
INTRODUCTION
Tuberculosis (TB) stands as one of the deadliest 

diseases in terms of fatalities by infectious disease. Though 
it is curable and preventable, in 2023, it again became the 
world’s leading cause of death from a contagious agent after 3 
years when it was replaced by COVID-19 [1]. The bacterium 
responsible for TB, Mycobacterium tuberculosis (MTB), 
primarily affects the lungs and spreads through the air when 

an infected person sneezes, coughs, or spits [1–5]. During the 
latent TB stage within the human body, MTB cells persist in an 
inactive, nonreplicative state [6], making it challenging to treat. 
It indicates that if the infection progresses, they are at risk of 
developing active TB at some point in their lives.

Among the notified TB patients, there are several cases 
of multidrug-resistant TB and rifampicin-resistant TB. This high 
number reflects the global challenge of drug resistance, which is 
more difficult and costly to treat. While there are indications of 
a slowdown in new TB cases worldwide, the recent rise in drug-
resistant rates is alarming and could reverse the positive trends 
[7]. In response, WHO has adopted a new and comprehensive 
strategy, the “WHO End TB Strategy,” endorsed by all Member 
States, guiding concerted efforts at the global, regional, and 
national levels [8,9].

As resistant forms of TB pose a significant threat to 
global disease control efforts [10,11], it should be addressed 
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ABSTRACT
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB). In this study, various 
molecular modeling tools were used to search for potent TB therapeutics. Approximately 792 anti-TB inhibitors were 
collected from the literature, along with their experimentally determined biological activities. These compounds were 
then classified into three groups based on their biological activities. The geometries of all the collected inhibitors 
were optimized, followed by docking them into a few anti-TB receptors obtained from the Protein Data Bank. 
The docking results express the nature of interactions between the ligands and their respective receptors, which 
are prevalently noncovalent, dominated by hydrogen bonds and van der Waals’ interactions. Later, we generated 
structure-based 14 quantitative structure-activity relationship models using appropriate descriptors to predict the 
bioactivity values of the selected anti-TB inhibitors against a few cell lines. The best models were selected on the 
basis of statistical parameters and were validated by training and test set division. The predicted bioactivities of 
the selected inhibitors are comparable to the experimentally determined bioactivity values.
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by improving healthcare systems, ensuring proper diagnosis 
and treatment monitoring, educating patients, and investing 
in research for new therapies. This underscores a significant 
progression, starting from the initial discovery of para-amino 
salicylic acid, followed by isoniazid in the mid-20th century, to 
the latest discovery of drugs like Bedaquiline and Delamanid 
[12–15]. Access to drugs such as Bedaquiline and Delamanid 
remains a challenge in many parts of the world [16]. Therefore, 
there is a critical need for an improved drug that can simplify 
the treatment process, reducing treatment duration [17]. 
A breakthrough for treating drug-susceptible TB includes 
rifapentine and moxifloxacin, which are of shorter treatment 
regimens [18,19]. Despite progress, challenges remain, including 
the need for validated in vitro and animal models that accurately 
predict the success of new drugs and drug combinations. This gap 
emphasizes the importance of continued research to enhance our 
understanding of TB biology and drug efficacy.

The use of computational methodologies has become 
very important in the discovery and optimization of novel 
pharmaceutical agents [20–22]. In pharmaceutical research, the 
utilization of these methods allows researchers to screen large 
databases of compounds or simulate molecular interactions 
rapidly. These are also used to optimize drug combinations, 
particularly important for treating complex diseases like TB or 
cancer, where multiple drugs may be needed to target different 
aspects of the disease. By providing detailed insights into 
drug-target interactions and pharmacokinetic properties before 
entering clinical trials, computational methodologies help to 
reduce the risks associated with drug development. Indeed, 
a first-tier computational screening approach is important to 
explore the structure–activity relationships among different 
scaffolds. In-silico studies based on docking performance and 
quantitative structure-activity relationship (QSAR)-predicted 
bioactivity at an early stage are needed to identify and prioritize 
molecular scaffolds for future consideration.

In this study, we collected anti-TB inhibitors from various 
literature and databases. These compounds were divided into three 
classes based on their biological activity. The geometries of the 
compounds were optimized using the density functional theory 
(DFT) functional, followed by molecular docking calculations 
to determine docking fitness-based descriptors [23]. DFT-based 
descriptors, including fragment-based, quantum chemical, 
thermodynamic, electrostatic, topological, and geometric 
descriptors, were calculated for structural and statistical analyses. 
We performed QSAR analysis to predict activities of anti-TB 
inhibitors, and these models established a relation between the 
activity of the compounds and the molecular structure descriptors. 
It is not a complete drug development pipeline. In this study, it 
is intended as a first-tier computational screening to focus on 
molecular structure and activity relationships among the selected 
compounds. Here, scaffolds are prioritized for further synthesis 
and biological evaluation.

METHODOLOGY

Geometry optimization
Approximately 792 anti-TB inhibitors of various 

structural analogues were collected from the literature, along 

with their experimentally derived biological activities measured 
by minimum inhibitor concentration (MIC50) and inhibitor 
concentration (IC50) values [24–49]. The geometries of all 
the considered inhibitors were optimized by DFT functional 
using hybrid three-parameter Becke-Lee-Yang-Parr (B3LYP) 
and hybrid meta exchange-correlation functionals (M06) 
along with 6-31G (d) basis set using the Gaussian 09 program 
[50]. Frequency calculations were also carried out at the same 
level of theory to ensure that the obtained stationary points 
correspond to a minimum on the potential energy surface. The 
optimized structures were then utilized for docking calculations 
and QSAR analysis.

Preparation of the dataset
The original IC50 and MIC50 values were transformed 

into their corresponding pIC50 and pMIC50 values (for the ease 
of calculations) by applying the formula pMIC = −log MIC and 
are reported in Tables S1–S14. These data sets include anti-TB 
inhibitors that exhibit inhibitory potency against 14 distinct 
cell lines, including pKi, H37rv, Human, Ribosome, Iron_
Deficiency, LORA, MABA, Newman, VERO, 7H12, ICB59, 
LM13, MABA_GAS, and RV128. All the collected anti-TB 
inhibitors were organized and categorized into three data sets 
based on pIC50 and pMIC50 values. Four cell lines were chosen 
for pIC50, four cell lines were selected for pMIC50, and six cell 
lines were picked for both pIC50 and pMIC50.

Molecular docking
In this investigation, molecular docking calculations 

were carried out using the GOLD and AutoDock4 programs 
[51,52]. Here, we have selected 11 crystal structures [Protein 
Data Bank (PDB) IDs: 1DF7, 1G3U, 1MDB, 1UZN, 1ZID, 
2AQK, 2CIB, 2DFT, 2FUM, 3ORM, and 4U0J] to use as 
receptors in the docking calculations [53–63]. These receptors 
are known to be specific targets for binding to anti-TB inhibitors. 
The docking program was utilized to predict the binding affinity 
and the preferred orientation of the ligands at the receptor 
binding site. The AutoDock4 tool was used to prepare the 
receptor structures by adding polar hydrogens, assigning partial 
and Gasteiger charges, and removing all water molecules and 
heteroatoms. The binding site of the receptors was defined using 
a grid of interacting points. The grid points were determined 
based on the position of the pre-bound ligand within the binding 
site of each receptor, as observed in its crystal structure. The 
default parameters of the free energy scoring function were 
used to assess the binding affinity of the ligand to the receptors.

QSAR
The Comprehensive Descriptors for Structural and 

Statistical Analysis (CODESSA 3.0) program [64] was used for 
the generation of the QSAR models. This program calculates 
various structural and statistical parameters based on 2D and 
3D molecular descriptors of the chemical compounds, including 
fragment-based, thermodynamics, topological, electrostatics, 
quantum chemical, constitutional, and geometrical descriptors 
[65]. The DFT-based descriptors are based on the electron 
density and eigen values of the frontier orbitals and are 
convenient to describe the chemical reactivity. We have also 
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calculated conceptual DFT-based descriptors, such as hardness, 
softness, electronegativity, chemical potential, electrophilicity 
index, and so on, for the compounds and were added them 
for QSAR modeling [66,67]. The docking scores and other 
parameters, including protein-ligand hydrogen bond energy 
(external H-bonds), protein-ligand van der Waals energy 
(external vdw), sum of the internal torsion and internal vdw terms 
[internal energy term S (int)], and so on, were also incorporated 
externally in the database of QSAR modeling to include the 
information from ligand-receptor interaction. All possible 
combinations of various descriptors and docking parameters 
were tested to select the best descriptor-based models. The best 
multiparameter regression was achieved by iteratively adding 
descriptors to obtain the best values of statistical criteria such 
as the highest values of R2, cross-validated R2

cv, and the F value. 
The validation of the generated QSAR models was achieved by 
dividing the data sets into training and test sets.

RESULTS AND DISCUSSION

Docking analysis
Molecular docking results provide valuable insights 

into ligand binding at receptor sites through nonbonding 
interactions with optimal docking scores. The selected inhibitors 
were subjected to molecular docking calculations using 11 anti-
TB receptors (PDB IDs: 1DF7, 1G3U, 1MDB, 1UZN, 1ZID, 
2AQK, 2CIB, 2DFT, 2FUM, 3ORM, and 4U0J). Thirty docked 
poses for each of the inhibitors were generated using each of the 
receptors. All 792 inhibitors were successfully docked into the 11 
receptors. Hydrogen bond interaction, van der Waals interaction, 
and other weak noncovalent interactions are found to play a 
major role in binding the inhibitors with the receptors. Many 
of the inhibitors exhibited good docking scores; however, the 
docking calculations using 1UZN and 2FUM were unsuccessful 
for several compounds. The highest-scoring docked poses from 
receptors 2CIB, 1ZID, and 4U0J showed the best comparability 
between experimental and predicted activity values. As a result, 
receptors 2CIB and 1ZID were selected for further analysis. The 
evaluation of the top-ranked docked poses was based on the 
analysis of ligand interaction diagrams. Table 1 presents ligand 
interaction diagrams for selected inhibitors, summarizing their 
interactions with the receptors based on the highest-scored docked 
poses. Notably, GLY14 residue displayed the highest number of 
interactions, followed by GLY96, ALA98, ILE122, and MET147, 
indicating their primary involvement in interactions with the 
2CIB and 1ZID receptors. Receptors 2DFT, 2FUM, and 1G3U 
were generally associated with hydrogen bonding, while stacking 
interactions involved ARG153 and LYS13. Additionally, various 
types of ligand interactions were found to be crucial for binding, 
with residues ALA22, ASP148, ASP94, MET61, and ILE201 
typically involved in these interactions.

QSAR analysis
The CODESSA program was used to generate QSAR 

models (Set 1–14) using both conventional and conceptual 
descriptors, along with the docking scores of all considered 
anti-TB inhibitors. Multiple linear regressions (MLRs) analysis 
was performed on all possible combinations of descriptors. 

Traditional descriptors, such as constitutional, geometrical, 
topological, electrostatic, and quantum chemical features, 
were also computed. Conceptual DFT-based descriptors, 
including hardness, chemical potential, and electrophilicity 
index, were incorporated externally. In addition, docking-based 
descriptors, including docking fitness score, H-bond, and van 
der Waals interactions, obtained from docking results, were 
also incorporated into QSAR modeling. We have used various 
numbers of descriptors in regression analyses to ensure the 
mathematical significance and robustness of the calculations. 
Table S15 represents the selected descriptors used to generate 
the QSAR models.

The optimal number of descriptors for the final QSAR 
model has been determined. A summary of the investigation for 
various descriptor combinations is presented in Table 2, along 
with the important measurable parameters associated with 
each model. All the generated models were ranked according 
to their R2 (correlation coefficient), R2

cv (cross-validated R2), F 
(Fischer statistic), s2 (SD), and SE values. The inhibitors were 
divided into a training and a test set for the rigorous validation 
of the generated QSAR models. The descriptors and predicted 
activities derived from MLR and cross-validation of the 
regression coefficient (cv) are presented in Table 2 for both the 
training and test sets.

Three classes of inhibitors
Class 1: for  cell lines

In class 1, Sets 1, 2, 3, and 4 comprise a total of 47, 
111, 53, and 52 compounds, respectively. These sets pertain 
to TB-infected cells from pki, H37Rv, human, and ribosome. 
The models for these sets, using 7, 10, 6, and 6 descriptors, 
respectively, are highlighted to demonstrate the optimal models.

To validate these QSAR models, a division into 
training and test sets was implemented. Test sets consisted of 
5, 9, 7, and 5 randomly selected inhibitors, while the remaining 
42, 102, 46, and 47 inhibitors were allocated to training sets. 
Statistical parameters for both models, with and without test set 
division, are given in Table 2.

The combination of the selected descriptors exhibited 
notable R2 (0.70) and R2

cv (0.52) for Set 1, R2 (0.63) and R2
cv (0.55) 

for Set 2, R2 (0.81) and R2
cv (0.76) for Set 3, and R2 (0.70) and 

R2
cv(0.56) for Set 4. The comparability between experimental 

and predicted values of pIC50 is depicted in Figure 1, with test 
set inhibitors highlighted in red. These plots affirm the validity 
of predicting test set inhibitors, indicating the utility of these 
models for unknown compounds. Tables S1–S4 represent the 
detailed experimental and calculated bioactivity values of 
class 1 set inhibitors. These results show comparability of the 
predicted activity values obtained from the QSAR models with 
the experimentally available values.

Class 2: for  cell lines
Table 2 presents the results for four different sets of 

anti-TB-infected cells: Set 5, 6, 7, and 8. Set 5 comprises 24 
compounds with five descriptors. This set is divided into a 
training set of 20 compounds and a test set of four compounds, 
yielding R2 values of 0.88 and R2

cv values of 0.78. Set 6 consists 
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Table 1. Ligand interaction diagram for selected receptors.

PDB ID Docked pose Ligand interaction diagram

1DF7

1G3U

1MDB

1UZN
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PDB ID Docked pose Ligand interaction diagram

1ZID

2AQK

2CIB

2DFT

(Continued)
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PDB ID Docked pose Ligand interaction diagram

2FUM

4FBT

4U0J

of 110 compounds with eight descriptors, divided into a training 
set of 100 compounds and a test set of 10 compounds, resulting 
in R2 and R2

cv values of 0.77 and 0.73, respectively. Similarly, 
Set 7 includes 130 compounds with 10 descriptors. This set is 
divided into a training set of 120 compounds and a test set of 
10 compounds, leading to R2 and R2

cv values of 0.81 and 0.77, 
respectively. Finally, Set 8 comprises 28 compounds with 
five descriptors. This set is divided into a training set of 24 
compounds and a test set of four compounds. The statistical 
parameters R2 and R2

cv values for Set 8 are 0.94 and 0.91, 
respectively. Integrating the statistical information from all 
these descriptors enhances the overall quality of the models 

used for the test set division. Notably, the positive contributions 
from DFT and docking-based descriptors complement the 
coefficient values obtained from the conventional QSAR-
based descriptor model across all sets. Figure 2 shows the 
plots illustrating the relationship between experimental and 
predicted values of pMIC50 for all these class 2 sets. Sets 6 
and 7 exhibit particularly strong statistical performance, while 
Sets 5 and 8 also demonstrate very good parameters. For class 
2 inhibitors, calculated values of bioactivity derived from the 
generated models are reported in Tables S5–S8, along with the 
experimentally determined values, and these results show good 
comparability.
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Table 2. Statistical significances of the selected QSAR models for different sets of compounds.

Set #Comp. #Des. R2 R2
cv SE S2 F Regression equation for  

descriptor-based models CDFTdescriptors

Set 1

pIC50_pKi

47

(42)

5*

7
0.70

(0.71)

0.52

(0.54)

0.38

(0.37)

0.18

(0.17)

10.43

(11.66)

=D24 (−0.11) + D76 (−2.05) + D41 (151.16) 
+ D8 (24.43) + D72 (−11.33) + D68 (9.37) + 

D19 (−0.42) + (−176.19)
Y

Set 2

pIC50_H37rv

111

(102)

9*

10
0.63

(0.64)

0.55

(0.56)

0.68

(0.68)

0.52

(0.52)

16.68

(15.80)

=D39 (−80.96) + D25 (32.01) + D20 (0.92) 
+ D5 (−57.37) + D40 (4.54) + D74 (0.23) + 

D45 (0.06) + D57 (1.58) + D7 (−8.84) + D52 
(−0.71) + 166.06

Y

Set 3

pIC50_Human

53

(46)

7*

6
0.81

(0.81)

0.76

(0.76)

0.53

(0.52)

0.33

(0.32)

33.63

(28.32)

=D63 (−0.28) + D22 (−39.37) + D37 (2.88) 
+ D41 (59.25) + D28 (−0.16) + D61 (0.24) + 

(−56.10)
Y

Set 4

pIC50_Ribosome

52

(47)

5*

6
0.70

(0.73)

0.56

(0.54)

0.30

(0.26)

0.10

(0.08)

17.16

(17.72)

=D29 (−0.38) + D30 (0.06) + D67 (0.43) + 
D77 (10.76) + D60 (0.00) + D13 (3.72) + 

(−2.33)
Y

Set 5

pMIC50_Iron_pKi

24

(20)

4*

5
0.88

(0.88)

0.78

(0.79)

0.43

(0.41)

0.25

(0.25)

25.57

(20.70)
=D73 (−36.76) + D71 (0.00) + D21 (498.75) + 

D4 (−133.36) + D33 (0.65) + 236.00 Y

Set 6

pMIC50_LORA

110

(100)

10*

8
0.77

(0.68)

0.73

(0.62)

0.29

(0.35)

0.09

(0.13)

41.80

(24.63)

=D9 (2.23) + D46 (−0.09) + D50(−0.09) + 
D49 (0.09) + D18 (0.32) + D12 (11.58) + D13 

(0.55) + D73 (−3.30) + 0.80
Y

Set 7

pMIC50_MABA

130

(120)

10*

10
0.81

(0.80)

0.77

(0.75)

0.65

(0.67)

0.47

(0.49)

49.15

(52.51)

=D11 (46.31) + D38 (−60.35) + D23 (−0.38) 
+ D65 (−0.25) + D53 (0.46) + D14 (−0.01) 

+ D36 (29.64) + D42 (−9.82) + D3 (15.08) + 
D35 (27.42) + (−77.42)

N

Set 8

pMIC50_Newman

28

(24)

4*

5
0.94

(0.94)

0.91

(0.90)

0.14

(0.14)

0.02

(0.03)

74.43

(58.18)
=D62 (0.24) + D64 (−0.69) + D61 (0.61) + 

D32 (0.30) + D2 (0.33) + (−0.23) Y

Set 9

pIC50_VERO_Cell

74

(71)

3*

7
0.98

(0.98)

0.98

(0.98)

0.10

(0.10)

0.01

(0.01)

699

(637)

=D6 (19.16) + D55 (1.95) + D61 (0.07) + D27 
(−0.05) + D44 (0.01) + D20 (0.00) + D51 

(0.04) + (−22.34)
Y

Set 10

pMIC50_7H12

17

(14)

3*

2
0.64

(0.78)

0.56

(0.64)

0.46

(0.38)

0.26

(0.18)

12.23

(19.96)
=D1 (0.52) + D31 (0.12) + 4.95 Y

Set 11

pMIC50_ICB59

42

(37)

5*

5
0.61

(0.63)

0.49

(0.51)

0.40

(0.37)

0.18

(0.16)

11.12

(11.18)
=D69 (−0.03) + D32 (−1.19) + D56 (0.30) + 

D16 (0.99) + D70 (0.07) + 1.41 Y

Set 12

pMIC50_LM13

36

(30)

6*

5
0.65

(0.66)

0.51

(0.51)

0.32

(0.30)

0.12

(0.12)

9.05

(7.53)

=D21 (−182.71) + D29 (0.39) + D48 (0.06) 
+ D26 (0.12) + D15 (0.03) + D66 (−0.38) + 

(−9.46)
Y

Set 13

pMIC50_MABA_GAS

16

(13)

3*

2
0.88

(0.86)

0.80

(0.77)

0.37

(0.34)

0.17

(0.15)

48.05

(31.91)
=D75 (−61.89) + D27 (−0.24) + 4.90 Y

Set 14

pMIC50_RV128

52

(47)

5*

6
0.76

(0.76)

0.69

(0.68)

0.29

(0.28)

0.09

(0.09)

24.72

(21.81)

=D70 (−0.09) + D17 (−1.46) + D36 (18.13) 
+ D10 (3.28) + D23 (−2.10) + D43 (1.59) + 

(−8.19)
Y

#Comp is number of compounds; #Des is number of descriptors; R2 is correlation coefficient; R2
cv is cross-validation coefficient; s2 is SD; F is Fischer statistics; numbers 

in italics is the number of considered compounds; numbers in brackets is after division in training and test sets; * shows the numbers of compounds in the test set.
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Figure 1. The plot of experimental (pIC50 Exp.) versus predicted (pIC50 Pred.) bioactivity values for Set 1–4. Blue 
points show training set compounds, and red points show test set compounds.

Figure 2. The plot of experimental (pMIC50 Exp.) versus predicted (pMIC50 Pred.) bioactivity values for Set 5–8. Blue 
points show training set compounds, and red points show test set compounds.
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Class 3: for both and cell lines
Sets 9–14, similar to classes 1 and 2, show a strong 

statistical performance with eight sets of compounds.
Set 9 includes 74 compounds, with 71 in the training 

set and 3 in the test set, achieving an R2 = 0.98, R2
cv = 0.98. Set 

10 has 17 compounds, comprising 14 in the training set and 3 in 
the test set, with an R2 = 0.64, R2

cv = 0.56. In Set 11, there are 42 
compounds, with 37 in the training set and 5 in the test set, resulting 
in an R2 = 0.61, R2cv = 0.59. Set 12 contains 36 compounds, 30 of 
which are in the training set and 6 in the test set, with an R2 = 0.65, 
R2cv = 0.51. Set 13 consists of 16 compounds, featuring 13 in the 
training set and 3 in the test set, achieving an R2 = 0.88, R2

cv = 0.80. 
Finally, Set 14 has 52 compounds, with 47 in the training set and 5 
in the test set, resulting in an R2 = 0.76, R2

cv = 0.69. All of these sets 
exhibit statistically significant descriptors, as presented in Table 2. 
For Sets 9–14, the plot between experimental and predicted values 
of bioactivity is shown in Figure 3.

Based on these models, we have predicted bioactivity 
of three classes of compounds, and the detailed predicted values 
of bioactivity of all the selected anti-TB inhibitors of Set 9–14 
are given in Tables S9–S14. The applicability of the generated 

QSAR models was validated by performing leave-one-out, 
leave-many-out cross validations, and Y-randomization tests for 
the prediction of bioactivity of the compounds. The statistical 
parameters of these models are found to be significant for the 
class of selected inhibitors.

Moulishankar et al. [68] did the QSAR modeling for 
a set of 53 novel thiazolidine 4-one derivatives that have the 
potential to act as potent anti-TB inhibitors. These molecules 
were collected from the literature with their MIC activity. In their 
approach, they had predicted anti-TB activity by splitting the 
molecules into a training set (43 compounds) and a test set (10 
compounds). This study represented the value of R2 as 0.9092 and 
R2adj as 0.8950. In our study, thiazolidine 4-one derivatives with 
MIC activity were included in Sets 6, 7, 10, 13, and 14, along 
with other structural entities. These sets exhibit strong statistical 
performance. Among these, the QSAR model for Set 13 shows 
a value of R2 as 0.88, which is similar to the model generated by 
Moulishankar et al. [68] As Set 13 contains thiazolidine 4-one 
derivatives as well as some more inhibitors; it can be used to 
predict the bioactivity for a wide range of compounds. Similarly, 
Valencia et al. [69] designed and tested the bioactivity for a set 
of novel quinolinone-based thiosemicarbazones. In their QSAR 

Figure 3. The plot of experimental (pIC50 Exp. and pMIC50 Exp.) versus predicted (pIC50 Pred. and pMIC50 Pred.) bioactivity 
values for Set 9–14. Blue points show training set compounds, and red points show test set compounds.
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modeling, they achieved the statistical parameters as R2 = 0.83; F 
= 47.96; s = 0.31. In this present study, a few quinolinone-based 
thiosemicarbazones have been included in Set 2. The statistical 
parameters suggest that the model generated by Valencia et al. 
[69] is specific for quinolinone-based thiosemicarbazones to 
predict the bioactivity values. Pietra et al. [70] performed the 
QSAR modeling on purine analogues and reported sensitivity as 
0.85 for the training set and 0.82 for the test set. In our study, 
these types of compounds were included in Set 5 with a good 
statistical performance of R2 of 0.88. This Set 5 model may be 
significant for predicting bioactivity for purine derivatives. The 
QSAR model for Set 8 can also be a good model to predict 
bioactivity for phenanthrene derivatives with significant 
statistical parameters. This model shows R2 as 0.94, which is 
similar to that shown by Shagufta et al. [71] for a series of 44 
diaryloxy-methano-phenanthrene derivatives.

CONCLUSION
This investigation employed molecular docking scores 

and QSAR for the analysis of 792 anti-TB inhibitors. A total 
of 14 QSAR models were developed using MLR and partial 
least squares, based on data collected from various biological 
activities of anti-TB inhibitors. We have generated structure-
based QSAR models to predict bioactivity values for a set of anti-
TB inhibitors against various cell lines using an appropriate and 
vital set of descriptors. This was achieved by dividing the data 
set into training and test sets to fit the models with the validation 
of leave-one-out and leave-many-out. This study uses conceptual 
DFT-based descriptors along with conventional descriptors such 
as constitutional, topological, docking, geometrical, electrostatic, 
and quantum chemical. The calculated descriptors were based 
on conceptual DFT, emphasizing hardness, chemical potential, 
and the electrophilicity index. The predicted bioactivity values 
show good comparability with the experimentally available 
values. Some compounds show higher predicted values, which 
implies the necessity of further research on these compounds. 
Notably, quantum chemical descriptors emerged as crucial, and 
the incorporation of conceptual DFT descriptors has significantly 
improved the statistical parameters of the model across various 
scenarios.

Limitation
Future studies are needed to include MD simulations 

to confirm the dynamic stability of top-ranked complexes 
identified here. Additionally, while this study identifies 
promising scaffolds based on docking and QSAR models, 
prioritizing for synthesis; subsequent ADMET profiling is 
essential before preclinical evaluation.
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