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INTRODUCTION
Excessive storage of lipid in hepatocytes is the main 

characteristic of nonalcoholic fatty liver disease (NAFLD) [1] 
and is related to an increased risk of metabolic diseases such 
as obesity and dyslipidaemia [2]. The high level of free fatty 
acids (FFAs) in the blood is generally found in both obesity 
[3] and NAFLD [4]. Elevated FFA levels lead to increased 
uptake and storage of lipids in the liver and muscles [5]. This is 
accompanied by an increase in hepatic de novo lipogenesis and 
triglyceride synthesis mediated by sterol regulatory element-
binding protein 1c (SREBP1c) [6]. Activation of transcriptional 

factor SREBP1c stimulates main enzymes such as acetyl-
CoA carboxylase (ACC) and fatty acid synthase (FAS), which 
contribute to excessive hepatic triglyceride accumulation in 
patients with NAFLD [7]. Peroxisome proliferator-activated 
receptor α (PPARα) is an important transcriptional regulator 
involved in hepatic lipid homeostasis, including fatty acid (FA) 
activation and transport to the mitochondria, β-oxidation, and 
lipogenesis [8]. Additionally, impaired β-oxidation may induce 
lipid accumulation. However, the activation of β-oxidation in 
the peroxisomes and microsomes is a possible pathway for 
regulating the overproduction of fatty acids (FAs) in hepatocytes 
[9]. Cytochrome P450 2E1 (CYP2E1) is highly expressed in 
response to the pathological processes of metabolic diseases 
[9]. CYP2E1 induction is an alternative response that prevents 
FA overload via β-oxidation [10], and elevated CYP2E1 activity 
has been reported in obesity and NAFLD [11]. Furthermore, 
the major FAs related to de novo lipogenesis are palmitic acid 
(PA) and stearic acid, which are linked with the risk of type 2 
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ABSTRACT
The major characteristic of nonalcoholic fatty liver disease (NAFLD) is the excessive triglyceride accumulation 
in hepatocytes due to an imbalance between lipid intake and removal, which also disrupts other lipid metabolism 
pathways. Therefore, the present study explored the effect of Bouea macrophylla Griffith root ethanolic extract 
(BME) on lipid homeostasis in palmitate-induced steatosis in HepG2 cells as well as the phytochemical content of 
BME. In palmitic acid-induced lipogenesis in HepG2 cells, BME (5–10 µg/ml) could suppress the expression of 
lipogenic genes, including sterol regulatory element-binding protein 1c, acetyl-CoA carboxylase, fatty acid synthase, 
and reduced lipid storage. Interestingly, the expression of the fatty acid oxidation gene, peroxisome proliferator-
activated receptor α, was upregulated, while that of cytochrome P450 2E1 was downregulated by BME. The 
screening of phytochemicals showed the presence of amines, flavonoids, and phenolics, and high-performance liquid 
chromatography analysis revealed gallic acid as the major bioactive component of BME. These findings indicate that 
BME may be useful for improving abnormal lipid homeostasis in metabolic disease-related NAFLD.
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Total phenolic content (TPC) test
TPC was determined using the Folin-Ciocalteu assay, 

as described by Zahoor et al. [31] with slight modifications. 
BME (1 mg) was dissolved in methanol (1 ml). The prepared 
samples (1 ml) were then incubated with 10% Folin-Ciocalteu 
reagent (1 ml) and 7.5% sodium carbonate solution (2 ml) in 
the dark. Absorbance was measured after 30 minutes at 765 nm. 
TPC was calculated as mg gallic acid equivalents (mg GAE)/g 
of dry extract.  

Total flavonoid content (TFC) test
BME (1 mg) was dissolved in methanol (1 ml) and 

diluted with distilled water (diluted 10-fold). The diluted samples 
were incubated with 5% sodium nitrite solution (2 ml) for 5 
minutes and then 10% aluminium chloride solution (2 ml) was 
added. The mixture was vortexed and mixed with 1 M sodium 
hydroxide (2 ml) and after 10 minutes the absorbance was 
measured immediately at 415 nm. TFC was calculated as mg 
quercetin equivalents (mg QE)/g of dry extract.

High-performance liquid chromatography (HPLC) analysis 
HPLC analysis was performed in triplicate by using 

a Dionex UltiMate™ 3000 HPLC system and C18 column (5 
µm, 250 mm × 4.6 mm) (ACE, UK), following the protocol by 
Nanna et al. [32]. The mobile phase consisting of 0.1% acetic 
acid (solvent A) and acetonitrile (solvent B). The gradient set 
at 90:10 (A: B) for 5 minutes, shifted to 72:28 for 15 minutes, 
then to 50:50 for 10 minutes, followed by 35:65 for 10 minutes, 
25:75 for 5 minutes, and finally to 0:100 for 5 minutes. The 
injection volume was 10 µl at a flow rate of 0.8 ml/minute and 
25°C as the column temperature. The wavelength of detection 
was established at 254 nm. BME ingredients were identified 
by comparing their retention times and UV-VIS detector with 
those of the following standards (caffeic acid, chlorogenic 
acid, coumaric acid, ellagic acid, ferulic acid, gallic acid, 
hesperidin, quercetin, rosmarinic acid, rutin, and vanillin). 
Semi-quantitative data were analysed based on the area under 
the peak relative to the content of each component in the extract.

Cell culture and experimental design
All study protocol was reviewed and approved by the 

Thammasat University Institutional Biosafety Committee (TU-
IBC 036/2566). HepG2 cells (Lot#70057473) were obtained 
from the American Type Culture Collection (Virginia, USA). 
An in vitro model of NAFLD was established by inducing 
lipid overload in hepatocytes through 24 hours incubation with 
a high concentration of PA [33]. The PA-BSA conjugate was 
prepared as previously described [34]. Briefly, a stock solution 
of PA (50 mM) was dissolved in 0.1 M NaOH, then diluted 
in DMEM containing 1% BSA (FA-free) and incubated for 1 
hour to allow conjugation. The solution was filtered through 
a 0.22 µm filter and stored at −20°C until use. The PA stock 
was diluted with DMEM to a final concentration of 250 µM. 
HepG2 cells were divided into three groups: a control group 
(untreated), a PA-treated group, and a BME-treated group. 
Lipid overload was induced using 250 µM PA. After 24 hours 
of PA incubation, the various concentrations of BME (1, 5, 

diabetes and cardiovascular diseases [12]. It has been shown 
that PA can induce lipotoxicity in various cell lines [13–15], and 
HepG2 cells are also used to create the NAFLD model through 
PA induction [13,14,16,17].

Bouea macrophylla Griffith (BM), commonly 
known as plum mango, is a tropical Asian plant known as 
Maprang in Thailand [18]. This plant belongs to the mango 
family of Anacardiaceae. It has been reported that many 
parts of the BM, including the fruit, leaf, stem, and seed, 
have several pharmacological properties, such as antioxidant 
[19–21], anticancer [22–24], and antihyperglycaemic [25,26] 
activities. Moreover, the root extracts of some species in the 
Anacardiaceae family, including Mangifera indica (mango) 
and Anacardium occidentale (cashew), contain phenolic and 
flavonoid components with pharmacological effects such as 
antihyperglycaemia and antioxidation [27,28]. BM is also a 
member of the Anacardiaceae family; however, pharmacological 
information on its root part is still lacking, especially regarding 
its potential role in regulating obesity, which is one of the 
major public health threats [29]. Currently, medicinal plants 
are popular alternatives for disease treatment. Therefore, the 
present study was undertaken to examine the effect of BM root 
ethanolic extract (BME) on regulating lipid homeostasis in PA-
induced lipid accumulation in HepG2 cells, which is related to 
various chronic diseases such as obesity and NAFLD.

MATERIALS AND METHODS

Chemicals
The following chemicals were purchased: standard 

bioactive compounds, including caffeic acid, chlorogenic acid, 
coumaric acid, ellagic acid, ferulic acid, gallic acid, hesperidin, 
quercetin, rosmarinic acid, rutin, and vanillin (Sigma-Aldrich, 
USA). Chemicals for cell culture and gene expression analysis 
were obtained as follows: sodium palmitate, bovine serum 
albumin (BSA) (FA-free), dimethyl sulfoxide (DMSO), 
thiazolyl blue tetrazolium bromide (MTT), and Oil Red O 
(ORO) dye (Sigma-Aldrich, USA), cDNA synthesis kit (Bio-
Rad, USA), penicillin-streptomycin (Gibco, USA), Dulbecco’s 
modified Eagle’s medium (DMEM), and fetal bovine serum 
(Cytiva HyClone, USA).

Plant extraction
BM roots were collected from the Fruit Garden, 

Mueang District, Chanthaburi Province, Thailand. Voucher 
specimen, UBU-BM-1 (B. macrophylla Griffith, Thaweesak 
Juengwatanatrakul) was deposited in the Faculty of 
Pharmaceutical Sciences, Ubon Ratchathani University. The 
dried plant roots (30 g) were extracted with 300 ml of absolute 
ethanol for 3 days using the maceration technique, and the 
solvent was then evaporated to obtain the dry extract. The yield 
of dry powdered BME was 10%.

Phytochemical screening tests
Phytochemical screening of BME was performed to 

identify the main classes of compounds (alkaloids, amines, 
coumarins, flavonoids, and phenolics) present in the extracts, 
following standard protocols [30]. 
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and 10 μg/ml) were added to the BME-treated groups for 48 
hours. At the end of the experiment, cells were collected for 
lipid accumulation and lipogenic gene expression analyses. Six 
independent experiments were performed in duplicate.

Cell viability assay
HepG2 cells were seeded in a 96-well plate at a 

density of 1 × 104 cells/ml and cultured for 24 hours. Lipid 
overload was induced using PA, followed by treatment with 
various concentrations of BME (0, 1, 5, 10, 50, 100, and 200 
µg/ml) for 48 hours. Then, 0.5 mg/ml MTT solution (100 μl) 
was added to each well and incubated at 37°C for 4 hours. The 
MTT solution was discarded, and 100 µl of DMSO was added 
to dissolve formazan crystals. Absorbance was measured at 545 
nm to determine cell viability.

ORO staining
HepG2 cells were seeded at a density of 1 × 104 cells/

ml in the culture chamber slides and 96-well plates. After 
48 hours BME treatment, the medium was discarded and then 
rinsed with phosphate-buffered saline. Cells were fixed in 
10% formalin and washed with isopropanol. Then, cells were 
stained with 0.6% ORO solution for 1 hour. A picture of stained 
cells was taken by a Primovert microscope (Carl Zeiss, USA) 
at ×40 magnification. Lipid accumulation in the culture plates 
was quantified by extracting the stain with isopropanol and 
measuring absorbance at 500 nm.

Quantitative reverse transcription polymerase chain reaction
Total RNA was extracted according to the 

manufacturer’s instructions (Vivantis, Kuala Lumpur, Malaysia), 
and RNA quantification was measured using a Nanodrop 
2000 spectrophotometer (Thermo Fisher Scientific). cDNA 
was produced using the iScript cDNA synthesis kit. Reverse 
transcription polymerase chain reactionwas performed using 
LightCycler 480 SYBR Green I Master Mix (Roche Diagnostics), 
with three technical replicates for each analysis. Primer sequences 
used in this study are listed in Table 1. The mRNA levels of all 
genes were normalised using β-actin as an internal control, and 
relative quantitation was performed using the 2−∆∆Ct method.

Statistical analysis
All experiments were performed in duplicate and 

repeated six times independently. Statistical analyses were 
performed using SPSS software (version 26.0). Results were 
expressed as mean ± SEM. Differences among groups were 
analysed using one-way ANOVA, followed by Tukey’s post hoc 
test. A p-value < 0.05 was considered statistically significant.

RESULTS

Phytochemical contents
The compound expression of alkaloids, amines, 

coumarins, flavonoids, and phenolic groups in BME was 
determined. The phytochemical content in the extracts was 
visually observed based on the color present. Results obtained 
are shown in Table 2, amines, flavonoids, and phenolics 

were found in BME, while alkaloids and coumarins were not 
detected. The TPC and the TFC are shown in Table 3. The 
results indicated that phenolic compound (616.18 ± 8.67 mg 
GAE/g) was the most abundant in the extract, followed by TFC 
(142.65 ± 3.40 mg QE/g). 

HPLC analysis
HPLC was employed for plant fingerprinting, and only 

gallic acid was quantified. The HPLC chromatograms of BME 
and gallic acid were shown in Figure 1A and B, respectively. 
BME showed that the gallic acid was predominantly present 
at 83.91 ± 0.01 mg/g of dry extract. No other standards were 
detected in the root extracts (Table 4).

Cell viability of BME
After 48 hours incubation with various BME 

concentrations, concentrations from 50 to 200 µg/ml of BME 
showed significant cytotoxicity (Fig. 2A). Thus, the present 

Table 2. Phytochemical screening of BME.

Phytochemical BME

1. Alkaloids −

2. Amines + (purple)

3. Coumarins −

4. Flavonoids + (orange)

5. Phenolics + (green)

Data are expressed as (+) for the presence and (−) for the absence of groups of 
compounds.

Table 1. Primers and their sequences.

Primers Primer sequences (5’- 3’)

SREBP1c Forward CCACTTCATCAAGGCAGACTCG

SREBP1c Reverse CAAGATGGTTCCGCCACTCAC

ACC Forward CTTGGCCTTGCACATAAGGTCC

ACC Reverse CCACCTACGGATAGACCGCA

FAS Forward ATAGTGTGGAAGACGCTGGC

FAS Reverse CTGGTACACCTTCCCACTCAC

PPARα Forward CAATGCACTGGAACTGGATGA

PPARα Reverse GTTGCTCTGCAGGTGGAGTCT

CYP2E1 Forward GCACAGGGACAGGGGAATC

CYP2E1 Reverse GAGGAAGGTGGGGTCGAAAG

β-actin Forward GATTCCTATGTGGGCGACGA

β-actin Reverse AGGTCTCAAACATGATCTGGGT

Table 3. Total phenolic content and total flavonoid content of BME.

Test Content

1. Total phenolic content 616.18 ± 8.67 mg GAE/g

2. Total flavonoid content 142.65 ± 3.40 mg QE/g

Data are expressed as mean ± SEM (n = 3).
mg GAE = mg gallic acid equivalents; mg QE = mg quercetin equivalents.
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study selected BME concentrations of 1–10 µg/ml for further 
examination of regulating impaired lipid homeostasis in HepG2 
cells. 

Hepatic lipid accumulation of BME
As shown in Figure 2B, the quantity of lipid droplets 

was significantly increased in the PA-treated group compared 
to that in the control group, whereas the BME (5–10 µg/ml) 
showed significantly decreased lipid accumulation. Moreover, 
the widespread lipid droplets were obviously revealed in the 
PA-treated group. Interestingly, the BME-treated groups could 
decrease lipid droplets in comparison to the PA-treated group 
(Fig. 2C).

Lipid homeostasis gene expression of BME
The PA-treated group showed significantly increased 

lipogenic gene expression of SREBP1c, ACC, and FAS 
compared to the control group (Fig. 3A–C). However, the BME-
treated groups at 1–10 µg/ml significantly suppressed these 
genes in comparison to the PA-treated group. Furthermore, 

Table 4. Bioactive compound content of BME.

Bioactive compound Content

1. Gallic acid 83.91 ± 0.01 mg/g dry extract

2. Caffeic acid None

3. Coumaric acid None

4. Ferulic acid None

5. Rosmarinic acid None

6. Chlorogenic acid None

7. Ellagic acid None

8. Vanillin None

9. Rutin None

10. Quercetin None

11. Hesperidin None

Data are expressed as mean ± SEM (n = 3).

Figure 1. HPLC Chromatogram of BME (A) and gallic acid (B). Data are 
expressed as mean ± SEM (n = 3).

Figure 2. Effects of BME on lipid accumulation in PA-induced HepG2 cells. 
(A) Viability of HepG2 cells using MTT assay. (B) Lipid accumulation was 
extracted by isopropanol, and the quantitative content was measured at 500 
nm. (C) Oil Red O-stained image of HepG2 cells observed under a microscope 
(400×). Data are expressed as mean ± SEM (n = 6). *p < 0.05 versus the control 
group (untreated cells). #p < 0.05 versus the PA-treated group.

Figure 3. Effects of BME on gene expression of lipid homeostasis in PA-
induced HepG2 cells. (A) SREBPIC, (B) ACC, (C) FAS, (D) PPARα, and (E) 
CYP2E1, β-actin was used as an internal control. Data are expressed as mean 
± SEM (n = 6). *p < 0.05 versus the control group (untreated cells). #p < 0.05 
versus the PA-treated group.
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has many pharmacological activities, including antioxidant 
[42,43] and anti-inflammatory effects [44–46]. Moreover, gallic 
acid has been reported to show anti-lipogenic activity in FA 
-induced HepG2 cells and in animal models of high-fat diet-
induced obesity [41,47,48]. In agreement with our study, the 
anti-lipogenic action of gallic acid may be related to the ability 
of BME to inhibit lipid accumulation in PA-induced lipogenesis 
in HepG2 cells by suppressing lipogenic genes (SREBP1c, 
ACC, and FAS) as well as by activating FA oxidation via the 
PPARα gene. Moreover, BME suppressed CYP2E1 expression. 
Based on these results, we hypothesised that the high gallic acid 
content in BME may be responsible for its ability to control 
lipid homeostasis. Nevertheless, BME may contain additional 
bioactive compounds that could enhance or modulate its 
beneficial effects on lipid homeostasis. Therefore, further 
investigation is needed to identify and quantify these remaining 
bioactive constituents.

CONCLUSION
We investigated the effect of BME in an NAFLD 

model using PA-induced lipid accumulation in HepG2 cells. 
BME was found to inhibit lipid droplet formation and reduce 
the expression of lipogenic genes such as SREBP1c, ACC, 
and FAS, as well as suppress CYP2E1, while stimulating the 
expression of the PPARα gene in PA-induced lipid accumulation 
in HepG2 cells. These findings strongly support the beneficial 
effects of BME and its main bioactive compound, gallic acid, 
in regulating abnormal lipid homeostasis. Therefore, BME 
may serve as a useful natural alternative for treating metabolic 
disease-related NAFLD. 
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compared to the PA-treated group, the concentrations of BME 
at 5 or 10 µg/ml significantly increased the expression of the FA 
oxidation gene, PPARα (Fig. 3D). Moreover, BME (5–10 µg/
ml) significantly suppressed expression of the CYP2E1 gene 
(Fig. 3E).

DISCUSSION
An imbalance in lipid homeostasis is associated with 

obesity-related NAFLD [35,36]. Abnormal lipid accumulation 
associated with high circulating FFA levels results in an 
increased uptake of FFAs and lipid storage by hepatocytes, 
ultimately leading to hepatic steatosis [1]. Compared to the 
control group, the PA-treated group showed significantly 
increased lipid accumulation, upregulation of lipogenic genes 
(SREBP1c, ACC, and FAS), increased CYP2E1 expression, 
and suppressed expression of FA oxidation gene (PPARα). The 
transcription factor SREBP1c is required for the regulation of 
lipogenic genes involved in FA synthesis, such as ACC and 
FAS [37]. SREBP1c activation increases hepatic lipogenesis 
in NAFLD [38]. The results demonstrated that the induction of 
lipid accumulation by PA was a suitable model for investigating 
the regulation of lipogenesis. Therefore, we examined the effects 
of BME on PA-induced lipid accumulation in HepG2 cells. 
Our data revealed that BME treatment reduced lipid storage 
and suppressed the SREBP1c, ACC, and FAS expression. 
Therefore, decreased expression of lipogenic genes by BME 
could alleviate NAFLD pathogenesis. In addition, PPARα, 
a gene that is a main regulator of FA oxidation and can help 
protect against NAFLD progression [39,40], was upregulated 
by BME treatment. FA overload in hepatocytes can activate 
alternative pathways, such as CYP2E1-mediated ω-oxidation 
[10]. CYP2E1 activation has been reported in the PA-induced 
steatosis of HepG2 cells [16]. In addition, BME treatment 
decreased CYP2E1 expression. Our findings suggest that the 
administration of BME promotes hepatic FA oxidation via 
increasing the expression of PPARα. Therefore, the regulation 
of hepatic lipid accumulation by BME is essential for the 
treatment of fatty liver disease and related diseases, such as 
obesity, dyslipidaemia, and diabetes.

Several parts of BM contain high amounts of 
phenolic compounds and exhibit various pharmacological 
activities [19–24]. The phytochemical screening of BME 
showed the presence of amines, flavonoids, and phenols. 
TPC and TFC were also performed in BME. Similarly, root 
extracts from some species in the Anacardiaceae family, 
including M. indica and A. occidentale, contain phenolic 
and flavonoid components as well [27,28]. Furthermore, the 
HPLC chromatogram of BME quantified only gallic acid, at 
a concentration of 83.91 ± 0.01 mg/g dry extract. However, 
other standards (caffeic acid, chlorogenic acid, coumaric acid, 
ellagic acid, ferulic acid, hesperidin, quercetin, rosmarinic 
acid, rutin, and vanillin) were not detected in BME. From 
this evidence, gallic acid, which is found in BME, may be an 
active compound that improves impaired lipid homeostasis in 
HepG2 cells.

Gallic acid (3,4,5-trihydroxybenzoic acid; molecular 
weight 170.12 g/mol) is a natural phenolic compound found 
in several plants, including fruits and nuts [41]. Gallic acid 

Ethical  approvals  details  are given in the 'Materials
and Methods' section.
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