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Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB). In this study, various
molecular modeling tools were used to search for potent TB therapeutics. Approximately 792 anti-TB inhibitors were
collected from the literature, along with their experimentally determined biological activities. These compounds were

then classified into three groups based on their biological activities. The geometries of all the collected inhibitors
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were optimized, followed by docking them into a few anti-TB receptors obtained from the Protein Data Bank.
The docking results express the nature of interactions between the ligands and their respective receptors, which
are prevalently noncovalent, dominated by hydrogen bonds and van der Waals’ interactions. Later, we generated
structure-based 14 quantitative structure-activity relationship models using appropriate descriptors to predict the
bioactivity values of the selected anti-TB inhibitors against a few cell lines. The best models were selected on the
basis of statistical parameters and were validated by training and test set division. The predicted bioactivities of
the selected inhibitors are comparable to the experimentally determined bioactivity values.

INTRODUCTION

Tuberculosis (TB) stands as one of the deadliest
diseases in terms of fatalities by infectious disease. Though
it is curable and preventable, in 2023, it again became the
world’s leading cause of death from a contagious agent after 3
years when it was replaced by COVID-19 [1]. The bacterium
responsible for TB, Mycobacterium tuberculosis (MTB),
primarily affects the lungs and spreads through the air when
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an infected person sneezes, coughs, or spits [1-5]. During the
latent TB stage within the human body, MTB cells persist in an
inactive, nonreplicative state [6], making it challenging to treat.
It indicates that if the infection progresses, they are at risk of
developing active TB at some point in their lives.

Among the notified TB patients, there are several cases
of multidrug-resistant TB and rifampicin-resistant TB. This high
number reflects the global challenge of drug resistance, which is
more difficult and costly to treat. While there are indications of
a slowdown in new TB cases worldwide, the recent rise in drug-
resistant rates is alarming and could reverse the positive trends
[7]. In response, WHO has adopted a new and comprehensive
strategy, the “WHO End TB Strategy,” endorsed by all Member
States, guiding concerted efforts at the global, regional, and
national levels [8,9].

As resistant forms of TB pose a significant threat to
global disease control efforts [10,11], it should be addressed
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by improving healthcare systems, ensuring proper diagnosis
and treatment monitoring, educating patients, and investing
in research for new therapies. This underscores a significant
progression, starting from the initial discovery of para-amino
salicylic acid, followed by isoniazid in the mid-20th century, to
the latest discovery of drugs like Bedaquiline and Delamanid
[12—15]. Access to drugs such as Bedaquiline and Delamanid
remains a challenge in many parts of the world [16]. Therefore,
there is a critical need for an improved drug that can simplify
the treatment process, reducing treatment duration [17].
A breakthrough for treating drug-susceptible TB includes
rifapentine and moxifloxacin, which are of shorter treatment
regimens [18,19]. Despite progress, challenges remain, including
the need for validated in vitro and animal models that accurately
predict the success of new drugs and drug combinations. This gap
emphasizes the importance of continued research to enhance our
understanding of TB biology and drug efficacy.

The use of computational methodologies has become
very important in the discovery and optimization of novel
pharmaceutical agents [20—22]. In pharmaceutical research, the
utilization of these methods allows researchers to screen large
databases of compounds or simulate molecular interactions
rapidly. These are also used to optimize drug combinations,
particularly important for treating complex diseases like TB or
cancer, where multiple drugs may be needed to target different
aspects of the disease. By providing detailed insights into
drug-target interactions and pharmacokinetic properties before
entering clinical trials, computational methodologies help to
reduce the risks associated with drug development. Indeed,
a first-tier computational screening approach is important to
explore the structure—activity relationships among different
scaffolds. /n-silico studies based on docking performance and
quantitative structure-activity relationship (QSAR)-predicted
bioactivity at an early stage are needed to identify and prioritize
molecular scaffolds for future consideration.

Inthisstudy, we collected anti-TB inhibitors from various
literature and databases. These compounds were divided into three
classes based on their biological activity. The geometries of the
compounds were optimized using the density functional theory
(DFT) functional, followed by molecular docking calculations
to determine docking fitness-based descriptors [23]. DFT-based
descriptors, including fragment-based, quantum chemical,
thermodynamic, electrostatic, topological, and geometric
descriptors, were calculated for structural and statistical analyses.
We performed QSAR analysis to predict activities of anti-TB
inhibitors, and these models established a relation between the
activity of the compounds and the molecular structure descriptors.
It is not a complete drug development pipeline. In this study, it
is intended as a first-tier computational screening to focus on
molecular structure and activity relationships among the selected
compounds. Here, scaffolds are prioritized for further synthesis
and biological evaluation.

METHODOLOGY

Geometry optimization

Approximately 792 anti-TB inhibitors of various
structural analogues were collected from the literature, along

with their experimentally derived biological activities measured
by minimum inhibitor concentration (MIC,)) and inhibitor
concentration (IC,)) values [24-49]. The geometries of all
the considered inhibitors were optimized by DFT functional
using hybrid three-parameter Becke-Lee-Yang-Parr (B3LYP)
and hybrid meta exchange-correlation functionals (MO06)
along with 6-31G (d) basis set using the Gaussian 09 program
[50]. Frequency calculations were also carried out at the same
level of theory to ensure that the obtained stationary points
correspond to a minimum on the potential energy surface. The
optimized structures were then utilized for docking calculations
and QSAR analysis.

Preparation of the dataset

The original IC,, and MIC,; values were transformed
into their corresponding pIC,  and pMIC, values (for the ease
of calculations) by applying the formula pMIC = —log MIC and
are reported in Tables S1-S14. These data sets include anti-TB
inhibitors that exhibit inhibitory potency against 14 distinct
cell lines, including pKi, H37rv, Human, Ribosome, Iron
Deficiency, LORA, MABA, Newman, VERO, 7H12, ICB59,
LM13, MABA_GAS, and RV128. All the collected anti-TB
inhibitors were organized and categorized into three data sets
based on pIC, and pMIC, values. Four cell lines were chosen
for pIC,, four cell lines were selected for pMIC, , and six cell
lines were picked for both pIC, and pMIC,.

50°

Molecular docking

In this investigation, molecular docking calculations
were carried out using the GOLD and AutoDock4 programs
[51,52]. Here, we have selected 11 crystal structures [Protein
Data Bank (PDB) IDs: 1DF7, 1G3U, IMDB, 1UZN, 1ZID,
2AQK, 2CIB, 2DFT, 2FUM, 30RM, and 4UO0J] to use as
receptors in the docking calculations [53—63]. These receptors
are known to be specific targets for binding to anti-TB inhibitors.
The docking program was utilized to predict the binding affinity
and the preferred orientation of the ligands at the receptor
binding site. The AutoDock4 tool was used to prepare the
receptor structures by adding polar hydrogens, assigning partial
and Gasteiger charges, and removing all water molecules and
heteroatoms. The binding site of the receptors was defined using
a grid of interacting points. The grid points were determined
based on the position of the pre-bound ligand within the binding
site of each receptor, as observed in its crystal structure. The
default parameters of the free energy scoring function were
used to assess the binding affinity of the ligand to the receptors.

QSAR

The Comprehensive Descriptors for Structural and
Statistical Analysis (CODESSA 3.0) program [64] was used for
the generation of the QSAR models. This program calculates
various structural and statistical parameters based on 2D and
3D molecular descriptors of the chemical compounds, including
fragment-based, thermodynamics, topological, electrostatics,
quantum chemical, constitutional, and geometrical descriptors
[65]. The DFT-based descriptors are based on the electron
density and eigen values of the frontier orbitals and are
convenient to describe the chemical reactivity. We have also
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calculated conceptual DFT-based descriptors, such as hardness,
softness, electronegativity, chemical potential, electrophilicity
index, and so on, for the compounds and were added them
for QSAR modeling [66,67]. The docking scores and other
parameters, including protein-ligand hydrogen bond energy
(external H-bonds), protein-ligand van der Waals energy
(external vdw), sum of the internal torsion and internal vdw terms
[internal energy term S (int)], and so on, were also incorporated
externally in the database of QSAR modeling to include the
information from ligand-receptor interaction. All possible
combinations of various descriptors and docking parameters
were tested to select the best descriptor-based models. The best
multiparameter regression was achieved by iteratively adding
descriptors to obtain the best values of statistical criteria such
as the highest values of R?, cross-validated R*_, and the F value.
The validation of the generated QSAR models was achieved by
dividing the data sets into training and test sets.

RESULTS AND DISCUSSION

Docking analysis

Molecular docking results provide valuable insights
into ligand binding at receptor sites through nonbonding
interactions with optimal docking scores. The selected inhibitors
were subjected to molecular docking calculations using 11 anti-
TB receptors (PDB IDs: 1DF7, 1G3U, IMDB, 1UZN, 1ZID,
2AQK, 2CIB, 2DFT, 2FUM, 30RM, and 4U0)J). Thirty docked
poses for each of the inhibitors were generated using each of the
receptors. All 792 inhibitors were successfully docked into the 11
receptors. Hydrogen bond interaction, van der Waals interaction,
and other weak noncovalent interactions are found to play a
major role in binding the inhibitors with the receptors. Many
of the inhibitors exhibited good docking scores; however, the
docking calculations using 1UZN and 2FUM were unsuccessful
for several compounds. The highest-scoring docked poses from
receptors 2CIB, 1ZID, and 4U0J showed the best comparability
between experimental and predicted activity values. As a result,
receptors 2CIB and 1ZID were selected for further analysis. The
evaluation of the top-ranked docked poses was based on the
analysis of ligand interaction diagrams. Table 1 presents ligand
interaction diagrams for selected inhibitors, summarizing their
interactions with the receptors based on the highest-scored docked
poses. Notably, GLY 14 residue displayed the highest number of
interactions, followed by GLY96, ALA98, ILE122, and MET147,
indicating their primary involvement in interactions with the
2CIB and 1ZID receptors. Receptors 2DFT, 2FUM, and 1G3U
were generally associated with hydrogen bonding, while stacking
interactions involved ARG153 and LYS13. Additionally, various
types of ligand interactions were found to be crucial for binding,
with residues ALA22, ASP148, ASP94, MET61, and ILE201
typically involved in these interactions.

QSAR analysis

The CODESSA program was used to generate QSAR
models (Set 1-14) using both conventional and conceptual
descriptors, along with the docking scores of all considered
anti-TB inhibitors. Multiple linear regressions (MLRs) analysis
was performed on all possible combinations of descriptors.

Traditional descriptors, such as constitutional, geometrical,
topological, electrostatic, and quantum chemical features,
were also computed. Conceptual DFT-based descriptors,
including hardness, chemical potential, and electrophilicity
index, were incorporated externally. In addition, docking-based
descriptors, including docking fitness score, H-bond, and van
der Waals interactions, obtained from docking results, were
also incorporated into QSAR modeling. We have used various
numbers of descriptors in regression analyses to ensure the
mathematical significance and robustness of the calculations.
Table S15 represents the selected descriptors used to generate
the QSAR models.

The optimal number of descriptors for the final QSAR
model has been determined. A summary of the investigation for
various descriptor combinations is presented in Table 2, along
with the important measurable parameters associated with
each model. All the generated models were ranked according
to their R* (correlation coefficient), R*  (cross-validated R?), F'
(Fischer statistic), s> (SD), and SE values. The inhibitors were
divided into a training and a test set for the rigorous validation
of the generated QSAR models. The descriptors and predicted
activities derived from MLR and cross-validation of the
regression coefficient (cv) are presented in Table 2 for both the
training and test sets.

Three classes of inhibitors
Class 1: for cell lines

In class 1, Sets 1, 2, 3, and 4 comprise a total of 47,
111, 53, and 52 compounds, respectively. These sets pertain
to TB-infected cells from pki, H37Rv, human, and ribosome.
The models for these sets, using 7, 10, 6, and 6 descriptors,
respectively, are highlighted to demonstrate the optimal models.

To validate these QSAR models, a division into
training and test sets was implemented. Test sets consisted of
5,9, 7, and 5 randomly selected inhibitors, while the remaining
42, 102, 46, and 47 inhibitors were allocated to training sets.
Statistical parameters for both models, with and without test set
division, are given in Table 2.

The combination of the selected descriptors exhibited
notable R*(0.70)and R*_ (0.52) for Set 1, R*(0.63)and R*_ (0.55)
for Set 2, R* (0.81) and R*_ (0.76) for Set 3, and R* (0.70) and
R (0.56) for Set 4. The comparability between experimental
and predicted values of pIC, is depicted in Figure 1, with test
set inhibitors highlighted in red. These plots affirm the validity
of predicting test set inhibitors, indicating the utility of these
models for unknown compounds. Tables S1-S4 represent the
detailed experimental and calculated bioactivity values of
class 1 set inhibitors. These results show comparability of the
predicted activity values obtained from the QSAR models with
the experimentally available values.

Class 2: for cell lines

Table 2 presents the results for four different sets of
anti-TB-infected cells: Set 5, 6, 7, and 8. Set 5 comprises 24
compounds with five descriptors. This set is divided into a
training set of 20 compounds and a test set of four compounds,
yielding R values of 0.88 and R*_ values of 0.78. Set 6 consists
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Table 1. Ligand interaction diagram for selected receptors.
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PDB ID

Docked pose

Ligand interaction diagram

1DF7

1G3U

1MDB

1UZN
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PDB ID

Docked pose

Ligand interaction diagram

1ZID

2AQK

2CIB

2DFT

(Continued)
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PDB ID

Docked pose

Ligand interaction diagram

2FUM

4FBT

4U0J1

of 110 compounds with eight descriptors, divided into a training
set of 100 compounds and a test set of 10 compounds, resulting
in R* and R  values of 0.77 and 0.73, respectively. Similarly,
Set 7 includes 130 compounds with 10 descriptors. This set is
divided into a training set of 120 compounds and a test set of
10 compounds, leading to R* and R’ values of 0.81 and 0.77,
respectively. Finally, Set 8 comprises 28 compounds with
five descriptors. This set is divided into a training set of 24
compounds and a test set of four compounds. The statistical
parameters R* and R’ values for Set 8 are 0.94 and 0.91,
respectively. Integrating the statistical information from all
these descriptors enhances the overall quality of the models

used for the test set division. Notably, the positive contributions
from DFT and docking-based descriptors complement the
coefficient values obtained from the conventional QSAR-
based descriptor model across all sets. Figure 2 shows the
plots illustrating the relationship between experimental and
predicted values of pMIC,; for all these class 2 sets. Sets 6
and 7 exhibit particularly strong statistical performance, while
Sets 5 and 8 also demonstrate very good parameters. For class
2 inhibitors, calculated values of bioactivity derived from the
generated models are reported in Tables S5—S8, along with the
experimentally determined values, and these results show good
comparability.
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Table 2. Statistical significances of the selected QSAR models for different sets of compounds.

Regression equation for

2 2 3
Set #Comp. #Des. R R SE s? F descriptor-based models CDFTdescriptors
47
Set 1 0.70 0.52 0.38 0.18 10.43 =D24 (—0.11)+D76 (—2.05)+D41 (151.16)
_ (42) 7 + D8 (24.43) + D72 (-11.33) + D68 (9.37) + Y
pIC,, pKi s (0.71)  (0.54) (0.37) (0.17) (11.66) D19 (=0.42) + (~176.19)
111 =D39 (-80.96) + D25 (32.01) + D20 (0.92)
Set 2 (102) o 0.63 055 068 052 1668 15 (—5737)+ D40 (4.54) + D74 (0.23) + v
pIC,, H37rv (0.64) (0.56) (0.68) (0.52) (15.80) D45 (0.06) + D57 (1.58) + D7 (—8.84) + D52
’ 9 (-0.71) + 166.06
53
Set 3 0.81 0.76 0.53 0.33 33.63 =D63 (*0.28) + D22 (*39.37) + D37 (2.88)
(46) 6 + D41 (59.25) + D28 (-0.16) + D61 (0.24) + Y
pIC,, Human i (0.81) (0.76) (0.52) (0.32) (28.32) (~56.10)
; .
52
Set 4 0.70 0.56 0.30 0.10 17.16 =D29 (*0.38) + D30 (0.06) + D67 (0.43) +
47 6 D77 (10.76) + D60 (0.00) + D13 (3.72) + Y
pIC,, Ribosome . (0.73)  (0.54) (0.26) (0.08) (17.72) (-2.33)
24
Set 5 20) s 0.88 078 043 025 2557 _p73(-36.76) + D71 (0.00) + D21 (498.75) + v
: - +
pMIC,, Iron_pKi - (0.88) (0.79) (0.41) (0.25) (20.70) D4 (=133.36) + D33 (0.65) +236.00
110
Set 6 0.77 0.73 0.29 0.09 41.80 =D9 (2.23) + D46 (—0.09) + DSO(—0.09) +
(100) 8 D49 (0.09) + D18 (0.32) + D12 (11.58) + D13 Y
pMIC,, LORA o (0.68) (0.62) (0.35) (0.13) (24.63) (0.55) + D73 (=3.30) + 0.80
130 =DI1 (46.31) + D38 (—=60.35) + D23 (~0.38)
Set7 (120) 0 081 077 065 047 4915 4 Dg5(—0.25) + D53 (0.46) + D14 (—0.01) N
pMIC, MABA 0.80) (075) (0.67) (049) (52.51) *+D36(29.64)+ D42 (-9.82)+ D3 (15.08) +
: 10* D35 (27.42) + (-77.42)
28
Set 8 24) s 09 091004002 443 D62 (0.24) + D64 (-0.69) + D61 (0.61) + .
pMIC,, Newman (0.94)  (0.90) (0.14) (0.03) (58.18) D32(0.30) + D2 (0.33) + (=0.23)
s "
74
Set 9 0.98 0.98 0.10 0.01 699 =D6 (19.16) + D55 (1.95) + D61 (0.07) + D27
(1 7 (-0.05) + D44 (0.01) + D20 (0.00) + D51 Y
pIC,, VERO_Cell » (0.98) (0.98) (0.10) (0.01) (637) (0.04) + (-22.34)
17
Set 10 0.64 056 046 026 1223
(14) 2 =D1 (0.52) + D31 (0.12) + 4.95 Y
pMIC,, 7H12 i (0.78)  (0.64) (0.38) (0.18) (19.96)
3
42
Set 11 37 ;  0or 049040008 L2 269 (-0.03) + D32 (-1.19) + D56 (0.30) + v
pMIC,, ICB59 0.63) (0.51) (0.37) (0.16) (11.18) D16 (0.99) + D70 (0.07) + 1.41
5*
36
Set 12 0.65 0.51 0.32 0.12 9.05 =D21 (—182.71) + D29 (0.39)+D48 (0.06)
(30) 5 +D26 (0.12) + D15 (0.03) + D66 (—0.38) + Y
pMIC,, LMI3 o (0.66) (0.51) (0.30) (0.12) (7.53) (~9.46)
16
Set 13 0.88 0.80 037 0.17  48.05
13) 2 =D75 (-61.89) + D27 (=0.24) + 4.90 Y
pMIC,, MABA_GAS . (0.86) (0.77) (0.34) (0.15) (31.91)
52
Set 14 076 069 029 009 2472  ~D70(-0.09)+DI17(-1.46)+ D36 (18.13)
7 6 +DI10 (3.28) + D23 (-2.10) + D43 (1.59) + Y
pMIC,, RV128 (0.76)  (0.68) (0.28) (0.09) (21.81) (-8.19)
5% :

#Comp is number of compounds; #Des is number of descriptors; R* is correlation coefficient; R*  is cross-validation coefficient; s is SD; F is Fischer statistics; numbers
in italics is the number of considered compounds; numbers in brackets is after division in training and test sets; * shows the numbers of compounds in the test set.
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Figure 1. The plot of experimental (pIC,, Exp.) versus predicted (pIC,; Pred.) bioactivity values for Set 1-4. Blue
points show training set compounds, and red points show test set compounds.
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points show training set compounds, and red points show test set compounds.
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values for Set 9-14. Blue points show training set compounds, and red points show test set compounds.

Class 3: for both and cell lines

Sets 9—14, similar to classes 1 and 2, show a strong
statistical performance with eight sets of compounds.

Set 9 includes 74 compounds, with 71 in the training
set and 3 in the test set, achieving an R* = 0.98, R* = 0.98. Set
10 has 17 compounds, comprising 14 in the training set and 3 in
the test set, with an R* = 0.64, R*_ = 0.56. In Set 11, there are 42
compounds, with 37 in the training set and 5 in the test set, resulting
inan R?=0.61, R%cv =0.59. Set 12 contains 36 compounds, 30 of
which are in the training set and 6 in the test set, with an R* = 0.65,
R2cv=0.51. Set 13 consists of 16 compounds, featuring 13 in the
training set and 3 in the test set, achieving an R*=0.88, R*_ = 0.80.
Finally, Set 14 has 52 compounds, with 47 in the training set and 5
in the test set, resulting in an R*=0.76, R*> = 0.69. All of these sets
exhibit statistically significant descriptors, as presented in Table 2.
For Sets 9-14, the plot between experimental and predicted values
of bioactivity is shown in Figure 3.

Based on these models, we have predicted bioactivity
of three classes of compounds, and the detailed predicted values
of bioactivity of all the selected anti-TB inhibitors of Set 9-14
are given in Tables S9—S14. The applicability of the generated

QSAR models was validated by performing leave-one-out,
leave-many-out cross validations, and Y-randomization tests for
the prediction of bioactivity of the compounds. The statistical
parameters of these models are found to be significant for the
class of selected inhibitors.

Moulishankar et al. [68] did the QSAR modeling for
a set of 53 novel thiazolidine 4-one derivatives that have the
potential to act as potent anti-TB inhibitors. These molecules
were collected from the literature with their MIC activity. In their
approach, they had predicted anti-TB activity by splitting the
molecules into a training set (43 compounds) and a test set (10
compounds). This study represented the value of R? as 0.9092 and
Radj as 0.8950. In our study, thiazolidine 4-one derivatives with
MIC activity were included in Sets 6, 7, 10, 13, and 14, along
with other structural entities. These sets exhibit strong statistical
performance. Among these, the QSAR model for Set 13 shows
a value of R* as 0.88, which is similar to the model generated by
Moulishankar et al. [68] As Set 13 contains thiazolidine 4-one
derivatives as well as some more inhibitors; it can be used to
predict the bioactivity for a wide range of compounds. Similarly,
Valencia et al. [69] designed and tested the bioactivity for a set
of novel quinolinone-based thiosemicarbazones. In their QSAR
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modeling, they achieved the statistical parameters as R> = 0.83; F
=47.96; s = 0.31. In this present study, a few quinolinone-based
thiosemicarbazones have been included in Set 2. The statistical
parameters suggest that the model generated by Valencia et al
[69] is specific for quinolinone-based thiosemicarbazones to
predict the bioactivity values. Pietra et al. [70] performed the
QSAR modeling on purine analogues and reported sensitivity as
0.85 for the training set and 0.82 for the test set. In our study,
these types of compounds were included in Set 5 with a good
statistical performance of R? of 0.88. This Set 5 model may be
significant for predicting bioactivity for purine derivatives. The
QSAR model for Set 8 can also be a good model to predict
bioactivity for phenanthrene derivatives with significant
statistical parameters. This model shows R? as 0.94, which is
similar to that shown by Shagufta et al. [71] for a series of 44
diaryloxy-methano-phenanthrene derivatives.

CONCLUSION

This investigation employed molecular docking scores
and QSAR for the analysis of 792 anti-TB inhibitors. A total
of 14 QSAR models were developed using MLR and partial
least squares, based on data collected from various biological
activities of anti-TB inhibitors. We have generated structure-
based QSAR models to predict bioactivity values for a set of anti-
TB inhibitors against various cell lines using an appropriate and
vital set of descriptors. This was achieved by dividing the data
set into training and test sets to fit the models with the validation
of leave-one-out and leave-many-out. This study uses conceptual
DFT-based descriptors along with conventional descriptors such
as constitutional, topological, docking, geometrical, electrostatic,
and quantum chemical. The calculated descriptors were based
on conceptual DFT, emphasizing hardness, chemical potential,
and the electrophilicity index. The predicted bioactivity values
show good comparability with the experimentally available
values. Some compounds show higher predicted values, which
implies the necessity of further research on these compounds.
Notably, quantum chemical descriptors emerged as crucial, and
the incorporation of conceptual DFT descriptors has significantly
improved the statistical parameters of the model across various
scenarios.

Limitation

Future studies are needed to include MD simulations
to confirm the dynamic stability of top-ranked complexes
identified here. Additionally, while this study identifies
promising scaffolds based on docking and QSAR models,
prioritizing for synthesis; subsequent ADMET profiling is
essential before preclinical evaluation.
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