## Journal of Applied Pharmaceutical Science

Available online at: <u>https://japsonline.com/</u>

Biological activity, chemical profiling and molecular docking of tissue extracts of the sea snail *Trochus erithreus* 

Khaled M. Zayed<sup>1</sup>, Mosad A. Ghareeb<sup>2</sup>, Mohamed R. Habib<sup>1</sup>, Hanaa M. Abu El-Einin<sup>1</sup>, Rasha E.M. Ali<sup>1</sup>, Rasha M. Gad El-Karim<sup>1</sup>, Rehab Sabour<sup>3</sup>, Ahmed A. Hamed<sup>4</sup>

<sup>1</sup>Medical Malacology Department, Theodor Bilharz Research Institute, Corniche El-Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt.

<sup>2</sup>Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Corniche El-Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt.

<sup>3</sup>Medicinal Pharmaceutical Chemistry and Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.

<sup>4</sup>Microbial Chemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza 12622 Egypt.

doi: https://doi.org/10.7324/JAPS.2023.119765

## SUPPLEMENTARY MATERIAL

Table 1S. Chemical compositions of *Te*-Acetone extract

| No. | Rt    | Area% <sup>a</sup> | M.W. | M.F.              | Identified compounds    | Class/Category       |
|-----|-------|--------------------|------|-------------------|-------------------------|----------------------|
| 1   | 5.11  | 1.88               | 86   | $C_5H_{10}O$      | Propane, 2-(ethenyloxy) | Aliphatic ether      |
| 2   | 9.24  | 0.70               | 136  | $C_{10}H_{16}$    | l-Limonene              | Monoterpenes         |
| 3   | 19.61 | 1.01               | 226  | $C_{14}H_{26}O_2$ | Z9-Dodecenyl acetate    | Fatty alcohol esters |
| 4   | 20.87 | 7.89               | 204  | $C_{15}H_{24}$    | (E)-α-Farnesene         | Sesquiterpenoids     |

| 5  | 21.48 | 0.57  | 204 | $C_{15}H_{24}$    | Germacrene D                                                                 | Sesquiterpenoids            |
|----|-------|-------|-----|-------------------|------------------------------------------------------------------------------|-----------------------------|
| 6  | 22.12 | 0.55  | 154 | $C_{10}H_{18}O$   | Cis-Myrtanol                                                                 | Bicyclic monoterpenoids     |
| 7  | 22.40 | 0.95  | 206 | $C_{16}H_{14}$    | 15-methyltricyclo[6.5.2(13,14).0(7,15)]<br>pentadeca-1,3,5,7,9,11,13-heptene | Cyclic alkane derivatives   |
| 8  | 23.48 | 1.17  | 182 | $C_{12}H_{22}O$   | 3-Dodecen-1-al                                                               | Medium-chain aldehydes      |
| 9  | 23.94 | 0.59  | 200 | $C_{13}H_{28}O$   | Tridecanol                                                                   | Long-chain fatty alcohol    |
| 10 | 25.22 | 0.52  | 204 | $C_{15}H_{24}$    | α-copaene                                                                    | Sesquiterpenoids            |
| 11 | 25.50 | 2.99  | 238 | $C_{15}H_{26}O_2$ | α-Bisabolol-oxide-B                                                          | Sesquiterpenoids            |
| 12 | 25.77 | 1.01  | 252 | $C_{17}H_{32}O$   | 8-Hexadecenal, 14-methyl, (Z)                                                | Fatty aldehydes             |
| 13 | 26.14 | 2.92  | 236 | $C_{15}H_{24}O_2$ | Bisabolone oxide                                                             | Sesquiterpenoids            |
| 14 | 27.19 | 0.84  | 184 | $C_{14}H_{16}$    | Chamazulene                                                                  | Sesquiterpenoids            |
| 15 | 27.52 | 24.63 | 238 | $C_{15}H_{26}O_2$ | Bisabolol oxide A                                                            | Sesquiterpenoids            |
| 16 | 29.43 | 1.73  | 146 | C10H10O           | Methylcinnamic aldehyde                                                      | Cinnamaldehydes             |
| 17 | 29.81 | 1.64  | 226 | $C_{15}H_{14}S$   | trans-Cinnamyl phenyl sulfide                                                | Cinnamaldehydes derivatives |
| 18 | 30.34 | 1.32  | 200 | $C_{13}H_{12}O_2$ | 1,6-Dioxaspiro[4.4]non-3-ene,2-(2,4-hexadiynylidene)                         | Alkyne derivatives          |
| 19 | 30.96 | 1.47  | 270 | $C_{17}H_{34}O_2$ | Pentadecanoic acid, 14-methyl, methyl ester                                  | Fatty acid esters           |
| 20 | 31.77 | 2.89  | 130 | $C_{10}H_{10}$    | Cycloprop[a]indene, 1,1a,6,6a-tetrahydro                                     | Tetralins                   |
| 21 | 31.89 | 4.21  | 210 | $C_{14}H_{14}N_2$ | 2-[1-(4-Cyano-1,2,3,4-tetrahydronaphthyl)] propanenitrile                    | Naphthalene derivatives     |
| 22 | 32.08 | 5.41  | 156 | $C_{12}H_{12}$    | Tricyclo[8.2.0.0(2,5)]dodeca-3,6,8,11-tetraene                               | Annulenes                   |
| 23 | 32.23 | 2.46  | 284 | $C_{18}H_{36}O_2$ | Hexadecanoic acid, ethyl ester                                               | Fatty acid esters           |
| 24 | 33.62 | 0.84  | 156 | $C_{11}H_8O$      | Benzofulvene-8-carboxyldehyde                                                | Aromatic aldehyde           |

## Table 1S Continue

| No. | R <sub>t</sub> | Area%ª | M.W. | M.F.              | Identified compounds                    | Class/Category    |
|-----|----------------|--------|------|-------------------|-----------------------------------------|-------------------|
| 25  | 33.89          | 1.71   | 242  | $C_{16}H_{34}O$   | 1-Hexadecanol                           | Fatty alcohol     |
| 26  | 34.09          | 3.47   | 294  | $C_{19}H_{34}O_2$ | 9,12-Octadecadienoic acid, methyl ester | Fatty acid esters |
| 27  | 34.19          | 1.68   | 296  | $C_{19}H_{36}O_2$ | 9-Octadecenoic acid, methyl ester       | Fatty acid esters |

| 28 | 35.48 | 1.59     | 161 | $C_{10}H_{11}NO$  | N-Allylbenzamide                                       | Benzamides                 |
|----|-------|----------|-----|-------------------|--------------------------------------------------------|----------------------------|
| 29 | 35.80 | 2.60     | 312 | $C_{20}H_{40}O_2$ | Octadecanoic acid, ethyl ester                         | Fatty acid esters          |
| 30 | 36.40 | 0.57     | 280 | $C_{15}H_{20}O_5$ | Tetraneurin A diol                                     | Alcoholic compounds        |
| 31 | 36.87 | 0.78     | 160 | $C_{12}H_{16}$    | Benzene, (1,3-dimethyl-3-butenyl)                      | Benzene and substituted    |
|    |       |          |     |                   |                                                        | derivatives                |
| 32 | 36.92 | 1.40     | 176 | $C_{13}H_{20}$    | Benzene, (1-methylhexyl)                               | Benzene and substituted    |
|    |       |          |     |                   |                                                        | derivatives                |
| 33 | 37.21 | 0.88     | 206 | $C_{16}H_{14}$    | Benzene, 1,1'-(1,3-butadiene-1,4-diyl)bis              | Diphenyl diene derivatives |
| 34 | 37.80 | 0.79     | 168 | $C_{11}H_{20}O$   | trans-Undec-4-enal                                     | Medium-chain aldehydes     |
| 35 | 37.89 | 0.61     | 282 | $C_{18}H_{34}O_2$ | 9-Octadecenoic acid (Z)                                | Fatty acids                |
| 36 | 38.50 | 3.03     | 210 | $C_{14}H_{26}O$   | 3-Tetradecyn-1-ol                                      | Unsaturated fatty alcohol  |
| 37 | 41.55 | 1.62     | 390 | $C_{24}H_{38}O_4$ | 1,2-Benzenedicarboxylic acid, diisooctyl ester         | Benzoic acid esters        |
| 38 | 45.46 | 0.58     | 192 | $C_{14}H_{24}$    | 1,5,9-Undecatriene, 2,6,10-trimethyl, (Z)              | Acyclic monoterpenoids     |
| 39 | 46.07 | 0.62     | 214 | $C_{14}H_{30}O$   | Hexyl octyl ether                                      | Long chain ether           |
| 40 | 46.46 | 0.77     | 446 | $C_{28}H_{46}O_4$ | 1,2-Benzenedicarboxylic acid, bis(8-methylnonyl) ester | Benzoic acid esters        |
| 41 | 46.65 | 0.71     | 368 | $C_{22}H_{40}O_4$ | Cyclopropanedecanoic acid, à-(acetyloxy)-2-hexyl,      | Fatty acid methyl esters   |
|    |       |          |     |                   | methyl ester                                           |                            |
| 42 | 46.88 | 0.84     | 446 | $C_{28}H_{46}O_4$ | 1,2-Benzenedicarboxylic acid, diisodecyl ester         | Benzoic acid esters        |
| 43 | 47.06 | 0.80     | 446 | $C_{28}H_{46}O_4$ | Phthalic acid, didecyl ester                           | Benzoic acid esters        |
| 44 | 47.27 | 0.64     | 418 | $C_{26}H_{42}O_4$ | Phthalic acid, decyloct-3-ylester                      | Benzoic acid esters        |
| 45 | 47.68 | 0.65     | 292 | $C_{19}H_{32}O_2$ | 6,9,12-Octadecatrienoic acid, methyl ester             | Fatty acid methyl esters   |
|    |       | T% 96.53 |     |                   | •                                                      | ·                          |

**Rt:** Retention time; **M.W.:** Molecular weight; **M.F.:** Molecular formula.



**Fig. 1S.** The two-dimensional and three-dimensional suggested binding modes of Bisabolol oxide within the binding pocket of TMK (PDB: 4QGG)



**Fig. 2S.** The two-dimensional and three-dimensional suggested binding modes of 9,12-Octadecadienoic acid, methyl ester within the binding pocket of TMK (PDB: 4QGG)



**Fig. 3S.** The two-dimensional and three-dimensional suggested binding modes of  $\alpha$ -Bisabolol-oxide-B within the binding pocket of TMK (PDB: 4QGG)



**Fig. 4S.** The two-dimensional and three-dimensional suggested binding modes of Bisabolone oxide within the binding pocket of TMK (PDB: 4QGG)



**Fig. 5S**. The two-dimensional and three-dimensional suggested binding modes of redocked ligand within the binding pocket of TMK (PDB: 4QGG)



**Fig. 6S**. The two-dimensional and three-dimensional suggested binding modes of Bisabolol oxide A within the binding pocket of DNA gyrase B (PDB: 6F86).



**Fig. 7S.** The two-dimensional and three-dimensional suggested binding modes of 9,12-Octadecadienoic acid, methyl ester within the binding pocket of DNA gyrase B (PDB: 6F86).



**Fig. 8S.** The two-dimensional and three-dimensional suggested binding modes of  $\alpha$ -Bisabolol-oxide-B within the binding pocket of DNA gyrase B (PDB: 6F86).



**Fig. 9S**. The two-dimensional and three-dimensional suggested binding modes of Bisabolone oxide within the binding pocket of DNA gyrase B (PDB: 6F86).



**Fig. 10S**. The two-dimensional and three-dimensional suggested binding modes of redocked ligand within the binding pocket of DNA gyrase B (PDB: 6F86).



**Fig. 11S.** The two-dimensional and three-dimensional suggested binding modes of Bisabolol oxide A within the binding pocket of DNA topoisomerase IV subunit B (PDB: 4HZ5)



**Fig. 12S**. The two-dimensional and three-dimensional suggested binding modes of 9,12-Octadecadienoic acid, methyl ester within the binding pocket of DNA topoisomerase IV subunit B (PDB: 4HZ5).



**Fig. 13S.** The two-dimensional and three-dimensional suggested binding modes of  $\alpha$ -Bisabolol-oxide-B within the binding pocket of DNA topoisomerase IV subunit B (PDB: 4HZ5).



**Fig. 14S**. The two-dimensional and three-dimensional suggested binding modes of Bisabolone oxide within the binding pocket of DNA topoisomerase IV subunit B (PDB: 4HZ5).



**Fig. 15S.** The two-dimensional and three-dimensional suggested binding modes of redocked ligand within the binding pocket of DNA topoisomerase IV subunit B (PDB: 4HZ5).