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Diagnostic testing is crucial in modern healthcare, providing essential health information and influencing clinical
decisions and patient outcomes. Ensuring the validity and quality of these tests is vital, with stringent quality control
and assurance procedures enforced by regulatory bodies and healthcare facilities. Reference materials (RMs) are
essential for the accuracy and reliability of DNA-based diagnostic tests, serving as benchmarks for error detection,
test validity, and consistency. This study reviews the necessity of effective control substances for precise diagnostic
testing through a narrative literature review of synthetic DNA sequences, recombinant plasmids, genomic DNA,
and cell lines as RMs, sourced from PubMed, Scopus, and Google Scholar over the last decade. Each RM type
has specific advantages and disadvantages impacting diagnostic performance: gBlocks are highly specific but lack
genomic complexity; recombinant plasmids offer flexibility but face stability and contamination issues; genomic
DNA provides comprehensive diagnostic information but is complex and costly; cell lines simulate in vivo conditions
well but are prone to genetic drift and contamination. The review emphasizes the critical role of RMs in DNA-
based diagnostics and highlights challenges faced by Indonesian laboratories, recommending national coordination
and international collaboration to enhance RMs’ availability, thereby improving patient outcomes and aligning with
global standards.

INTRODUCTION

for ensuring diagnosis accuracy, guiding appropriate treatment

Diagnostic testing forms the foundation of modern
healthcare practice and provides essential clinical data about
an individual’s health status by detecting disease conditions
or infections [1]. These tests can range from simple blood
analyses to comprehensive genetic screenings. They are crucial
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plans, and tracking disease progression [2]. The validity and
accuracy of these diagnostic tests must thus be guaranteed
because they have a direct bearing on patient outcomes and
clinical judgments. To preserve high standards and dependability
in diagnostic testing, regulatory bodies, and healthcare facilities
use stringent quality control and assurance procedures [3].

The utilization of reference materials (RMs) or
external control materials (ECMs) in DNA-based diagnostic
testing is pivotal for ensuring proper and reliable results.
RMs act as benchmarks for testing procedures, enabling the
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detection and correction of errors and maintaining the validity
of test results [4—-6]. RMs and ECMs are different; RMs are
a type of ECM that has been standardized and rigorously
tested for specific parameters, making them vital for precise
calibration and validation of diagnostic assays [7]. ECMs,
which are carefully designed samples that mimic patient
specimens, are used to assess the performance of diagnostic
tests by providing an external standard to verify accuracy
and precision [8]. Consistently incorporating both RMs
and ECMs in the testing process is essential to meet quality
assurance standards, particularly in healthcare and public
health settings [9]. This function is critical for verifying test
performance and identifying significant changes that could
indicate issues with operational capabilities or equipment
[10,11].

The evolution of diagnostic technology has transformed
RMs from simple chemical or biological substances to more
sophisticated matrices that support the immunoassay of complex
substances, requiring consistent and stable RMs across various
testing platforms [5,12,13]. Genetic engineering and cell culture
innovations have ushered in a new era of RMs. These include
synthetic DNA sequences, recombinant plasmids, genomic
DNA, and cell lines with predetermined genetic compositions
suited to particular diagnostic testing needs. Sanger sequencing,
next-generation sequencing (NGS), Microarray and polymerase
chain reaction (PCR) are examples of advanced technologies
that require sensitive and specific RMs, which can improve the
quality and accuracy of diagnostic tests [14—18].

Indonesia, like many other countries, faces unique
challenges in its diagnostic technology sector, including limited
access to high-quality RMs, variations in laboratory standards
and procedures, and a need for stronger regulatory frameworks
to ensure consistency and reliability in diagnostic testing [19,20].
These challenges can affect the accuracy of diagnostic results
and have implications for patient care. Improving diagnostic
technology in Indonesia is crucial to enhance healthcare
outcomes, as accurate diagnostics are the cornerstone of effective
treatment and disease management. By addressing these specific
challenges and improving the quality of diagnostics, Indonesia
can better manage public health, respond to disease outbreaks
with greater agility, and align with international best practices.
Incorporating these concerns, it is evident that there is a critical
need for improvement within the diagnostic field in Indonesia
to ensure precise and dependable test results, optimize patient
care, and align with global healthcare standards. This review
illuminates these issues and offers insights and recommendations
to support Indonesian laboratories’ advancement [21].

This review focuses on summarizing current
knowledge about RMs and suggests ways for laboratories
to improve their diagnostic protocols in accordance with
international standards. The goal is to guide laboratories in the
selection of appropriate RMs to enhance the quality and accuracy
of their diagnostic tests. Therefore, it covers various aspects
as depicted in Figure 1. It highlights the methodologies used
in the study, including the narrative review approach and the
inclusion criteria for selecting relevant literature. Additionally,
it encompasses the discussion on applying these RMs across
various diagnostic technologies such as Sanger sequencing,

NGS, microarray, and PCR (both real-time and digital). The
figure concludes with recommendations for enhancing the
quality and availability of RMs in Indonesia through national
coordination and global collaboration initiatives to assist
laboratories in making informed choices.

METHODS

This narrative review approaches the necessity
and effectiveness of various control substances for precise
diagnostic testing. The review focused on original research
articles investigating synthetic DNA sequences, artificially
constructed plasmids, genomic DNA, and cell lines as
external controls and RMs. Databases such as PubMed,
Scopus, and Google Scholar were utilized for the literature
search. Scientific papers discussing the history, evaluation,
and development of RMs and their application in diagnostic
technologies, including Sanger sequencing, NGS, microarray,
and real-time and digital PCR (dPCR), are covered in this
review. Nonscientific publications, review articles, and
sources older than ten years were excluded from this review.

TYPE OF DNA-BASED RMS

The genetic testing procedure using DNA-based
PCR methods necessitates using RM to ensure the legitimacy
and consistency of the results [22]. RMs play a crucial role
in maintaining the integrity of the entire testing process
by establishing essential performance standards [2]. Four
commonly used RMs are gBlocks, artificial recombinant
plasmids, genomic DNA, and cell lines.

gBlocks

gBlocks are synthetic, double-stranded DNAmolecules
designed to contain specific sequences [23]. In PCR-based
protocols, gBlocks are primary controls to assess the assay’s
effectiveness and specificity [24]. These synthetic blocks can
represent various sequences, including gene variants, SNPs, or
other genetic markers pertinent to the research [12]. The high
fidelity and accuracy of gBlocks make them invaluable for
optimizing PCR assays, allowing scientists to evaluate primer
binding efficiency and the conditions necessary for precise
detection and measurement [25].

Artificial recombinant plasmids

Recombinant plasmids typically contain synthetic
and bacterial-amplified plasmids [26]. Synthetic plasmids are
engineered in vitro to contain specific gene sequences and
control elements, enhancing gene expression functions or
serving as standards for molecular diagnostics [27]. Bacterial-
amplified plasmids involve adding foreign DNA to a natural
plasmid vector, which is then replicated in bacterial host cells
[28]. These plasmids are significant in PCR methods because
they can be reproduced in vitro, facilitating the production of
large DNA fragment quantities and enabling accurate gene
quantification through standard curves [29].

Genomic DNA

Genomic DNA, derived from reliable sources such
as cell lines or well-characterized organisms, replicates the
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Figure 1. A comprehensive outline for the review article illustrates the various components involved in evaluating and applying reference materials (RMs) in DNA-

based diagnostic testing (Created with Biorender.com).

complexity of biological samples, ensuring proper DNA
extraction and amplification processes [30]. It plays a critical
role in genetic testing for detecting genetic changes or
assessing gene copy numbers, providing a precise comparison
representing the entire human DNA complexity [31].

Cell lines

Cell lines, continuously proliferating cell cultures,
offer consistent, uniform genetic material for PCR-
based testing [17,32]. They can be specifically chosen
or genetically altered to have relevant mutations, gene
expressions, or chromosomal changes, making them ideal
for validating genetic tests. Cell lines serve as relevant
biological counterparts to target genes, allowing researchers
to assess assay performance under conditions similar to
actual patient samples, ensuring high-quality control and
uniformity in routine testing [33,34].

The strategic implementation of RMs in PCR
processes, including genetic material and cell lines, effectively
ensures the legitimacy and reliability of test results [35].
Utilizing RMs such as gBlocks, artificial recombinant plasmids,
genomic DNA, and cell lines helps laboratories identify and
reduce procedural errors, optimize assay conditions, and
maintain high test accuracy. The intelligent use of RMs is
crucial in clinical diagnostics and genetic testing research and
development, emphasizing the importance of accurate and
reliable results [4,22].

ADVANTAGES AND DISADVANTAGES OF RMS

The selection of appropriate RM is crucial for
ensuring the accuracy and reliability of DNA-based diagnostic
testing. Different types of RMs, such as gBlocks, artificial
recombinant plasmids, genomic DNA, and cell lines, each offer
unique advantages and disadvantages that need to be carefully

considered (Table 1). The primary goal of using RMs is to
provide consistent benchmarks for testing procedures, thereby
enhancing the validity and reproducibility of diagnostic results
[4,22].

Four common types of RMs—gBlocks, artificial
recombinant DNA, genomic DNA, and cell lines—each
have distinct advantages and disadvantages. gBlocks are
highly specific and adaptable, offering high stability and
low contamination risk due to their synthetic nature, though
they may not represent the entire genetic complexity of an
organism and can degrade under certain conditions [23,24].
Recombinant plasmids provide high specificity and stability,
particularly in controlled environments, but are susceptible
to contamination and physical deterioration, with high costs
associated with synthetic plasmids [26,36]. Genomic DNA
offers a comprehensive genetic composition and high stability
when properly managed, but it is prone to contamination and
degradation, and its extraction and purification are costly [37,38].
Cell lines are effective for observing gene behavior and disease
progression, yet they face challenges in maintaining stability
and avoiding contamination, with high maintenance costs
due to specialized requirements [39,40]. These considerations
underscore the importance of selecting the appropriate RM
based on the specific needs of the diagnostic application to
ensure reliable and accurate results [4,22].

RMS APPLICATION ACROSS VARIOUS DIAGNOSTIC
TECHNOLOGIES

Sanger sequencing

Sanger sequencing remains a fundamental method
of DNA sequence analysis due to its high fidelity [37]. It
is particularly effective for small-scale projects, such as
identifying individual genes or regions of the genome involved
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Figure 2. Sanger sequencing workflow. In Sanger sequencing, essential reagents such as ddATP, ddTTP, ddGTP, ddCTP, polymerase, dNTPs, and primers are used.
Initially, primers are anneal to the DNA template, and polymerase is extended using dNTPs. Subsequently, ddNTPs are incorporated, causing chain termination. The
DNA fragments produced are then labeled with specific fluorescent dyes. These fragments undergo separation by size via capillary gel electrophoresis, followed by
fluorescence detection. Ultimately, the fluorescence data is analyzed to decode the DNA sequence [52].

in specific phenomena [41]. The principle of Sanger sequencing
involves replicating a single DNA strand and incorporating
fluorescently labeled nucleotides that terminate the growing
chain (Fig. 2). These fragments are then separated by capillary
electrophoresis, and the sequence is deduced from the labeled
ends [42]. In practice, Sanger sequencing is used to validate
results from other methods, confirm genetic variations like
SNPs, and for forensic applications [43]. RMs, such as gBlocks
or clones, ensure accuracy and repeatability by serving as
benchmarks against which sequencing outputs are compared
[44,45]. A notable case study demonstrated the use of Sanger
sequencing in verifying gene mutations associated with various
genetic disorders, underscoring its diagnostic precision [46].

Next-generation sequencing

NGS has revolutionized genetic analysis by enabling
the simultaneous sequencing of multiple DNA strands [47].
This technology supports a variety of genomic analyses,
including whole-genome sequencing, targeted re-sequencing,
metagenomics, epigenomics, and transcriptome analysis
[48]. NGS is characterized by its high throughput and cost-
effectiveness, making it ideal for applications in personalized
medicine, cancer genomics, and microbiome research [49]. The
NGS workflow involves library creation, sequencing, image
analysis, and data processing (Fig. 3).

RM are critical in NGS-based diagnosis because
they rely on germline variant detection using high-throughput
DNA sequencing for rare diseases. RMs such as standardized
cell line genomes or synthetic DNA fragments ensure the
quality and reliability of the data by serving as controls to
validate the sequencing process and assess assay sensitivity
and specificity [11]. For human whole genome sequencing,
the NA12878 genome from the Coriell cell line GM12878
with a European ancestry background has been known as the
sole leading human genome reference standard for various
NGS applications. Despite the availability of Ashkenazi
Jewish Asian and Han Chinese ancestry as genome references,
as listed in the NIST-hosted Genome in a Bottle consortium,
work continues to create reference genomes from various
ancestries that cover all types of human genetic variation.
The Genetic Testing Reference Materials Coordination
Programme (GeT-RM) also provides various cell lines
harboring specific mutations representing inherited diseases
in ans. Additionally, for microbial reference standards, the US
Food and Drug Administration (FDA) has released numerous
microbial reference genomes for testing related to infectious
microorganisms in the FDA-ARGOS database. Additionally,
the Human Microbiome Project Consortium offers RMs for
microbiome studies, assembling mock microbial communities
from extracted gDNA samples.
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Figure 3. Next-generation sequencing workflow. The process begins with library preparation, involving DNA fragmentation, adapter attachment, and the creation of
a DNA fragment library. These fragments are amplified on a flow cell during library bridge amplification, forming clusters of identical sequences. In the DNA library
sequencing step, fluorescently labeled nucleotides are used to sequence these fragments, generating raw data. Finally, the data undergoes alignment and analysis to

reconstruct the final sequence, including contigs and the assembled sequence [53].

Microarray

Microarray technology, also known as DNA chips,
is a powerful tool for simultaneously analyzing multiple
genes or DNA regions with high precision and efficiency [50].
Microarrays are solid supports, typically glass or silicon, onto
densely packed DNA molecules. The principle of microarray
technology, also known as DNA chips, involves the high-
throughput analysis of gene expression or genetic variation.
Microarrays consist of solid support, typically glass or silicon,
onto which thousands of DNA probes are immobilized in a
precise grid pattern. Each probe is designed to hybridize with a
specific DNA or RNA sequence from the sample, allowing for
the simultaneous analysis of many genes or genomic regions.
During the assay, labeled nucleic acids from the sample are
hybridized to the probes on the microarray. The hybridization
signals are then detected and quantified using fluorescence or
other detection methods, providing a comprehensive profile of
gene expression or genetic variations (Fig. 4) [51]. Applications
of microarrays include expression profiling, comparative
genomic hybridization, and SNP detection [54].

RM like gBlocks and recombinant plasmids are used
to calibrate microarrays, ensuring data accuracy and consistency
across different arrays and experiments [53]. A case study on
the use of microarrays for detecting chromosomal abnormalities
in prenatal diagnostics illustrated the technology’s utility in
identifying genetic disorders early [56].

Polymerase chain reaction

Real-time PCR (qPCR) is widely used in molecular
diagnostics to amplify and quantify specific DNA segments.
This method employs fluorescent dyes or probes that emit
fluorescence upon binding to DNA, with the fluorescence
intensity being proportional to the amount of DNA amplified
[57]. The principle of qPCR is based on the detection and
quantification of a fluorescent signal that increases proportionally
with the amount of DNA amplified during the PCR cycles. The
process involves using fluorescent dyes, such as SYBR Green,
which binds to double-stranded DNA, or specific fluorescently

Sample 1 Sample 2
NNAN NN NNAN NN
NNN NNN

Label of
‘ fluorescent dyes ‘
NN NN NN\ NN
NNN NN\N
[ J

[
Hybridize probe
to microarray

Scan emitted
fluorescent
signal

Result

Figure 4. Microarray workflow. In microarray, samples are tagged with
fluorescent dyes and matched with the microarray. Subsequently, the emitted
fluorescent signals are scanned and examined to gauge gene expression
levels. Different colors signify various outcomes: gray indicates absent genes,
green represents genes expressed solely in normal cells, yellow denotes
genes expressed in both normal and pathological cells, and red indicates
genes expressed only in pathological cells. This robust technique facilitates
the identification of genes implicated in disease processes and contributes to
developing diagnostic and therapeutic approaches [58].

labeled probes, like TagMan probes, which emit fluorescence
upon hybridization with the target DNA sequence. As the PCR
progresses, the fluorescent signal is measured in real-time at
each cycle, allowing for the monitoring of DNA amplification
throughout the reaction (Fig. 5).

RMs with known DNA or RNA concentrations are
crucial for creating standard curves to measure unknown
samples accurately [56]. qPCR is employed in various
diagnostic tests, including the detection of SARS-CoV-2,
malaria, and Chagas disease, and genetic variant detection
crucial for personalized medicine [60-62]. A case study on
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state, polymerase cleaves the probe, generating a fluorescent signal. The measured signal is shown as an amplification curve, where a signal below a threshold level

indicates undetected target DNA (Created with Biorender.com).

qPCR’s role in the rapid detection of SARS-CoV-2 during the
COVID-19 pandemic highlighted its importance in managing
public health emergencies [60].

On the other hand, dPCR offers exceptional precision
and sensitivity in nucleic acid measurement by partitioning
the DNA sample into numerous small-volume reactions,
some containing the target molecule [63]. Each partition
is then assessed for amplification, providing an absolute
count of the target DNA without external references [64].
RMs ensure accuracy and reproducibility by validating the
partitioning system and PCR efficiency [65]. dPCR is used in
clinical applications such as analyzing tumor DNA, detecting
drug resistance in viruses, early detection of infections, and
monitoring transplant patients by measuring donor DNA levels

[13,66,67]. A case study demonstrated the effectiveness of
dPCR in detecting low-abundance tumor DNA, proving its
value in early cancer diagnosis and monitoring [66]. Figure 6
illustrates the workflow of dPCR.

EVALUATION OF REAL-TIME PCR POSITIONING IN
COMPARISON TO OTHER TECHNOLOGIES

PCR technology is a cornerstone of DNA-based
genetic testing, enabling the amplification of specific gene
sequences from minute DNA samples [68,69]. qPCR, an
advancement of traditional PCR, is a routinely used tool in
molecular diagnostic laboratories [70]. qPCR’s adoption as a
commonly found technology in diagnostic testing laboratories
underlines its significance and thus provides a solid foundation
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Table 2. Cost comparison of diagnostic testing technologies.

Per-sample cost Scope of analysis

Technology Cost per reaction Initial investment
Sanger sequencing High Substantial
Next-generation sequencing Very high Complex
(NGS)
Microarrays Very high Intricate
Real-time PCR (qPCR) Low Substantial
Digital PCR (dPCR) Medium to high Specialized

Expensive Relatively small DNA fragments (up to ~1000
bp)

Expensive Large-scale sequencing, including whole
genomes, transcriptomes, or targeted panels

Expensive Analysis of multiple genes or regions

simultaneously using specific probes
Minimal Single gene targeted analysis
Moderate Single gene targeted analysis with absolute

quantification

for why this particular technology is the benchmark against
which other methodologies are compared. qPCR is widely
used due to its ability to quantify nucleic acids in real time,
which is crucial for various applications, including disease
diagnostics, genetic research, and pathogen detection [71].
This real-time quantification aspect offers a significant
advantage over traditional PCR, enabling more detailed
analyses of gene expression patterns, viral load determination,
and genotyping [72]. Consequently, qPCR stands out as a
highly sensitive, specific, and efficient diagnostic tool, making
it a primary choice for comparing with other emerging genetic
technologies [65].

PCR amplifies target DNA sequences through
repeated cycles of temperature changes, which denature DNA,
anneal primers, and extend new DNA strands [73]. This process
results in an exponential increase in the target DNA region [68].
The advent of quantitative PCR (qPCR) introduced real-time
DNA amplification and quantification using fluorescent dyes,
enhancing genetic testing’s complexity and capabilities [65].
The essential stages of DNA-based PCR diagnostic testing are
illustrated in Figure 7, which details sample collection, DNA
extraction, reaction mixture preparation, and PCR amplification.

The exceptional specificity, sensitivity, and
quantitative capabilities of qPCR serve as the basis for
molecular diagnostics. This efficacy comes from pre-designed,
optimized primers and real-time fluorescence monitoring,
which ensures excellent specificity and low background
noise [68,74]. In addition to primer design, exact control
over reaction parameters like temperature profiles and salt
concentrations contributes to qPCR’s specificity, which makes
it possible to identify single base pair variances and clinically
meaningful genetic alterations [75]. The method’s superior
sensitivity is achieved through efficient amplification and real-
time fluorescence-based monitoring, providing accurate and
reproducible quantitative data essential for applications like
viral load measurement [72,76].

qPCR also offers operational simplicity, with master
mixtures containing all necessary components, reducing the
need for extensive optimization and minimizing potential errors.
This setup simplicity, combined with user-friendly software
for data interpretation, makes qPCR well-suited for rapid
diagnostic environments [77,78]. This efficiency underscores
qPCR’s popularity for rapid and accurate diagnostics [79]. Most
laboratories are equipped with qPCR technology, making it a
common choice for routine molecular testing.

While qPCR is a powerful tool in diagnostic testing,
it is not without competition. Table 2 compares the cost and
scope of various diagnostic technologies, including Sanger
sequencing, NGS, Micro Arrays, and dPCR. Each technology
has unique benefits and limitations that make it suitable for
specific applications. For example, Sanger sequencing excels
in sequencing small DNA fragments but is costly, while
NGS offers large-scale sequencing capabilities but requires
substantial initial investment [48,77]. Microarrays allow
simultaneous analysis of multiple genes but are expensive and
complex [50]. dPCR provides high precision and sensitivity but
is slightly more costly than qPCR [63,81].

The selection of molecular diagnostic technology
depends on cost, accuracy, and scalability. Although qPCR
offers significant advantages in certain areas, a comprehensive
evaluation is essential to determine the most appropriate
technology for specific laboratory needs [82,83].

RMS CURRENT KNOWN AND CHALLENGES IN
INDONESIA

In the field of medical diagnostics, RMs play a crucial
role in establishing standards and ensuring the legitimacy of
tests for various diseases. RMs are essential for the validation
of methods, the calibration of equipment, and the verification
of diagnostic results [6,84]. Their diverse array of uses ensures
consistency and reproducibility in diagnostic testing, which are
fundamental to the accurate diagnosis and subsequent treatment
of patients [5,10,84]. Studies employing RMs in the diagnosis
of diseases have been conducted globally, covering a wide
range of conditions, as summarized in Table 3.

This worldwide research promotes increased quality
control in healthcare and facilitates the development of genuine
and pertinent diagnostic methods. The utilization of RM’s in
this context is significant because of their importance in the
progression of medical diagnosis and therapeutic strategies [10].

Multiple studies have concentrated on devising novel
techniques to produce DNA RMs with certain attributes, which
may be utilized as benchmarks for diverse purposes [85—88].
Seo et al. [82] reported a new bioprinting technique that can
create RMs with a precise amount of target DNA, referred to
as “cell number-based DNA reference material” [85]. This
development offers a rigorous and replicable technique for
producing DNA RMs with specified quantities, which is
essential for the standardization and quality assurance of DNA
analysis. In addition, the literature has emphasized the creation
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Table 3. Current RMs used in diagnostic testing.

Type of RM Testing context (Disease) Type of sample Country conducting Reference
test
gBlocks COVID-19 Nasopharyngeal or oropharyngeal swabs South Korea [54]
or sputum
COVID-19 Nasal swab Canada [55]
COVID-19 Nasopharyngeal and nasal swabs United States and Italy [56]
Monkeypox virus (MPV) Eluat swab United States [57]
Renal cell carcinoma (RCC) Plasma cell-free DNA (¢fDNA) from Japan [59]
tumor tissue
Non-small cell lung cancer (NSCLC) Lung resection specimens from Ireland [60]
adenocarcinoma and sarcomatoid
carcinoma
Non-small cell lung carcinoma (NSCLC) Whole-blood samples United States [61]
Breast cancer with PIK3CA and ESR1 mutations Plasma England [6]
Ebola virus disease Plasma West and Central Africa [62]
Tuberculosis (TB) Sputum Vietnam, Peru, and [63]
South Africa

Tuberculosis (TB) and nontuberculous mycobacteria Sputum Mali, West Africa [64]

(NTM)
Artificial Leptospirosis Serum India [65]
recombinant COVID-19 Nasopharyngeal swabs Russia [66]
plasmid Malaria Blood China [67]
Melioidosis Serum Thailand [68]
Gastric cancer Serum China [69]
Hepatitis C virus (HCV) and influenza virus Plasma China [70]
Hepatitis D Virus (HDV) Blood Brazil [71]
Hepatitis E virus (HEV) Serum or plasma United States [72]
T cell acute lymphoblastic leukemia (T-ALL) and Bone marrow China [73]

B-cell acute lymphoblastic leukemia (B-ALL)
Lassa virus (LASV) Serum, blood, and tissue Guinea, West Africa [74]
Genomic DNA Herpes simplex virus (HSV) Cervicovaginal specimens from Iran [75]
gynecological practices
Malaria Dried spots of blood obtained by finger Thailand and India [76]
prick
Malaria Giemsa-stained thick blood smears and Ghana [77]
dried filter paper blood spots (DBS)
Nasopharyngeal carcinoma (NPC) Plasma and nasopharyngeal epithelial Hongkong and Toronto [78]
cells obtained
Tuberculosis Sputum England [79]
Tuberculosis Sputum Peru [80]
Extrapulmonary tuberculosis (EPTB) Pleural fluids and urine India [81]
Lung cancer Fresh-frozen, blood, and paraffin- Latin America [82]
embedded biopsies (Argentina, Colombia,
Brazil, Mexico, Peru)
Hereditary colorectal cancer Blood Japan [83]
Non-small cell lung cancer (NSCLC) Plasma China [84]
Cell line COVID-19 Nasopharyngeal swabs, sputum, urine, Australia [85]
feces, and serum samples
COVID-19 Nasal/nasopharyngeal swab or saliva Japan [86]
Non-small cell lung cancer (NSCLC) Blood China [84]
Respiratory virus infections Nasopharyngeal swab or aspiration Taiwan [87]
Human T-lymphotropic virus type 1 (HTLV-1) Paraffin biopsy and/or blood sample Germany [88]
Non-small cell lung cancer (NSCLC) Lung biopsy, either tissue-based or Australia [89]
cytology

Epithelial ovarian cancer (EOC) Serum and tissue China [90]
Breast cancer Blood United States [91]
Lung cancer Sputum China [92]
Colorectal cancer Serum China [93]
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Figure 6. Digital PCR workflow. This diagram outlines the key steps in a dPCR workflow, allowing for precise quantification of target molecules. Initially, a reaction
mixture is prepared with all necessary components for PCR amplification. Following this, the sample is carefully divided into numerous nanoliter-sized droplets using
specialized equipment, ensuring each droplet encapsulates individual target molecules. Subsequent to droplet generation, the PCR cycling process occurs, amplifying
target DNA within each droplet alongside any background DNA present. After amplification, droplets undergo analysis to differentiate positive droplets containing
amplified targets from negative ones lacking. This analysis facilitates the accurate determination of the absolute abundance of target molecules in the original sample.
dPCR offers researchers a robust tool with heightened sensitivity and the capability for absolute quantification, eliminating the need for standard curves (Created with

Biorender.com).

of RMs for certain DNA sequences or genetic markers [§9-92].
In the research they conducted, [92] detailed the development
of DNA molecules that functioned as model Standard RMs for
the purpose of determining DNA sequences. Their findings
highlighted the significance of well-characterized RMs in
genetic testing. The mentioned references highlight the crucial
importance of DNA RM:s in upholding the quality and precision
of genetic testing processes. In addition, DNA RMs have a
wide range of uses, including identifying the mechanisms of
antibiotic resistance in foodborne pathogens [87], creating
genomic RMs for detecting meat adulteration [93], and
constructing DNA hydrogels for biomedical applications [94].
Niu et al. [87] presented the creation of plasmid DNA RMs to
identify antibiotic resistance mechanisms. They highlighted the
usefulness of these materials as universal calibrators in qPCR
analysis [87]. Furthermore, [93] emphasized the significance of
quality control procedures in food analysis and the usefulness
of DNA-based RMs in identifying adulterated meat [93].
NGS-based diagnosis heavily relies on RMs for identifying
the presence of germline variants in rare diseases through the
use of high-throughput DNA sequencing [95]. RMs, such as
standardized cell line genomes or synthetic DNA fragments,

are used to validate the sequencing procedure and evaluate
the sensitivity and specificity of the assay. This ensures the
data’s quality and reliability [11]. The NA12878 genome
from the Coriell cell line GM12878, which has a European
ancestry background, is widely recognized as the primary
reference standard for different NGS applications in human
whole genome sequencing [95,96]. Although the NIST-hosted
Genome in a Bottle consortium provides genome references
for Ashkenazi Asian and Han Chinese ancestry, efforts are still
ongoing to develop reference genomes from diverse ancestries
that encompass all forms of human genetic variation [96]. The
Genetic Testing Reference Materials Coordination Programme
(GeT-RM) offers a range of cell lines that contain specific
mutations associated with inherited disorders in humans [97].
In addition, the US Food and Drug Administration (FDA) has
made available a large number of microbial reference genomes in
the FDA-ARGOS database for the purpose of testing infectious
microorganisms [95]. In addition, the Human Microbiome
Project Consortium provides RMs for microbiome studies by
creating artificial microbial communities using extracted gDNA
samples [95]. Organizations such as the Reference Materials
and Measurements of the European Commission (IRMM-
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Figure 7. A) The essential stages of DNA-based PCR diagnostic testing. Firstly, sample collection involves gathering biological material like blood or urine from
the patient. Next, DNA extraction isolates DNA from other cellular components. Then, reaction mixture preparation mixes the extracted DNA with primers, DNA
polymerase, and a fluorophore, divided into tubes for testing (unknown samples) and controls (reference material). Lastly, PCR amplification uses a PCR machine
to amplify the DNA. B) The DNA amplification process through PCR. It begins with initiation, where double-stranded DNA is denatured into single strands.
Denaturation heats the mixture to separate the DNA. Annealing follows, lowering the temperature for primers to bind to the target DNA. Extension occurs as DNA
polymerase adds nucleotides, amplifying the target DNA exponentially (Created with Biorender.com).

EU) and the American Oil Chemists’ Society (AOCS) are the
main producers of commercially accessible certified RMs for
matrix-based and genomic DNA. This information is supported
by Li et al. [98]. These well-established organizations play
a crucial role in standardizing and ensuring the quality of
genetic testing methods by providing highly defined RMs.
Collaborative ring trials have been carried out to evaluate the
suitability of reference plasmid DNA calibrants in quantitative
analyses of genetically modified (GM) contents. These trials
emphasize the significance of certified reference materials
(CRMs) in guaranteeing the precision and dependability of
GM quantification methods [99]. In addition, the meticulous
processes involved in certifying DNA reference RM materials
to meet stringent quality standards are demonstrated through
the development and characterization of quantitative RMs
for specific applications, such as Legionella detection and
quantification by qPCR [83].

The development of RMs has challenges, particularly
in achieving interlaboratory repeatability. This issue has been
emphasized in research that specifically investigates the use of
new DNA RM formats in droplet digital PCR [100]. Ensuring
the ability to replicate results in other laboratories is essential
for the widespread acceptance of DNA RMs in diverse scientific
fields. In Indonesia, the progress in developing DNA-based RMs
is still in its early stages compared to international benchmarks.
Although there is agreement with worldwide patterns in DNA
nanotechnology and biomaterials research [101,102], there are
still notable obstacles to overcome. These factors comprise

restricted infrastructure, unavailability of new technological
equipment, and inadequate money for comprehensive research
and development projects.

To put it simply, the current situation in Indonesia
regarding the establishment of DNA-based RMs encompasses
the process of developing, characterizing, and certifying RMs
for different purposes, such as genetic testing, and clinical
diagnostics. The challenges involved in developing RMs
encompass the need to guarantee consistent results across
different laboratories. To address these difficulties, a significant
investment in infrastructure, technology, and human resources
is needed.

FUTURE DIRECTION AND RECOMMENDATION

Future research should focus on developing and
standardizing RMs to improve the quality and reliability of
DNA-based diagnostics. This includes the establishment
of a national coordination body in Indonesia to oversee the
production, validation, and distribution of RMs. Collaboration
between research institutions, standardization bodies, and
regulatory agencies is essential to create a robust framework
for RM utilization. These efforts should prioritize the creation
of standardized reference controls that align with international
standards, ensuring consistent and reproducible diagnostic
results [103]. By incorporating locally relevant pathogen strains
and epidemiological data, the selected RMs will enhance the
accuracy and validity of diagnostic tests within the Indonesian
context [104].
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The selection and implementation of RMs must
balance cost, capability, stability, and contamination risks.
Laboratories with limited budgets can utilize cost-effective
synthetic targets like gBlocks for high-volume applications,
while more complex diagnostics may require genomic DNA
or cell lines despite their higher costs. Continuous proficiency
testing and external quality assessment are vital to validate
laboratory performance against common RMs, identifying
areas for improvement and ensuring high diagnostic standards
[104]. Investment in infrastructure, personnel training, and
policy enforcement is critical for maintaining high-quality
diagnostic testing. Robust infrastructure supports effective
testing, while trained personnel ensure reliable results, and
policy enforcement promotes a culture of excellence [97].

Innovation and adaptability are crucial in the evolving
field of diagnostic testing. Embracing new technologies and
staying updated with advancements will keep Indonesia at the
forefront of global diagnostic standards. This commitment to
innovation will improve diagnostic accuracy, enhance patient
care, and strengthen public health. By focusing on continuous
improvement and aligning with international best practices,
Indonesia can ensure its diagnostic testing capabilities remain
advanced and effective, ultimately benefiting patient outcomes
and the healthcare system as a whole.

CONCLUSION

The comprehensive review highlights the pivotal
role of RMs in ensuring the accuracy and reliability of DNA-
based diagnostic testing. This study identifies their unique
characteristics, advantages, and limitations by examining
various types of RMs—gBlocks, recombinant plasmids,
genomic DNA, and cell lines. gBlocks, for example,
offer high specificity and stability but may lack genomic
complexity. Recombinant plasmids are flexible and stable but
costly and prone to contamination. Genomic DNA provides a
comprehensive genetic composition and high stability, yet it is
susceptible to degradation and high contamination risk. While
effective for observing gene behavior and disease progression,
cell lines face challenges in maintaining stability and avoiding
contamination, with high maintenance costs. The strategic
selection of RMs, considering specificity, complexity,
stability, and cost factors, is essential for optimizing diagnostic
testing. The establishment of a national coordination body in
Indonesia to standardize RM utilization and collaboration
with international organizations will enhance the quality
and availability of RMs, ensuring diagnostic accuracy and
reliability that meets international standards.
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