairments in 5xFAD mice. CNSC-SE-treated group showed significant improvement in behavioral performance in the Barnes maze, with increased time in the target zone and reduced error rate compared to AD group. CNSC-SE treatment resulted in a similar pattern of movement to WT mice, with fewer erroneous entries. Significant decrease in APP in CNSC-SE-5xFAD mouse brains compared to the AD group. 	 iPSC-derived CNSC-SE promoted cortical neuron differentiation in vitro CNSC-SE increased neuronal network activity and action potential bursts CNSC-SE reduced amyloidosis and neuro-inflammatory proteins in 5xFAD mouse brain (anti-amyloid and anti-inflammatory effects)

5	Ding et al.	2018	Behavior Test Modified MWM test, IF Staining, Quantitative RT- PCR, ELISA, Western Blot	 Mice treated with hucMSC-exosomes showed improved performance in the MWM test with shorter mean escape latency compared to control. Reduced microglial activation and increased alternative activation in the hucMSC-exosome group. Decreased Aβ plaques in the cortex and hippocampus of treated mice 	 Change microglial activation states and reduced inflammation Decrease in Aβ40 and Aβ42 levels implicated in plaque formation and AD pathology The presence of exosome markers CD63 and CD9 indicated successful isolation and potential delivery of therapeutic contents
6	Micci <i>et al</i> .	2019	Electrophysiological Assessments, NORT, Synaptosomes Preparation	 Significant percentage changes from the initial average baseline fEPSP slope Mice study demonstrated the ability to discriminate between familiar and novel objects Significant reduction in Aβ oligomer binding to hippocampal synaptosomes treated with NSC-exo compared to those treated with PBS or MN-exo 	 Synaptic plasticity indicates changes in synaptic strength following the conditioning stimulus Protective effect of NSC-exo against Aβ oligomer-induced synaptic vulnerability
7	Cui <i>et al</i> .	2019	MWM test, Thioflavin-S staining, ELISA, IF staining	 MSC-RVG-Exo treatment reducted amyloid plaque deposition in both cortex and hippocampus compared to MSC-Exo treatment. MSC-RVG-Exo treatment resulted in lower concentrations of soluble Aβ40 and Aβ42, and insoluble Aβ40 and Aβ42 in the brain. MSC-RVG-Exo treatment significantly attenuated the expression of GFAP (reduced astrocyte activation) MSC-RVG-Exo treatment improved spatial learning and memory in APP/PS1 mice 	 Exosomes derived from MSCs were tagged with RVG peptide to target the CNS. The RVG modification enhanced the engraftment of exosomes in the cortex and hippocampus. Targeted exosomes facilitated the clearance of Aβ plaques and reduced astrocyte activation (improve cognitive function)
8	Reza- Zaldivar <i>et</i> <i>al.</i>	2019	MWM test, NORT, IF staining (DCX and PSA-NCAM markers)	 Both exosome and MSC treatments reduced cognitive impairment in AD mouse model Exosome treatment stimulated neurogenesis in the SVZ. Similar effects were observed with MSC treatment. 	 MSCs and Exosomes mediate effects through paracrine activity. Exosomes promote neurogenesis and reduce cognitive impairments, which may internalize and degrade Aβ oligomers, secrete antioxidant enzymes, anti- inflammatory cytokines, and neurotrophic factors.

9	Chen <i>et al</i> .	2021	Glucose Metabolism, NORT, Amyloid Plaque, Astrocyte Activation, Neuronal Memory and Synapse- Related Genes	 MSC-exosomes treatment resulted in a significant increase in [18F] FDG uptake in both the whole brain and specific brain regions Significant improvement in long-term recognition memory following MSC-exosomes treatment MSC-exosomes regulated the phase of neurons and astrocytes in the brain of AD mice 	 Decreased the expression of Aβ in a human neural cell culture model with familial AD mutations Restored the expression of neuronal memory/ synaptic plasticity-related genes Modulated the phase of neurons and astrocytes in the brain Exosomal miR-29a upregulated memory/ synaptic plasticity-related genes by HDAC4
10	Zhdanova <i>et</i> al.	2021	MWM test and localization of exosomes	 Improved performance in the MWM, with animals spending more time and making more visits to the target sector, indicating enhanced spatial memory. Labeled exosomes were found in the hippocampus and neocortex 4 hours after intranasal administration, areas crucial for learning and memory and affected by AD. 	 Exosomes expressed typical markers CD9, CD63, and CD81, which demonstrate high therapeutic efficacy. Intranasal administration allows direct delivery to the brain, bypassing the BBB. Exosomes facilitate intercellular communication by transferring bioactive compounds to target cells.
11	Poltavtsesa et al.	2021	Spatial memory and localization of exosomes	 Exosomes prevented spatial memory deterioration in OBE model. Significant differences showed in factor detection between control and treated groups. Fluorescently labeled exosomes were found in the brain tissue after IV administration Exosomes localized in the hippocampus and neocortex. 	 Penetrate the BBB and reach the hippocampus and temporal cortex (learning and memory) The therapeutic effect is likely due to the transfer of proteins, nucleotides, amino and fatty acids, mRNA, and microRNA from exosomes to recipient cells, facilitating intercellular communication. Exosomes may exert their effects without the need for immunological compatibility with the recipient tissue, unlike MMSCs.

12	Liu H <i>et al</i> .	2022	MWM test, RT- PCR, Luciferase reporter assays, IHC, IF, ELISA	 Mice treated with circ-Epc1-containing ADSC exosomes showed reduced escape latency and increased platform crossing numbers in the spatial probe test Circ-Epc1-containing ADSC exosomes decreased neuronal damage. TUNEL staining in brain tissue sections indicated a decrease in neuronal apoptosis in mice treated with circ-Epc1-containing ADSC exosomes. The presence of circ-Epc1 in ADSC exosomes facilitated the shift of microglial polarization from M1 to M2 in the hippocampus Decreased IL-1β, IL-6, and TNF-α levels cytokines 	 High-throughput sequencing identified circEpc1 as a crucial component in hypoxia-pretreated ADSC exosomes for improving cognitive functions. Luciferase reporter assays revealed TREM2 and miR-770-3p as downstream targets of circ-Epc1. Overexpressing miR-770-3p or downregulating TREM2 reversed the effects of circ-Epc1 on M2 microglial polarization during lipopolysaccharide treatment, indicating their role in the modulation of microglial phenotypic transformations and inflammatory cytokine expressions.
13	Liu S <i>et al</i> .	2022	OFT, EPM test, NORT, TST, Nissl staining, IF staining, Western blot, RT- PCR	 BMSC-exos improved AD-like behaviors Positive correlations were observed between the duration and distance in the center in the OFT and the preference of the novel object in the NOR. Reduced glial cell activation, detected new neurons and measured the positive area of Aβ1–42 in the hippocampus. Reduced expression of IL-1β, IL-6, TNF-α, Aβ1–42, and p-Tau Upregulated protein expression of synapse-related proteins and BDNF 	 BMSC-exos are associated with the regulation of glial activation and the associated neuroinflammation, as well as BDNF-related neuropathological changes in the hippocampus. The reduction in the expression of inflammatory cytokines such as IL-1β, IL-6, and TNF-α, along with the decrease in Aβ1-42 and p-Tau, suggests a reduction of the neuroinflammatory response. Potential restoration of synaptic function and promotion of neuronal survival and plasticity.
14	Sheykhhasan et al.	2022	MWM test, passive avoidance task, Nissl staining, ELISA, IHC	 CoQ10-loaded exosomes derived from ADSCs-Exo significantly improved memory impairment induced by STZ in rats Treatment with CoQ10-loaded ADSCs-Exo led to an increase in BDNF expression in STZ-induced rats, compared to groups treated with CoQ10 or exosomes alone CoQ10-loaded ADSCs-Exo group showed the highest cell density and SOX2 gene expression 	 CoQ10 helps in reducing the expression of pro-inflammatory cytokines and improving mitochondrial function Exosomes derived from ADSCs contribute to the therapeutic effects of CoQ10 by facilitate drug delivery to the brain, overcome the BBB, and potentially carry other beneficial molecules. CoQ10-loaded ADSCs-Exo treatment not only protects existing neurons but also promotes the growth and differentiation of

					new neurons and synapses.
15	Hou <i>et al</i> .	2023	CFC test, MWM test, HE staining, Nissl staining, IHC, ELISA, GFAP staining	 Plaque deposition was reduced in the MSCs-exo group and increased in the co-housed group compared with the 5xFAD mice The MSCs-exo + Abx group had lower plaque deposition than the MSCs-exo treated group. Aβ1-40 and Aβ1-42 levels in the hippocampus and serum of mice reduced after MSCs-exo treatment compared with the 5xFAD group. Co-housing increased Aβ1-40 and Aβ1-42 levels, whereas these levels reduced after Antibiotics treatment compared with MSCs-exo treatment AD gut microbiota removed MSCs-exo therapeutic effect. Antibiotics improved MSCs-exo efficacy by treating disordered gut microbiota and metabolites. 	 MSCs-exo treats AD by promoting Aβ degradation, modulating immune responses, protecting neurology. Promoting axonal growth, and improving cognitive impairment. Gut microbiota dysbiosis may limit MSCs-exo therapy. Antibiotics enhance therapy by modulating gut microbiota and metabolites.
16	Pourhadi <i>et al</i> .	2023	MWM test, Congo Red Staining, IF staining, Western blot, MTT assay, flow cytometry, AO/PI staining	 STZ-induced rats showed learning deficits in the MWM test, which were dose-dependently reduced by Exosomes treatments. Amyloid plaque deposition was observed in the hippocampal regions in AD-model rats There were changes in neuronal marker expression due to Exosomes treatment. Confirmed protein expression alterations in response to treatments. Cell viability was improved in Exosomes-treated groups compared to the glutamate group. Increased live cell percentages and decreased apoptotic cell percentages in Exosomes groups. Improved cell viability in 3D culture conditions with Exosomes treatment. 	 Improve cell viability and counteract the cytotoxic effects of L-glutamate. Reduce amyloid plaque deposition in the hippocampus. Influence the expression of neuronal markers (neuroregeneration or synaptic plasticity) The dose-dependent effects of EXOs on learning and memory suggest a potential therapeutic action in sporadic AD models
17	Li et al.	2024	MWM test, immunostaining, whole brain imaging, Fluorescence signal intensity analysis, Western Blot, ELISA	 NSC-derived exosomes led to reduced escape latencies and increased time spent in the target quadrant Enhanced expression of mitochondrial biogenesis-related proteins in multiple brain regions Increased fluorescence signal intensity for mitochondrial biogenesis-related proteins in selected brain regions Increased levels of SIRT1 and mitochondrial biogenesis-related proteins in the brains of mice treated with NSC-derived exosomes Significant decrease in the ratio of soluble Aβ42 to Aβ40 was observed in the SKO-AD groups, indicating a slight positive effect on Aβ levels 	 Increased SIRT1 levels and enhanced the production of mitochondrial biogenesis-related factors. Inhibited astrocyte activation but did not suppress amyloid-beta production. Activate of the SIRT1-PGC1α signaling pathway and increase synthesis of NRF1 and COXIV (improved mitochondrial biogenesis) Restored abnormal protein distribution in the brain, indicating promotion of mitochondrial biogenesis.

18	Elia <i>et al</i> .	2019	Aβ Plaque and Dystropic Neurites	 Administering BM-MSC-EVs at 3 and 5 months of age in APP/PS1 mice (before and just as clinical signs start to appear) effectively reduced pathological signatures of AD. Quantitative analysis showed a significant reduction in plaque area, solidity, and density, as well as a decrease in dystrophic neurite occurrence. 	 BM-MSC-EVs carry Neprilysin, a β-amyloid degrading enzyme, suggesting a direct action on Aβ degradation. The EVs inherit protective, anti-inflammatory, and neurotrophic properties from their parental BM-MSCs
19	Losurdo <i>et</i> <i>al</i> .	2020	ELISA, Western Blot, IF staining, Analysis of microglia activation, Golgi-Cox staining, Dendritic spine analysis	 Decrease in microglia activation following the treatment with MSC-derived EVs. Intranasal administration of MSC-derived EVs resulted in an increase in dendritic spine density in the hippocampal CA1 pyramidal neuron, entorhinal cortex, and prefrontal cortex neurons of EV-treated mice compared to control mice. 	 MSC-derived EVs reached the brain, reducing microglia activation and increasing dendritic spine density. This suggests a shift of microglia toward an anti-inflammatory phenotype, contributing immunomodulatory and neuroprotective effects
20	Cone <i>et al</i> .	2021	Cognitive Performance, Aβ plaque, GFAP and Aβ Colocalization, Behavioral Assays, IHC	 5XFAD mice treated with hMSC-EV showed significantly improved performance in cognitive tests compared to control. Reduction of Aβ plaque load was observed in the hippocampus of EV-treated mice compared to control. There was less colocalization between GFAP and Aβ plaques in the brains of EV-treated mice compared to control. hMSC-EV group performed better in behavioral assays assessing learning and memory than control. EV-treated mice showed lower Aβ plaque load and reduced colocalization of GFAP and Aβ plaques in the hippocampus 	 MSC-derived EVs exhibit similar immunoprotective and immunomodulatory abilities EVs play a role in cell-to-cell communication, carrying a diverse molecular payload EVs can cross most barriers, including the BBB
21	Zhdanova <i>et</i> al.	2022	localization of vesicles	• Four hours after intranasal administration, vesicles containing the fluorescent protein RFP were observed in the hippocampus and neocortex of OBX mice	 Microvesicles act as nanocontainers for targeted delivery of biologically active compounds or drugs to brain regions affected by neurodegeneration. Intranasal delivery provides a non-invasive route to the CNS, bypassing the BBB