## **Journal of Applied Pharmaceutical Science**

Available online at: <a href="https://japsonline.com">https://japsonline.com</a>

## Outcome and attributable cost associated with bacterial resistant infections in a tertiary care hospital

Prashant Chandra<sup>1</sup>, Stanly Elstin Anburaj<sup>1</sup>, Kunikatta Vijayanarayana<sup>1</sup>, Kalwaje Eshwara Vandana<sup>2,3</sup>, Chiranjay Mukhopadhyay<sup>2,3,4</sup>, Udupi Dinesh Acharya<sup>5</sup>, Mallayasamy Surulivelrajan<sup>1,6</sup>, Vilakkathala Rajesh<sup>1,7</sup>

doi: <a href="https://doi.org/10.7324/JAPS.2023.93322">https://doi.org/10.7324/JAPS.2023.93322</a>

<sup>&</sup>lt;sup>1</sup>Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.

<sup>&</sup>lt;sup>2</sup>Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.

<sup>&</sup>lt;sup>3</sup>Centre for Antimicrobial Resistance and Education, Manipal Academy of Higher Education, Manipal, India.

<sup>&</sup>lt;sup>4</sup>Centre for Emerging and Tropical Diseases, Manipal Academy of Higher Education, Manipal, India.

<sup>&</sup>lt;sup>5</sup>Department of Computer Science & Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.

<sup>&</sup>lt;sup>6</sup>Centre for Pharmacometrics, Manipal Academy of Higher Education, Manipal, India.

<sup>&</sup>lt;sup>7</sup>Centre for Pharmaceutical Care, Manipal Academy of Higher Education, Manipal, India.

## Supplementary file

E.coli were highly resistant to third-generation cephalosporins (87%-91%) and FQs (83%-85%) and moderately resistant to tigecycline (52%), TMP-SMX (trimethoprim-sulphamethoxazole)(52%), amoxicillin-clavulanic acid (71%) and fourth-generation cephalosporins (73%) (figure 1).

Figure 1. Susceptibility pattern of *E. coli* (n=507)



Klebsiella spp. were highly resistant to fluoroquinolones (72%-78%) third-generation cephalosporins (74%-77%), fourth-generation cephalosporins (80%), piperacillin-tazobactam (79%) and nitrofurantoin (94%) and moderately resistant to aminoglycosides (60%-62%), tigecycline (66%) and carbapenems (71%-74) (figure 2).



Figure 2. Susceptibility pattern of Klebsiella spp. (n=381)

Acinetobacter spp. were highly resistant to TMP-SMX (89%),  $\beta$ -lactam/ $\beta$ -lactamases inhibitors (90%-97%), carbapenems (91%-94%), fluoroquinolones (91%), third and fourth-generation cephalosporins (91%-96%) and gentamicin (85%) (figure 3).



Figure 3. Susceptibility pattern of Acinetobacter spp. (n=140)

Pseudomonas spp. were found highly resistant to β-lactam/β-lactamases inhibitors (73%-100%), tigecycline (80%) and carbapenems (76%) (figure 4)



Figure 4. Susceptibility pattern of *Pseudomonas* spp. (n=111)

Enterococci spp. were found highly resistant to third-generation cephalosporins (100%), TMP-SMX (100%), fluoroquinolones (82%) and moderately resistant to gentamicin (70%), tetracyclines (71%), benzylpenicillin (63%) (figure 5).



Figure 5. Susceptibility pattern of *Enterococci* spp. (n=97)

MRSA was highly resistant to fluoroquinolones (96%), erythromycin (82%) and benzylpenicillin (100%), whereas they were moderately resistant to third-generation cephalosporins (67%) and cloxacillin (70%) (figure 6). Among the isolates of *S. aureus* (n=216), 36% of isolates were methicillin-susceptible Staphylococcus aureus (MSSA). Amongst them, seventy-four percent and 24% of the MRSA isolates were community-acquired (*CA-MRSA*) and hospital-acquired (*HA-MRSA*), respectively.



Figure 6. Susceptibility pattern of MRSA (n=139)

Table 1. Different class of antibiotics (%) used in the study

|                       | Pen+/-<br>βLI | Cephalo<br>+/- βLI | Lmc | Nmz | Carba | Mld | Glp | FQ | Carbo | Tcl | AG | Pmx | Gcl | Lzd | TMP-<br>SMX |
|-----------------------|---------------|--------------------|-----|-----|-------|-----|-----|----|-------|-----|----|-----|-----|-----|-------------|
| Empirical<br>therapy  | 56            | 46                 | 18  | 13  | 11    | 7   | 6   | 5  | -     | 5   | -  | -   | -   | -   | -           |
| Definitive<br>therapy | 50            | 54                 | 20  | 11  | 29    | 13  | 14  | 11 | 6     | 7   | 11 | 8   | 7   | 5   | 4           |

Pen= Penicillins Cephalo= Cephalosporins  $\beta$ LI=  $\beta$ -lactamase inhibitors Lmc= Lincomycins Nmz= Nitroimidazoles Carba= Carbapenems Mld= Macrolides Glp= Glycopeptides FQ= Flouroquinolones Carbo= Carbomycins Tcl= tetracyclines AG= Aminiglycosides Pmx= Polymyxins Gcl= Glycylcyclies Lzd= Linezolid TMP-SMX= Trimethoprim-Sulphamethoxazole

Table 2a. shows the bacterial isolates present in mortal patients

| <b>Bacterial isolates</b> | S (n) | Resistant             | Total (n) |  |  |
|---------------------------|-------|-----------------------|-----------|--|--|
|                           |       | (MDR + XDR + PDR) (n) |           |  |  |
| Acinetobacter spp.        | 2     | 36                    | 38        |  |  |
| E. coli                   | 6     | 62                    | 68        |  |  |
| Klebsiella spp.           | 19    | 42                    | 61        |  |  |
| Enterococcus spp.         | 4     | 22                    | 26        |  |  |
| MRSA                      | 5     | 12                    | 17        |  |  |
| Pseudomonas spp.          | 5     | 7                     | 12        |  |  |

spp.= species, MDR = multidrug-resistant, XDR = extensive drug-resistant, PDR = pandrug-resistant, n= number of isolates, MRSA = Methicillin-resistant Staphylococcus aureus

Table 2b. Different types of infection found in mortal patients

| Types of infections      | Mortality (%) |  |
|--------------------------|---------------|--|
| CAIs                     | 12            |  |
| HAIs                     | 24            |  |
| Both CAIs + HAIs         | 25            |  |
| Mono-infections          | 68            |  |
| Bi-infections            | 22            |  |
| Polymicrobial infections | 10            |  |
| Mixed infections         | 17            |  |

CAIs= Community-acquired infections, HAIs= Hospital-acquired infections

Figure 7a. Scatterplot (indicating the model fit) Predicted value (X-axis) vs residual value (Y-axis)



Figure 7b. Scatterplot Clinical diagnoses-Predicted value (X-axis) vs residual value (Y-axis)

