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INTRODUCTION
Diagnostic testing forms the foundation of modern 

healthcare practice and provides essential clinical data about 
an individual’s health status by detecting disease conditions 
or infections [1]. These tests can range from simple blood 
analyses to comprehensive genetic screenings. They are crucial 

for ensuring diagnosis accuracy, guiding appropriate treatment 
plans, and tracking disease progression [2]. The validity and 
accuracy of these diagnostic tests must thus be guaranteed 
because they have a direct bearing on patient outcomes and 
clinical judgments. To preserve high standards and dependability 
in diagnostic testing, regulatory bodies, and healthcare facilities 
use stringent quality control and assurance procedures [3].

The utilization of reference materials (RMs) or 
external control materials (ECMs) in DNA-based diagnostic 
testing is pivotal for ensuring proper and reliable results. 
RMs act as benchmarks for testing procedures, enabling the 
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ABSTRACT
Diagnostic testing is crucial in modern healthcare, providing essential health information and influencing clinical 
decisions and patient outcomes. Ensuring the validity and quality of these tests is vital, with stringent quality control 
and assurance procedures enforced by regulatory bodies and healthcare facilities. Reference materials (RMs) are 
essential for the accuracy and reliability of DNA-based diagnostic tests, serving as benchmarks for error detection, 
test validity, and consistency. This study reviews the necessity of effective control substances for precise diagnostic 
testing through a narrative literature review of synthetic DNA sequences, recombinant plasmids, genomic DNA, 
and cell lines as RMs, sourced from PubMed, Scopus, and Google Scholar over the last decade. Each RM type 
has specific advantages and disadvantages impacting diagnostic performance: gBlocks are highly specific but lack 
genomic complexity; recombinant plasmids offer flexibility but face stability and contamination issues; genomic 
DNA provides comprehensive diagnostic information but is complex and costly; cell lines simulate in vivo conditions 
well but are prone to genetic drift and contamination. The review emphasizes the critical role of RMs in DNA-
based diagnostics and highlights challenges faced by Indonesian laboratories, recommending national coordination 
and international collaboration to enhance RMs’ availability, thereby improving patient outcomes and aligning with 
global standards.
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NGS, microarray, and PCR (both real-time and digital). The 
figure concludes with recommendations for enhancing the 
quality and availability of RMs in Indonesia through national 
coordination and global collaboration initiatives to assist 
laboratories in making informed choices.

METHODS
This narrative review approaches the necessity 

and effectiveness of various control substances for precise 
diagnostic testing. The review focused on original research 
articles investigating synthetic DNA sequences, artificially 
constructed plasmids, genomic DNA, and cell lines as 
external controls and RMs. Databases such as PubMed, 
Scopus, and Google Scholar were utilized for the literature 
search. Scientific papers discussing the history, evaluation, 
and development of RMs and their application in diagnostic 
technologies, including Sanger sequencing, NGS, microarray, 
and real-time and digital PCR (dPCR), are covered in this 
review. Nonscientific publications, review articles, and 
sources older than ten years were excluded from this review. 

TYPE OF DNA-BASED RMS
The genetic testing procedure using DNA-based 

PCR methods necessitates using RM to ensure the legitimacy 
and consistency of the results [22]. RMs play a crucial role 
in maintaining the integrity of the entire testing process 
by establishing essential performance standards [2]. Four 
commonly used RMs are gBlocks, artificial recombinant 
plasmids, genomic DNA, and cell lines.

gBlocks
gBlocks are synthetic, double-stranded DNA molecules 

designed to contain specific sequences [23]. In PCR-based 
protocols, gBlocks are primary controls to assess the assay’s 
effectiveness and specificity [24]. These synthetic blocks can 
represent various sequences, including gene variants, SNPs, or 
other genetic markers pertinent to the research [12]. The high 
fidelity and accuracy of gBlocks make them invaluable for 
optimizing PCR assays, allowing scientists to evaluate primer 
binding efficiency and the conditions necessary for precise 
detection and measurement [25].

Artificial recombinant plasmids
Recombinant plasmids typically contain synthetic 

and bacterial-amplified plasmids [26]. Synthetic plasmids are 
engineered in vitro to contain specific gene sequences and 
control elements, enhancing gene expression functions or 
serving as standards for molecular diagnostics [27]. Bacterial-
amplified plasmids involve adding foreign DNA to a natural 
plasmid vector, which is then replicated in bacterial host cells 
[28]. These plasmids are significant in PCR methods because 
they can be reproduced in vitro, facilitating the production of 
large DNA fragment quantities and enabling accurate gene 
quantification through standard curves [29].

Genomic DNA
Genomic DNA, derived from reliable sources such 

as cell lines or well-characterized organisms, replicates the 

detection and correction of errors and maintaining the validity 
of test results [4–6]. RMs and ECMs are different; RMs are 
a type of ECM that has been standardized and rigorously 
tested for specific parameters, making them vital for precise 
calibration and validation of diagnostic assays [7]. ECMs, 
which are carefully designed samples that mimic patient 
specimens, are used to assess the performance of diagnostic 
tests by providing an external standard to verify accuracy 
and precision [8]. Consistently incorporating both RMs 
and ECMs in the testing process is essential to meet quality 
assurance standards, particularly in healthcare and public 
health settings [9]. This function is critical for verifying test 
performance and identifying significant changes that could 
indicate issues with operational capabilities or equipment 
[10,11].

The evolution of diagnostic technology has transformed 
RMs from simple chemical or biological substances to more 
sophisticated matrices that support the immunoassay of complex 
substances, requiring consistent and stable RMs across various 
testing platforms [5,12,13]. Genetic engineering and cell culture 
innovations have ushered in a new era of RMs. These include 
synthetic DNA sequences, recombinant plasmids, genomic 
DNA, and cell lines with predetermined genetic compositions 
suited to particular diagnostic testing needs. Sanger sequencing, 
next-generation sequencing (NGS), Microarray and polymerase 
chain reaction (PCR) are examples of advanced technologies 
that require sensitive and specific RMs, which can improve the 
quality and accuracy of diagnostic tests [14–18].

Indonesia, like many other countries, faces unique 
challenges in its diagnostic technology sector, including limited 
access to high-quality RMs, variations in laboratory standards 
and procedures, and a need for stronger regulatory frameworks 
to ensure consistency and reliability in diagnostic testing [19,20]. 
These challenges can affect the accuracy of diagnostic results 
and have implications for patient care. Improving diagnostic 
technology in Indonesia is crucial to enhance healthcare 
outcomes, as accurate diagnostics are the cornerstone of effective 
treatment and disease management. By addressing these specific 
challenges and improving the quality of diagnostics, Indonesia 
can better manage public health, respond to disease outbreaks 
with greater agility, and align with international best practices. 
Incorporating these concerns, it is evident that there is a critical 
need for improvement within the diagnostic field in Indonesia 
to ensure precise and dependable test results, optimize patient 
care, and align with global healthcare standards. This review 
illuminates these issues and offers insights and recommendations 
to support Indonesian laboratories’ advancement [21].

This review focuses on summarizing current 
knowledge about RMs and suggests ways for laboratories 
to improve their diagnostic protocols in accordance with 
international standards. The goal is to guide laboratories in the 
selection of appropriate RMs to enhance the quality and accuracy 
of their diagnostic tests. Therefore, it covers various aspects 
as depicted in Figure 1. It highlights the methodologies used 
in the study, including the narrative review approach and the 
inclusion criteria for selecting relevant literature. Additionally, 
it encompasses the discussion on applying these RMs across 
various diagnostic technologies such as Sanger sequencing, 
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complexity of biological samples, ensuring proper DNA 
extraction and amplification processes [30]. It plays a critical 
role in genetic testing for detecting genetic changes or 
assessing gene copy numbers, providing a precise comparison 
representing the entire human DNA complexity [31].

Cell lines
Cell lines, continuously proliferating cell cultures, 

offer consistent, uniform genetic material for PCR-
based testing [17,32]. They can be specifically chosen 
or genetically altered to have relevant mutations, gene 
expressions, or chromosomal changes, making them ideal 
for validating genetic tests. Cell lines serve as relevant 
biological counterparts to target genes, allowing researchers 
to assess assay performance under conditions similar to 
actual patient samples, ensuring high-quality control and 
uniformity in routine testing [33,34].

The strategic implementation of RMs in PCR 
processes, including genetic material and cell lines, effectively 
ensures the legitimacy and reliability of test results [35]. 
Utilizing RMs such as gBlocks, artificial recombinant plasmids, 
genomic DNA, and cell lines helps laboratories identify and 
reduce procedural errors, optimize assay conditions, and 
maintain high test accuracy. The intelligent use of RMs is 
crucial in clinical diagnostics and genetic testing research and 
development, emphasizing the importance of accurate and 
reliable results [4,22].

ADVANTAGES AND DISADVANTAGES OF RMS
The selection of appropriate RM is crucial for 

ensuring the accuracy and reliability of DNA-based diagnostic 
testing. Different types of RMs, such as gBlocks, artificial 
recombinant plasmids, genomic DNA, and cell lines, each offer 
unique advantages and disadvantages that need to be carefully 

considered (Table 1). The primary goal of using RMs is to 
provide consistent benchmarks for testing procedures, thereby 
enhancing the validity and reproducibility of diagnostic results 
[4,22].

Four common types of RMs—gBlocks, artificial 
recombinant DNA, genomic DNA, and cell lines—each 
have distinct advantages and disadvantages. gBlocks are 
highly specific and adaptable, offering high stability and 
low contamination risk due to their synthetic nature, though 
they may not represent the entire genetic complexity of an 
organism and can degrade under certain conditions [23,24]. 
Recombinant plasmids provide high specificity and stability, 
particularly in controlled environments, but are susceptible 
to contamination and physical deterioration, with high costs 
associated with synthetic plasmids [26,36]. Genomic DNA 
offers a comprehensive genetic composition and high stability 
when properly managed, but it is prone to contamination and 
degradation, and its extraction and purification are costly [37,38]. 
Cell lines are effective for observing gene behavior and disease 
progression, yet they face challenges in maintaining stability 
and avoiding contamination, with high maintenance costs 
due to specialized requirements [39,40]. These considerations 
underscore the importance of selecting the appropriate RM 
based on the specific needs of the diagnostic application to 
ensure reliable and accurate results [4,22].

RMS APPLICATION ACROSS VARIOUS DIAGNOSTIC 
TECHNOLOGIES

Sanger sequencing
Sanger sequencing remains a fundamental method 

of DNA sequence analysis due to its high fidelity [37]. It 
is particularly effective for small-scale projects, such as 
identifying individual genes or regions of the genome involved 

Figure 1. A comprehensive outline for the review article illustrates the various components involved in evaluating and applying reference materials (RMs) in DNA-
based diagnostic testing (Created with Biorender.com).
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in specific phenomena [41]. The principle of Sanger sequencing 
involves replicating a single DNA strand and incorporating 
fluorescently labeled nucleotides that terminate the growing 
chain (Fig. 2). These fragments are then separated by capillary 
electrophoresis, and the sequence is deduced from the labeled 
ends [42]. In practice, Sanger sequencing is used to validate 
results from other methods, confirm genetic variations like 
SNPs, and for forensic applications [43]. RMs, such as gBlocks 
or clones, ensure accuracy and repeatability by serving as 
benchmarks against which sequencing outputs are compared 
[44,45]. A notable case study demonstrated the use of Sanger 
sequencing in verifying gene mutations associated with various 
genetic disorders, underscoring its diagnostic precision [46].

Next-generation sequencing
NGS has revolutionized genetic analysis by enabling 

the simultaneous sequencing of multiple DNA strands [47]. 
This technology supports a variety of genomic analyses, 
including whole-genome sequencing, targeted re-sequencing, 
metagenomics, epigenomics, and transcriptome analysis 
[48]. NGS is characterized by its high throughput and cost-
effectiveness, making it ideal for applications in personalized 
medicine, cancer genomics, and microbiome research [49]. The 
NGS workflow involves library creation, sequencing, image 
analysis, and data processing (Fig. 3). 

RM are critical in NGS-based diagnosis because 
they rely on germline variant detection using high-throughput 
DNA sequencing for rare diseases. RMs such as standardized 
cell line genomes or synthetic DNA fragments ensure the 
quality and reliability of the data by serving as controls to 
validate the sequencing process and assess assay sensitivity 
and specificity [11]. For human whole genome sequencing, 
the NA12878 genome from the Coriell cell line GM12878 
with a European ancestry background has been known as the 
sole leading human genome reference standard for various 
NGS applications. Despite the availability of Ashkenazi 
Jewish Asian and Han Chinese ancestry as genome references, 
as listed in the NIST-hosted Genome in a Bottle consortium, 
work continues to create reference genomes from various 
ancestries that cover all types of human genetic variation. 
The Genetic Testing Reference Materials Coordination 
Programme (GeT-RM) also provides various cell lines 
harboring specific mutations representing inherited diseases 
in ans. Additionally, for microbial reference standards, the US 
Food and Drug Administration (FDA) has released numerous 
microbial reference genomes for testing related to infectious 
microorganisms in the FDA-ARGOS database. Additionally, 
the Human Microbiome Project Consortium offers RMs for 
microbiome studies, assembling mock microbial communities 
from extracted gDNA samples.

Figure 2. Sanger sequencing workflow. In Sanger sequencing, essential reagents such as ddATP, ddTTP, ddGTP, ddCTP, polymerase, dNTPs, and primers are used. 
Initially, primers are anneal to the DNA template, and polymerase is extended using dNTPs. Subsequently, ddNTPs are incorporated, causing chain termination. The 
DNA fragments produced are then labeled with specific fluorescent dyes. These fragments undergo separation by size via capillary gel electrophoresis, followed by 
fluorescence detection. Ultimately, the fluorescence data is analyzed to decode the DNA sequence [52].
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labeled probes, like TaqMan probes, which emit fluorescence 
upon hybridization with the target DNA sequence. As the PCR 
progresses, the fluorescent signal is measured in real-time at 
each cycle, allowing for the monitoring of DNA amplification 
throughout the reaction (Fig. 5).

RMs with known DNA or RNA concentrations are 
crucial for creating standard curves to measure unknown 
samples accurately [56]. qPCR is employed in various 
diagnostic tests, including the detection of SARS-CoV-2, 
malaria, and Chagas disease, and genetic variant detection 
crucial for personalized medicine [60–62]. A case study on 

Microarray
Microarray technology, also known as DNA chips, 

is a powerful tool for simultaneously analyzing multiple 
genes or DNA regions with high precision and efficiency [50]. 
Microarrays are solid supports, typically glass or silicon, onto 
densely packed DNA molecules. The principle of microarray 
technology, also known as DNA chips, involves the high-
throughput analysis of gene expression or genetic variation. 
Microarrays consist of solid support, typically glass or silicon, 
onto which thousands of DNA probes are immobilized in a 
precise grid pattern. Each probe is designed to hybridize with a 
specific DNA or RNA sequence from the sample, allowing for 
the simultaneous analysis of many genes or genomic regions. 
During the assay, labeled nucleic acids from the sample are 
hybridized to the probes on the microarray. The hybridization 
signals are then detected and quantified using fluorescence or 
other detection methods, providing a comprehensive profile of 
gene expression or genetic variations (Fig. 4) [51]. Applications 
of microarrays include expression profiling, comparative 
genomic hybridization, and SNP detection [54]. 

RM like gBlocks and recombinant plasmids are used 
to calibrate microarrays, ensuring data accuracy and consistency 
across different arrays and experiments [53]. A case study on 
the use of microarrays for detecting chromosomal abnormalities 
in prenatal diagnostics illustrated the technology’s utility in 
identifying genetic disorders early [56].

Polymerase chain reaction
Real-time PCR (qPCR) is widely used in molecular 

diagnostics to amplify and quantify specific DNA segments. 
This method employs fluorescent dyes or probes that emit 
fluorescence upon binding to DNA, with the fluorescence 
intensity being proportional to the amount of DNA amplified 
[57]. The principle of qPCR is based on the detection and 
quantification of a fluorescent signal that increases proportionally 
with the amount of DNA amplified during the PCR cycles. The 
process involves using fluorescent dyes, such as SYBR Green, 
which binds to double-stranded DNA, or specific fluorescently 

Figure 3. Next-generation sequencing workflow. The process begins with library preparation, involving DNA fragmentation, adapter attachment, and the creation of 
a DNA fragment library. These fragments are amplified on a flow cell during library bridge amplification, forming clusters of identical sequences. In the DNA library 
sequencing step, fluorescently labeled nucleotides are used to sequence these fragments, generating raw data. Finally, the data undergoes alignment and analysis to 
reconstruct the final sequence, including contigs and the assembled sequence [53].

Figure 4. Microarray workflow. In microarray, samples are tagged with 
fluorescent dyes and matched with the microarray. Subsequently, the emitted 
fluorescent signals are scanned and examined to gauge gene expression 
levels. Different colors signify various outcomes: gray indicates absent genes, 
green represents genes expressed solely in normal cells, yellow denotes 
genes expressed in both normal and pathological cells, and red indicates 
genes expressed only in pathological cells. This robust technique facilitates 
the identification of genes implicated in disease processes and contributes to 
developing diagnostic and therapeutic approaches [58].
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[13,66,67]. A case study demonstrated the effectiveness of 
dPCR in detecting low-abundance tumor DNA, proving its 
value in early cancer diagnosis and monitoring [66]. Figure 6 
illustrates the workflow of dPCR.

EVALUATION OF REAL-TIME PCR POSITIONING IN 
COMPARISON TO OTHER TECHNOLOGIES

PCR technology is a cornerstone of DNA-based 
genetic testing, enabling the amplification of specific gene 
sequences from minute DNA samples [68,69]. qPCR, an 
advancement of traditional PCR, is a routinely used tool in 
molecular diagnostic laboratories [70]. qPCR’s adoption as a 
commonly found technology in diagnostic testing laboratories 
underlines its significance and thus provides a solid foundation 

qPCR’s role in the rapid detection of SARS-CoV-2 during the 
COVID-19 pandemic highlighted its importance in managing 
public health emergencies [60].

On the other hand, dPCR offers exceptional precision 
and sensitivity in nucleic acid measurement by partitioning 
the DNA sample into numerous small-volume reactions, 
some containing the target molecule [63]. Each partition 
is then assessed for amplification, providing an absolute 
count of the target DNA without external references [64]. 
RMs ensure accuracy and reproducibility by validating the 
partitioning system and PCR efficiency [65]. dPCR is used in 
clinical applications such as analyzing tumor DNA, detecting 
drug resistance in viruses, early detection of infections, and 
monitoring transplant patients by measuring donor DNA levels 

Figure 5. Real-time PCR workflow. Initially, a reaction mix is prepared with template DNA (sample), master mix (enzymes and buffers), forward and reverse primers, 
a fluorescent probe (reporter), and nuclease-free water (NFW). This mix is then loaded into a qPCR machine. The qPCR process involves cycles including initiation, 
denaturation (DNA strand separation at 90°C), annealing (primers binding to specific DNA sequences at 60°C), and extension (polymerase extending the primers 
and cleaving the probe at 72°C). The behavior of the fluorescent probe is crucial; in the ground state, reporter and quencher dyes emit no signal, while in the excited 
state, polymerase cleaves the probe, generating a fluorescent signal. The measured signal is shown as an amplification curve, where a signal below a threshold level 
indicates undetected target DNA (Created with Biorender.com).
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While qPCR is a powerful tool in diagnostic testing, 
it is not without competition. Table 2 compares the cost and 
scope of various diagnostic technologies, including Sanger 
sequencing, NGS, Micro Arrays, and dPCR. Each technology 
has unique benefits and limitations that make it suitable for 
specific applications. For example, Sanger sequencing excels 
in sequencing small DNA fragments but is costly, while 
NGS offers large-scale sequencing capabilities but requires 
substantial initial investment [48,77]. Microarrays allow 
simultaneous analysis of multiple genes but are expensive and 
complex [50]. dPCR provides high precision and sensitivity but 
is slightly more costly than qPCR [63,81].

The selection of molecular diagnostic technology 
depends on cost, accuracy, and scalability. Although qPCR 
offers significant advantages in certain areas, a comprehensive 
evaluation is essential to determine the most appropriate 
technology for specific laboratory needs [82,83].

RMS CURRENT KNOWN AND CHALLENGES IN 
INDONESIA

In the field of medical diagnostics, RMs play a crucial 
role in establishing standards and ensuring the legitimacy of 
tests for various diseases. RMs are essential for the validation 
of methods, the calibration of equipment, and the verification 
of diagnostic results [6,84]. Their diverse array of uses ensures 
consistency and reproducibility in diagnostic testing, which are 
fundamental to the accurate diagnosis and subsequent treatment 
of patients [5,10,84]. Studies employing RMs in the diagnosis 
of diseases have been conducted globally, covering a wide 
range of conditions, as summarized in Table 3.

This worldwide research promotes increased quality 
control in healthcare and facilitates the development of genuine 
and pertinent diagnostic methods. The utilization of RM’s in 
this context is significant because of their importance in the 
progression of medical diagnosis and therapeutic strategies [10].

Multiple studies have concentrated on devising novel 
techniques to produce DNA RMs with certain attributes, which 
may be utilized as benchmarks for diverse purposes [85–88]. 
Seo et al. [82] reported a new bioprinting technique that can 
create RMs with a precise amount of target DNA, referred to 
as “cell number-based DNA reference material” [85]. This 
development offers a rigorous and replicable technique for 
producing DNA RMs with specified quantities, which is 
essential for the standardization and quality assurance of DNA 
analysis. In addition, the literature has emphasized the creation 

for why this particular technology is the benchmark against 
which other methodologies are compared. qPCR is widely 
used due to its ability to quantify nucleic acids in real time, 
which is crucial for various applications, including disease 
diagnostics, genetic research, and pathogen detection [71]. 
This real-time quantification aspect offers a significant 
advantage over traditional PCR, enabling more detailed 
analyses of gene expression patterns, viral load determination, 
and genotyping [72]. Consequently, qPCR stands out as a 
highly sensitive, specific, and efficient diagnostic tool, making 
it a primary choice for comparing with other emerging genetic 
technologies [65].

PCR amplifies target DNA sequences through 
repeated cycles of temperature changes, which denature DNA, 
anneal primers, and extend new DNA strands [73]. This process 
results in an exponential increase in the target DNA region [68]. 
The advent of quantitative PCR (qPCR) introduced real-time 
DNA amplification and quantification using fluorescent dyes, 
enhancing genetic testing’s complexity and capabilities [65]. 
The essential stages of DNA-based PCR diagnostic testing are 
illustrated in Figure 7, which details sample collection, DNA 
extraction, reaction mixture preparation, and PCR amplification.

The exceptional specificity, sensitivity, and 
quantitative capabilities of qPCR serve as the basis for 
molecular diagnostics. This efficacy comes from pre-designed, 
optimized primers and real-time fluorescence monitoring, 
which ensures excellent specificity and low background 
noise [68,74]. In addition to primer design, exact control 
over reaction parameters like temperature profiles and salt 
concentrations contributes to qPCR’s specificity, which makes 
it possible to identify single base pair variances and clinically 
meaningful genetic alterations [75]. The method’s superior 
sensitivity is achieved through efficient amplification and real-
time fluorescence-based monitoring, providing accurate and 
reproducible quantitative data essential for applications like 
viral load measurement [72,76].

qPCR also offers operational simplicity, with master 
mixtures containing all necessary components, reducing the 
need for extensive optimization and minimizing potential errors. 
This setup simplicity, combined with user-friendly software 
for data interpretation, makes qPCR well-suited for rapid 
diagnostic environments [77,78]. This efficiency underscores 
qPCR’s popularity for rapid and accurate diagnostics [79]. Most 
laboratories are equipped with qPCR technology, making it a 
common choice for routine molecular testing.

Table 2. Cost comparison of diagnostic testing technologies. 

Technology Cost per reaction Initial investment Per-sample cost Scope of analysis

Sanger sequencing High Substantial Expensive Relatively small DNA fragments (up to ~1000 
bp)

Next-generation sequencing 
(NGS)

Very high Complex Expensive Large-scale sequencing, including whole 
genomes, transcriptomes, or targeted panels

Microarrays Very high Intricate Expensive Analysis of multiple genes or regions 
simultaneously using specific probes

Real-time PCR (qPCR) Low Substantial Minimal Single gene targeted analysis

Digital PCR (dPCR) Medium to high Specialized Moderate Single gene targeted analysis with absolute 
quantification
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Table 3. Current RMs used in diagnostic testing. 

Type of RM Testing context (Disease) Type of sample Country conducting 
test

Reference

gBlocks COVID-19 Nasopharyngeal or oropharyngeal swabs 
or sputum

South Korea [54]

COVID-19 Nasal swab Canada [55]
COVID-19 Nasopharyngeal and nasal swabs United States and Italy [56]

Monkeypox virus (MPV) Eluat swab United States [57]
Renal cell carcinoma (RCC) Plasma cell-free DNA (cfDNA) from 

tumor tissue
Japan [59]

Non-small cell lung cancer (NSCLC) Lung resection specimens from 
adenocarcinoma and sarcomatoid 

carcinoma

Ireland [60]

Non-small cell lung carcinoma (NSCLC) Whole-blood samples United States [61]
Breast cancer with PIK3CA and ESR1 mutations Plasma England [6]

Ebola virus disease Plasma West and Central Africa [62]
Tuberculosis (TB) Sputum Vietnam, Peru, and 

South Africa
[63]

Tuberculosis (TB) and nontuberculous mycobacteria 
(NTM)

Sputum Mali, West Africa [64]

Artificial 
recombinant 

plasmid

Leptospirosis Serum India [65]
COVID-19 Nasopharyngeal swabs Russia [66]

Malaria Blood China [67]
Melioidosis Serum Thailand [68]

Gastric cancer Serum China [69]
Hepatitis C virus (HCV) and influenza virus Plasma China [70]

Hepatitis D Virus (HDV) Blood Brazil [71]
Hepatitis E virus (HEV) Serum or plasma United States [72]

T cell acute lymphoblastic leukemia (T-ALL) and 
B-cell acute lymphoblastic leukemia (B-ALL)

Bone marrow China [73]

Lassa virus (LASV) Serum, blood, and tissue Guinea, West Africa [74]
Genomic DNA Herpes simplex virus (HSV) Cervicovaginal specimens from 

gynecological practices
Iran [75]

Malaria Dried spots of blood obtained by finger 
prick

Thailand and India [76]

Malaria Giemsa-stained thick blood smears and 
dried filter paper blood spots (DBS)

Ghana [77]

Nasopharyngeal carcinoma (NPC) Plasma and nasopharyngeal epithelial 
cells obtained

Hongkong and Toronto [78]

Tuberculosis Sputum England [79]
Tuberculosis Sputum Peru [80]

Extrapulmonary tuberculosis (EPTB) Pleural fluids and urine India [81]
Lung cancer Fresh-frozen, blood, and paraffin-

embedded biopsies
Latin America 

(Argentina, Colombia, 
Brazil, Mexico, Peru)

[82]

Hereditary colorectal cancer Blood Japan [83]
Non-small cell lung cancer (NSCLC) Plasma China [84]

Cell line COVID-19 Nasopharyngeal swabs, sputum, urine, 
feces, and serum samples

Australia [85]

COVID-19 Nasal/nasopharyngeal swab or saliva Japan [86]
Non-small cell lung cancer (NSCLC) Blood China [84]

Respiratory virus infections Nasopharyngeal swab or aspiration Taiwan [87]
Human T-lymphotropic virus type 1 (HTLV-1) Paraffin biopsy and/or blood sample Germany [88]

Non-small cell lung cancer (NSCLC) Lung biopsy, either tissue-based or 
cytology

Australia [89]

Epithelial ovarian cancer (EOC) Serum and tissue China [90]
Breast cancer Blood United States [91]
Lung cancer Sputum China [92]

Colorectal cancer Serum China [93]
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are used to validate the sequencing procedure and evaluate 
the sensitivity and specificity of the assay. This ensures the 
data’s quality and reliability [11]. The NA12878 genome 
from the Coriell cell line GM12878, which has a European 
ancestry background, is widely recognized as the primary 
reference standard for different NGS applications in human 
whole genome sequencing [95,96]. Although the NIST-hosted 
Genome in a Bottle consortium provides genome references 
for Ashkenazi Asian and Han Chinese ancestry, efforts are still 
ongoing to develop reference genomes from diverse ancestries 
that encompass all forms of human genetic variation [96]. The 
Genetic Testing Reference Materials Coordination Programme 
(GeT-RM) offers a range of cell lines that contain specific 
mutations associated with inherited disorders in humans [97]. 
In addition, the US Food and Drug Administration (FDA) has 
made available a large number of microbial reference genomes in 
the FDA-ARGOS database for the purpose of testing infectious 
microorganisms [95]. In addition, the Human Microbiome 
Project Consortium provides RMs for microbiome studies by 
creating artificial microbial communities using extracted gDNA 
samples [95]. Organizations such as the Reference Materials 
and Measurements of the European Commission (IRMM-

of RMs for certain DNA sequences or genetic markers [89–92]. 
In the research they conducted, [92] detailed the development 
of DNA molecules that functioned as model Standard RMs for 
the purpose of determining DNA sequences. Their findings 
highlighted the significance of well-characterized RMs in 
genetic testing. The mentioned references highlight the crucial 
importance of DNA RMs in upholding the quality and precision 
of genetic testing processes. In addition, DNA RMs have a 
wide range of uses, including identifying the mechanisms of 
antibiotic resistance in foodborne pathogens [87], creating 
genomic RMs for detecting meat adulteration [93], and 
constructing DNA hydrogels for biomedical applications [94]. 
Niu et al. [87] presented the creation of plasmid DNA RMs to 
identify antibiotic resistance mechanisms. They highlighted the 
usefulness of these materials as universal calibrators in qPCR 
analysis [87]. Furthermore, [93] emphasized the significance of 
quality control procedures in food analysis and the usefulness 
of DNA-based RMs in identifying adulterated meat [93]. 
NGS-based diagnosis heavily relies on RMs for identifying 
the presence of germline variants in rare diseases through the 
use of high-throughput DNA sequencing [95]. RMs, such as 
standardized cell line genomes or synthetic DNA fragments, 

Figure 6. Digital PCR workflow. This diagram outlines the key steps in a dPCR workflow, allowing for precise quantification of target molecules. Initially, a reaction 
mixture is prepared with all necessary components for PCR amplification. Following this, the sample is carefully divided into numerous nanoliter-sized droplets using 
specialized equipment, ensuring each droplet encapsulates individual target molecules. Subsequent to droplet generation, the PCR cycling process occurs, amplifying 
target DNA within each droplet alongside any background DNA present. After amplification, droplets undergo analysis to differentiate positive droplets containing 
amplified targets from negative ones lacking. This analysis facilitates the accurate determination of the absolute abundance of target molecules in the original sample. 
dPCR offers researchers a robust tool with heightened sensitivity and the capability for absolute quantification, eliminating the need for standard curves (Created with 
Biorender.com).
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EU) and the American Oil Chemists’ Society (AOCS) are the 
main producers of commercially accessible certified RMs for 
matrix-based and genomic DNA. This information is supported 
by Li et al. [98]. These well-established organizations play 
a crucial role in standardizing and ensuring the quality of 
genetic testing methods by providing highly defined RMs. 
Collaborative ring trials have been carried out to evaluate the 
suitability of reference plasmid DNA calibrants in quantitative 
analyses of genetically modified (GM) contents. These trials 
emphasize the significance of certified reference materials 
(CRMs) in guaranteeing the precision and dependability of 
GM quantification methods [99]. In addition, the meticulous 
processes involved in certifying DNA reference RM materials 
to meet stringent quality standards are demonstrated through 
the development and characterization of quantitative RMs 
for specific applications, such as Legionella detection and 
quantification by qPCR [83].

The development of RMs has challenges, particularly 
in achieving interlaboratory repeatability. This issue has been 
emphasized in research that specifically investigates the use of 
new DNA RM formats in droplet digital PCR [100]. Ensuring 
the ability to replicate results in other laboratories is essential 
for the widespread acceptance of DNA RMs in diverse scientific 
fields. In Indonesia, the progress in developing DNA-based RMs 
is still in its early stages compared to international benchmarks. 
Although there is agreement with worldwide patterns in DNA 
nanotechnology and biomaterials research [101,102], there are 
still notable obstacles to overcome. These factors comprise 

restricted infrastructure, unavailability of new technological 
equipment, and inadequate money for comprehensive research 
and development projects. 

To put it simply, the current situation in Indonesia 
regarding the establishment of DNA-based RMs encompasses 
the process of developing, characterizing, and certifying RMs 
for different purposes, such as genetic testing, and clinical 
diagnostics. The challenges involved in developing RMs 
encompass the need to guarantee consistent results across 
different laboratories. To address these difficulties, a significant 
investment in infrastructure, technology, and human resources 
is needed. 

FUTURE DIRECTION AND RECOMMENDATION
Future research should focus on developing and 

standardizing RMs to improve the quality and reliability of 
DNA-based diagnostics. This includes the establishment 
of a national coordination body in Indonesia to oversee the 
production, validation, and distribution of RMs. Collaboration 
between research institutions, standardization bodies, and 
regulatory agencies is essential to create a robust framework 
for RM utilization. These efforts should prioritize the creation 
of standardized reference controls that align with international 
standards, ensuring consistent and reproducible diagnostic 
results [103]. By incorporating locally relevant pathogen strains 
and epidemiological data, the selected RMs will enhance the 
accuracy and validity of diagnostic tests within the Indonesian 
context [104].

Figure 7. A) The essential stages of DNA-based PCR diagnostic testing. Firstly, sample collection involves gathering biological material like blood or urine from 
the patient. Next, DNA extraction isolates DNA from other cellular components. Then, reaction mixture preparation mixes the extracted DNA with primers, DNA 
polymerase, and a fluorophore, divided into tubes for testing (unknown samples) and controls (reference material). Lastly, PCR amplification uses a PCR machine 
to amplify the DNA. B) The DNA amplification process through PCR. It begins with initiation, where double-stranded DNA is denatured into single strands. 
Denaturation heats the mixture to separate the DNA. Annealing follows, lowering the temperature for primers to bind to the target DNA. Extension occurs as DNA 
polymerase adds nucleotides, amplifying the target DNA exponentially (Created with Biorender.com).
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The selection and implementation of RMs must 
balance cost, capability, stability, and contamination risks. 
Laboratories with limited budgets can utilize cost-effective 
synthetic targets like gBlocks for high-volume applications, 
while more complex diagnostics may require genomic DNA 
or cell lines despite their higher costs. Continuous proficiency 
testing and external quality assessment are vital to validate 
laboratory performance against common RMs, identifying 
areas for improvement and ensuring high diagnostic standards 
[104]. Investment in infrastructure, personnel training, and 
policy enforcement is critical for maintaining high-quality 
diagnostic testing. Robust infrastructure supports effective 
testing, while trained personnel ensure reliable results, and 
policy enforcement promotes a culture of excellence [97].

Innovation and adaptability are crucial in the evolving 
field of diagnostic testing. Embracing new technologies and 
staying updated with advancements will keep Indonesia at the 
forefront of global diagnostic standards. This commitment to 
innovation will improve diagnostic accuracy, enhance patient 
care, and strengthen public health. By focusing on continuous 
improvement and aligning with international best practices, 
Indonesia can ensure its diagnostic testing capabilities remain 
advanced and effective, ultimately benefiting patient outcomes 
and the healthcare system as a whole.

CONCLUSION
The comprehensive review highlights the pivotal 

role of RMs in ensuring the accuracy and reliability of DNA-
based diagnostic testing. This study identifies their unique 
characteristics, advantages, and limitations by examining 
various types of RMs—gBlocks, recombinant plasmids, 
genomic DNA, and cell lines. gBlocks, for example, 
offer high specificity and stability but may lack genomic 
complexity. Recombinant plasmids are flexible and stable but 
costly and prone to contamination. Genomic DNA provides a 
comprehensive genetic composition and high stability, yet it is 
susceptible to degradation and high contamination risk. While 
effective for observing gene behavior and disease progression, 
cell lines face challenges in maintaining stability and avoiding 
contamination, with high maintenance costs. The strategic 
selection of RMs, considering specificity, complexity, 
stability, and cost factors, is essential for optimizing diagnostic 
testing. The establishment of a national coordination body in 
Indonesia to standardize RM utilization and collaboration 
with international organizations will enhance the quality 
and availability of RMs, ensuring diagnostic accuracy and 
reliability that meets international standards.
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