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INTRODCUTION
The COVID-19 pandemic, caused by the novel SARS-

CoV-2 virus, has emerged as a significant global health crisis 
[1]. The rapid transmission and severe pathogenic effects of 
the virus have overwhelmed healthcare systems and economies 
worldwide, highlighting the urgent need for effective treatments 
[2,3]. Traditional drug discovery methods are often time-
consuming, often taking 10–15 years, and costly, billions of 
dollars, posing a significant challenge in responding promptly to 
such a crisis [4]. Despite this investment, the success rate is low, 

with many drugs failing in clinical trials due to efficacy or safety 
issues. These methods struggle to fully understand complex 
biological systems, relying on known chemical compounds, 
which limits innovation. Predicting safety and side effects is 
challenging, and the process is slowed by ethical and regulatory 
hurdles. Additionally, traditional methods may not be effective 
for complex or rare diseases. These limitations have spurred 
interest in new technologies like computational drug discovery, 
high-throughput screening, and AI-driven approaches to 
improve efficiency and success rates. Therefore, innovative 
approaches to drug discovery, such as in silico methods, have 
gained considerable attention for their potential to expedite 
the development of therapeutic interventions [5]. One of the 
most promising targets for antiviral drug development within 
coronaviruses is the main protease (Mpro) [6]. This enzyme 
plays a critical role in processing the polyproteins translated 
from the viral RNA, making it essential for viral replication 
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ABSTRACT
This study presents a comprehensive computational approach aimed at repurposing an FDA-approved drug, retrieved 
from DrugBank database, as a potential inhibitor of the SARS-CoV-2 main protease, a crucial target for antiviral drug 
development. Utilizing e-pharmacophore-based virtual screening, molecular docking, MM-GBSA calculations, and 
molecular dynamics simulations, the key interactions and binding affinities of Eluxadoline, the top-ranked drug, with 
the target protease were elucidated. The findings provide valuable insights into the molecular mechanisms underlying 
Eluxadoline’s inhibitory activity against the SARS-CoV-2 main protease, highlighting its potential for combating 
emerging viral threats. Further experimental validation is recommended to confirm and optimize Eluxadoline’s 
efficacy, paving the way for its potential clinical application in the ongoing battle against COVID-19. This study 
underscores the significance of repurposing existing drugs as a promising strategy for urgently needed therapeutics 
against global pandemics like COVID-19.
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6M2N were prepared. Ligands’ preparation was carried out 
using the LigPrep tool (Ligprep, Schrödinger, LLC, New York, 
NY, 2023). This process generated and minimized 3D structures, 
including all possible tautomers and ionization states at pH 7.0 
± 2.0 for the drugs and 3WL, employing the OPLS4 force field. 
Protein preparation utilized Schrödinger’s multistep Protein 
Preparation Wizard (PrepWizard, Schrödinger, LLC, New York, 
NY, 2023). The high-resolution crystal structure of the SARS-
CoV-2 main protease (Mpro) (PDB: 6M2N) at 2.2 Å resolution, 
bound to 3WL, was initially retrieved from the RCSB Protein 
Data Bank [15]. The process included adding hydrogen atoms, 
assigning bond orders, creating zero-order bonds to metals, 
forming disulfide bonds, removing water molecules beyond 
5 Å from hetero groups, and capping the termini. Hydrogen 
bonding networks were optimized, and the orientations of water 
molecules were sampled. Finally, the structures were refined 
by minimizing them with the OPLS4 force field, restraining 
nonhydrogen atoms to a root-mean-square deviation (RMSD) 
of 0.3 Å. The co-crystallized ligand (3WL) was retained in the 
active site throughout the preparation process. A 3D cubic grid 
box was constructed around the co-crystal ligand using the 
receptor grid generation tool in the Maestro suite.

Generation of e-pharmacophore model and  
pharmacophore-based virtual screening

The X-ray crystal-bound ligand, 3WL, was utilized 
to generate energy-optimized pharmacophore hypotheses 
through the “Develop a Pharmacophore from Receptor-
Ligand Complex” option in the Phase module [16] (Phase, 
Schrödinger, LLC, New York, NY, 2023). The bound ligand was 
automatically identified and selected, with all default parameters 
retained. Five pharmacophore sites were predicted, resulting 
in a final hypothesis consisting of two aromatic moieties, one 
heteroatom, one hydrogen bond donor, and one hydrogen bond 
acceptor, as illustrated in Figure 2. The pharmacophore-based 
screening was conducted against a LigPrep-prepared library 
of FDA-approved drugs sourced from the DrugBank database 
to identify drugs with the desired chemical features using the 
Phase module of Schrӧdinger. A minimum match of four sites 
on the generated e-pharmacophore hypothesis was required for 
the drugs. The phase fitness score, which measures how well 
the ligands match the chemical features of the pharmacophore 

and maturation [7]. Key residues within the active site of Mpro 
namely, His41, Cys44, Met49, Gly143, Ser144, Cys145, and 
Glu166 are crucial for its enzymatic function [8,9]. Inhibiting 
Mpro can effectively block the replication of the virus, thereby 
halting the progression of the infection [7]. E-pharmacophore 
virtual screening is a powerful computational technique 
employed in drug discovery to identify potential drug candidates 
from extensive chemical libraries or databases [10,11]. This 
approach leverages the three-dimensional structural information 
of target proteins and the physicochemical properties of 
ligands to predict binding affinity and specificity [11,12]. Drug 
repurposing, also known as drug repositioning, is the process 
of identifying new therapeutic uses for existing drugs. This 
approach employs previously approved medications, which can 
accelerate the drug development process since these drugs have 
already been tested for safety in humans [13]. In the context of 
the COVID-19 pandemic, repurposing existing FDA-approved 
drugs for new therapeutic indications offers a pragmatic and 
efficient strategy. This approach significantly reduces the time 
and cost associated with traditional drug development, as 
these compounds have already undergone extensive testing for 
safety and efficacy. This manuscript explores the application 
of e-pharmacophore virtual screening in identifying potential 
inhibitors of the SARS-CoV-2 main protease from a library 
of FDA-approved drugs. The findings of the current study 
provide insights into promising drug candidates that could be 
repurposed to combat COVID-19, thereby contributing to the 
global effort to control the pandemic. 

MATERIALS AND METHODS
All computational studies, including protein and 

ligands’ preparation, e-pharmacophore modeling, virtual 
screening, MM-GBSA calculations, and molecular dynamics 
(MD) simulations, were executed using Maestro interface 
incorporated in Schrӧdinger suite (version 2023.1) (Schrödinger, 
LLC, New York, NY, 2023). A dataset comprising 2,619 FDA-
approved drugs was obtained from the DrugBank database [14] 
(accessed in January 2024). 

Protein and ligands preparations
Using the Maestro interface, all FDA-approved drugs, 

the reference inhibitor 3WL (Fig. 1), and the target enzyme 
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Figure 1. Chemical structures of the co-crystalized ligand, Eluxadoline, and Canagliflozin.
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sites based on vector alignments, volume terms, and RMSD site 
matching, was used to rank the final drugs obtained from the 
virtual screening [17].

Molecular docking
A grid was generated around the native ligand 3WL 

to define the binding site, using default settings. The Glide 
XP (extra precision) module of the Schrödinger Suite (Glide, 
Schrödinger, LLC, New York, NY, 2023) was then used to 
perform docking into the active site of the crystal structure [18]. 
To validate the docking protocol, 3WL was re-docked into the 
prepared binding site of Mpro. The best-scoring docked pose of 
3WL was superimposed on the X-ray crystal conformation of 
the bound ligand to calculate the RMSD [16,19].

MM-GBSA free binding energy calculations
In this study, the the Molecular Mechanics with 

Generalized Born and Surface Area (MM-GBSA) calculations 
were employed as a post-docking validation protocol. The 
Prime MM-GBSA method, integrated with the Maestro module 
of the Schrödinger suite (Prime, Schrödinger, LLC, New York, 
NY, 2023), was used for energy calculations. All calculations 
were performed using the default parameters [20].

MD simulations
The complexes of the co-crystallized ligand 3WL, 

Eluxadoline, and Canagliflozin with the Mpro enzyme (PDB: 
6M2N) underwent MD simulations using the Desmond 
Schrödinger program (Desmond, Schrödinger, Schrödinger, 
LLC, New York, NY, 2023). The system construction wizard 
was initiated by selecting the SPC solvent model and the OPLS4 
force field, creating an orthorhombic box with dimensions of 10 
× 10 × 10. The required number of ions was calculated and added 
to neutralize the system, and a salt concentration of 0.15 M was 
included to mimic physiological conditions. To prevent steric 
clashes, the system builder output was employed to perform a 
minimization step for the entire complex and solvent system 
for 100 ps using the steepest descent method. Finally, an MD 
simulation was conducted in an isothermal-isobaric ensemble 
(NPT mode) with a constant number of particles for 100 ns.

RESULTS AND DISCUSSION
The SARS-CoV-2 virus, responsible for COVID-19, 

emerged in late 2019 and swiftly became a global pandemic, 

causing millions of infections and deaths [21]. Its rapid spread 
overwhelmed healthcare systems, leading to significant health 
crises and economic disruptions, including business closures 
and job losses [22]. Public health measures such as lockdowns 
and social distancing had profound impacts on daily life and 
mental health [23]. The pandemic prompted unprecedented 
global collaboration in vaccine development and therapeutic 
research, underscoring the importance of robust public health 
infrastructure and preparedness [24]. The continuous emergence 
of new variants and the issue of “Long COVID-19” highlight the 
ongoing need for effective prevention, treatment, and equitable 
vaccine access [25,26]. Drug targets for COVID-19 are not just 
essential but pivotal in advancing understanding of the disease 
and in developing effective therapeutic interventions to combat 
the pandemic. They provide the critical foundation for targeted 
treatments that can disrupt viral replication, modulate the 
immune response, and minimize side effects, ultimately aiming 
to reduce transmission rates, hospitalizations, and mortality, 
and alleviate the burden on healthcare systems worldwide [27]. 
The SARS-CoV-2 main protease (Mpro, also known as 3CLpro) 
is one of the most well-characterized drug targets among 
coronaviruses. Inhibiting the activity of this enzyme would 
effectively block viral replication. Interestingly, no human 
proteases with similar cleavage specificity are known, reducing 
the likelihood of toxicity from inhibitors [28]. The literature 
review revealed that a substantial number of papers have 
identified the main protease of SARS-CoV-2 as a promising 
target for in silico drug discovery for COVID-19 [6,7]. 
Millions of compounds, including known drugs [29], synthetic 
molecules [30], and natural products [31], were screened 
using various molecular modeling tools, resulting in numerous 
candidates demonstrating potential anti-SARS-CoV-2 activity. 
Additionally, bioinformatics tools were employed to evaluate 
the ADMET profiles of some of these inhibitors [32]. The 
analysis of binding affinities and interactions suggested that 
several FDA-approved drugs could be repurposed as potential 
treatments for COVID-19 [33]. In this study, Mpro was 
selected as the target for COVID-19 drug discovery using a 
computational approach that included E-pharmacophore-based 
virtual screening, molecular docking, MM-GBSA calculations, 
and MD simulations’ studies. The crystal structure of Mpro 
bound to a novel inhibitor (PDB: 6M2N) was downloaded 
from the Protein Data Bank and prepared using default 
parameters in the Prime module within the Maestro interface of 
Schrödinger [20]. Next, Schrödinger’s Phase module [16] was 
utilized to generate a pharmacophore from the protein-ligand 
complex, extracting five features: two aromatic moieties, one 
heteroatom, one hydrogen bond donor group, and one hydrogen 
bond acceptor group (Fig. 2). The generated pharmacophore 
model was used to perform virtual screening against a library of 
FDA-approved drugs [14] with the aid of Schrödinger’s Glide 
module [18]. Out of a total of 2619 FDA-approved drugs, 308 
were identified to match the pharmacophore model generated 
in the study. These drugs exhibit chemical features and spatial 
arrangements similar to those specified in the pharmacophore 
model, suggesting they could potentially interact with the target 
protein (Mpro) similar to the known inhibitor. This similarity 
makes them promising candidates for further investigation as 

Figure 2. The generated pharmacophore model.
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potential treatments for COVID-19. Therefore, the next step 
involved docking each of the 308 drugs into the binding site of 
Mpro to select the best candidates based on their docking scores. 
However, before proceeding, it was necessary to validate the 
docking protocol first. To this end, the co-crystallized ligand was 
removed from the binding site and re-docked using the Glide 
module of Schrödinger. The result of the XP docking showed 
that the docking protocol was valid, with an RMSD found to 
be as small as 0.47 Å [19] (Fig. 3). Following this validation, 
XP molecular docking was performed for each of the 308 drugs 
against the binding site of Mpro. These drugs were then ranked 
according to the obtained docking scores, which indicated their 

potential affinity to the target protein. This ranking helped 
identify the most promising drug candidates to advance to the 
next step, which involved free-binding energy calculations. In 
experiments, co-crystallized ligands are molecules known to 
effectively bind to a target protein’s active site, verified through 
crystallography. Using their docking scores as benchmarks 
predicts the binding potential of new ligands. Lower scores 
indicate stronger binding, identifying promising candidates for 
further investigation. This approach accelerates drug discovery 
by prioritizing compounds with potential biological activity 
and optimizing screening efforts efficiently. Thus, based on 
initial considerations, the docking score of the redocked co-
crystallized ligand is a cutoff point to select the best drug 
candidates for MM-GBSA calculations. Specifically, all drugs 
exhibiting a docking score more negative than −7.849 kcal/
mol were chosen for the next step, as a more negative docking 
score typically indicates a stronger predicted binding affinity 
to the target protein [34]. In this context, only three drugs—
Pitavastatin, Canagliflozin (Fig. 1), and Fluvastatin—were 
found to have a stronger affinity for Mpro compared to the co-
crystallized ligand, with docking scores of −8.839, −8.513, 
−7.859, and −7.849 kcal/mol, respectively (Table 1). 

MM-GBSA calculations on the complexes of these 
drugs with Mpro revealed that only Canagliflozin had better 
binding energy compared to the co-crystallized ligand. 
Specifically, Pitavastatin and Fluvastatin demonstrated 
weaker binding to the active site of Mpro, with binding energies 
of −33.59 and −34.13 kcal/mol, respectively, compared to 
the co-crystallized ligand’s −52.43 kcal/mol. In contrast, Table 1. XP docking scores and MM-GBSA binding free energies of the 

co-crystalized ligand (3WL) and the top-ranked FDA-approved drugs 
with SARS-CoV-2 main protease (Mpro) (PDB: 6N2N).

ID Name Clinical use Docking 
score  

(kcal/mol)

dG Bind 
(kcal/mol)

 1771  Eluxadoline Antidiarrheal −5.706 −65.37

1568 Azilsartan 
medoxomil

Antihypertensive −6.047 −64.65

1604 Canagliflozin antidiabetic −8.513 −63.01

2121 Abemaciclib Anticancer −7.250 −62.35

2579 Berotralstat Prevent attacks of 
HAE

−4.214 −62.20

- Avanafil Erectile 
dysfunction

−7.496 −62.16

2327 Enasidenib Anti-AML −5.519 −61.65

997 Doxorubicin Antibiotic −4.854 −57.60

301 Cefpiramide Antibiotic −6.837 −57.45

1274 Arformoterol Bronchodilator −5.260 −57.31

1543 Raltegravir Anti-HIV −6.368 −54.93

276 Amsacrine Antineoplastic −4.371 −53.95

186 Chlortalidone Diuretic −6.632 −52.94

2086 Capmatinib Anticancer −6.667 −52.57

CCL Co-crystalized 
ligand

- −7.849 −52.43

922 Fluvastatine Antilipemic −7.859 −34.13

1576 Pitavastatin Antilipemic −8.839 −33.59

Table 2. The maximum, minimum, and average values of different 
parameters, RMSD, RMSF, hydrogen bonds contacts, and 

hydrophobic interactions contacts of the co-crystalized ligand (3WL), 
Eluxadoline, and Canagliflozin complexed with SARS-CoV-2 main 

protease (Mpro) (PDB: 6N2N).

Apo 3WL-Mpro 
complex

Eluxadoline-
Mpro complex

Canagliflozin-
Mpro complex

Root-mean-square deviation Å (RMSD)

Maximum 4.4 3.2 3.2 3.9

Minimum 1.1 1.2 1.0 1.1

Average 2.6 1.9 2.4 2.9

Root-mean-square fluctuation Å (RMSF)

Maximum 11.6 6.4 6.1 9.8

Minimum 0.4 0.4 0.4 0.4

Average 1.4 1.0 1.0 1.3

Hydrogen bonds contacts

Maximum − 7 7 5

Minimum − 0 0 0

Average − 2.6 3.8 0.9

Hydrophobic interactions contacts

Maximum − 5 4 5

Minimum − 0 0 0

Average − 1.2 1.3 1

Figure 3. The superposition of the docked ligand (blue) on the co-crystalized 
ligand (green).
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the docking scores of Pitavastatin and Fluvastatin and their 
MM-GBSA binding free energies strengthens the assumption 
that molecular docking may yield false-positive results [36]. 
Thus, it became apparent that relying solely on docking 
scores to select the best drugs for MM-GBSA calculations 
was not advisable. Therefore, MM-GBSA calculations were 
conducted, using the Prime module of Schrödinger, on all 
308 drugs retrieved through e-pharmacophore-based virtual 
screening. By this time, it was found that the initial cutoff 
point (docking score of the co-crystallized ligand) was not 
suitable. Consequently, the binding free energy exhibited by 
the co-crystallized ligand was chosen as another cutoff point. 
The MM-GBSA energy of the co-crystallized ligand plays a 
critical role in drug discovery as it quantitatively measures 
the binding affinity between a specific ligand and its target 
protein through computational simulations. This provides a 
comprehensive estimation of the ligand’s stability within the 
protein’s active site. Establishing the MM-GBSA energy of 
the co-crystallized ligand as a cutoff allows researchers to 
efficiently screen potential drug candidates. Ligands with 

Canagliflozin exhibited a binding energy of −63.01 kcal/mol, 
indicating it bound the target protein more strongly than that 
of the co-crystallized ligand [35]. The discrepancy between 

Figure 4. RMSD plot of Mpro Apo protein (PDB: 6M2N) and Mpro (PDB: 6M2N) 
bound with the co-crystalized ligand (3WL), Eluxadoline and Canagliflozin 
versus time of the simulation.

Figure 5. Interaction Mpro residues with the co-crystalized ligand (A), Eluxadoline (B), and Canagliflozin (C). Different interactions were observed: hydrogen bonds 
(green); Water bridges (blue), hydrophobic interactions (grey); and ionic interactions (red).
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simulations revealed Eluxadoline’s potential as a SARS-
CoV-2 main protease inhibitor, demonstrating parameters 
almost comparable to those of the co-crystallized ligand and 
superior to those of Canagliflozin. The Mpro complexed with 
Eluxadoline demonstrated RMSD values with a maximum 
of 3.2Å, a minimum of 1.0Å, and an average of 2.4Å. In 
comparison, the 3WL-Mpro complex revealed RMSD values 
with a maximum of 3.2Å, a minimum of 1.2Å, and an average 
of 1.9Å. Both Eluxadoline and 3WL (the co-crystallized 
ligand) appeared to have a stabilizing effect on the Mpro 
structure, whereas the Apo (unbound protein) form of Mpro 
exhibited higher fluctuation with a maximum of 4.4Å, a 
minimum of 1.1Å, and an average of 2.6Å (Fig. 4) (Table 2). 

The maximum deviation in the Eluxadoline-Mpro 
complex is the same as in the 3WL-Mpro complex (3.2Å). 
However, the minimum deviation is slightly lower (1.0Å vs. 
1.2Å), and the average deviation is slightly higher (2.4Å vs. 
1.9Å). These findings suggest that Eluxadoline, similar to 
the co-crystallized ligand 3WL, stabilizes the Mpro structure, 
reducing its fluctuations. In contrast, the unbound Mpro protein 
(Apo) exhibits greater structural variability. This stabilizing 
effect of the ligands is demonstrated through lower and more 
consistent RMSD values compared to the higher RMSD values 
of the Apo form. Data presented in Table 2 clearly indicate 
that the Canagliflozin-Mpro complex exhibited lower stability 
compared to both the co-crystallized ligand and Eluxadoline. 
The maximum RMSD of 3.9 shows the largest deviation 
observed, the minimum RMSD of 1.1 shows the smallest 
deviation, and the average RMSD of 2.9 shows the typical 

energies comparable to or lower than that of the co-crystallized 
ligand  are prioritized, indicating stronger and more specific 
binding to the target protein. In this regard, 14 drugs exhibited 
more negative binding energies than the co-crystallized 
ligand, with Eluxadoline (Fig. 1) being the top-ranked 
(−65.37 kcal/mole) (Table 1). Following this, Schrödinger’s 
Desmond module was used to conduct MD simulations for 
100 nanoseconds on the complexes of Eluxadoline and the 
co-crystallized ligand with Mpro. These simulations allowed 
for the exploration of protein-ligand interactions, stability, 
and conformational changes [37]. The findings from the MD 

Figure 6. A timeline representation of the interactions and contacts (H-bonds, Hydrophobic, Ionic, Water bridges) of Mpro residues with the co-crystalized ligand (A), 
Eluxadoline (B), and Canagliflozin (C). The top panel shows the total number of specific contacts the protein makes with the ligand over the course of the trajectory. 
The bottom panel shows which residues interact with the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which 
is represented by a darker shade of orange, according to the scale to the right of the plot.

Figure 7. Eluxadoline interactions with Mpro residues. Only interactions that 
occur more than 30.0% of the simulation time in the selected trajectory (0.00 
through 100.00 nsec), are shown.
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deviation across the simulation. The differences between the 
maximum and minimum RMSD values for the complexes 
suggest varying degrees of stability and flexibility in the 
binding of Eluxadoline and Canagliflozin to the SARS-CoV-2 
main protease. Eluxadoline showed a narrower range (2.2Å), 
indicating more consistent binding, whereas Canagliflozin 
exhibited a wider range (2.8Å), potentially suggesting less 
stable interactions [38]. As mentioned earlier, RMSD is a 
critical metric in MD simulations, assessing the stability and 
accuracy of molecular structures over time by measuring the 
average distance between simulated and reference structures. 
It indicates structural stability, detects conformational changes, 
validates simulation quality, compares molecular states, and 
provides insights into biomolecular dynamics and behavior. 
The lower RMSD values observed in the Eluxadoline-Mpro 
complex suggest stable structure maintenance throughout the 
simulation, indicating effective binding of Eluxadoline to the 
target protein with minimal deviations. This stability reflects a 
stronger and more stable interaction between Eluxadoline and 
Mpro, implying potential inhibitory properties of Eluxadoline 
against Mpro. Throughout the simulation, Eluxadoline, 
Canagliflozin, and the co-crystallized ligand remained bound 
to Mpro (PDB: 6M2N) binding site, forming contacts with 24, 
26, and 22 residues, respectively (Fig. 5A‒C). Eluxadoline 
consistently maintained more than four persistent contacts 
with key residues His41, Cys44, and Glu166. In contrast, the 
interactions of Canagliflozin and the co-crystallized ligand with 
these residues were less stable (Fig. 6A‒C). The stability of the 
Eluxadoline-Mpro complex observed during MD simulations 
can be attributed in part to the formation of hydrogen bonds 
with residues His41 and Cys44, which persisted for up to 79% 
of the simulation time (Fig. 7). On average, Eluxadoline formed 
3.8 hydrogen bonds with different residues in the Mpro binding 
site (Fig. 8) (Table 2). In contrast, neither the co-crystallized 
ligand nor Canagliflozin exhibited stable hydrogen bonds 
lasting for more than 25% of the simulation time with any 
residues in the Mpro active site. Their overall averages were 2.6 
and 0.9 hydrogen bonds, respectively (Table 2). Hydrophobic 
interactions played a crucial role in the relative stability of the 
Eluxadoline-Mpro complex compared to both the co-crystallized 
ligand and Canagliflozin, with average values of 1.3, 1.2, and 
1, respectively [39] (Fig. 9) (Table 2). Additionally, water-
mediated hydrogen bonds, known as water bridges, were 
observed between Eluxadoline and several residues in the Mpro 
binding site, including the key residue Glu166 (Fig. 5). The 
stability of interactions between Eluxadoline and Mpro during 
the simulation was reflected in reduced RMSF values observed 
for Mpro amino acid residues [40]. The overall average RMSF 
value for the Eluxadoline-Mpro complex was comparable to 
that of the co-crystallized ligand-Mpro complex, approximately 
1Å (Table 2)  (Figure 10). In contrast, RMSF values for Apo 
protein residues averaged 1.4Å, similar to those observed 
for the Canagliflozin-Mpro complex (1.3Å). Reduced RMSF 
values indicate that Eluxadoline binds tightly to the protein 
binding site, reducing the atomic displacements of residues 
from their average positions and reflecting a stabilized and 
less flexible protein-ligand complex. As noted earlier, MM-
GBSA calculations revealed that the Eluxadoline-Mpro complex 

exhibited a binding free energy of −65.37 kcal/mol, compared 
to −63.01 kcal/mol exhibited by the Canagliflozin-Mpro complex 
(Table 1). These findings, supported by both MD simulations 
and MM-GBSA calculations, demonstrate the strong binding 
affinity of Eluxadoline to the SARS-CoV-2 main protease (Mpro). 
Based on this comprehensive analysis, Eluxadoline emerges as a 
promising candidate for repurposing as an Mpro inhibitor. While 
computational studies offer valuable insights into molecular 

Figure 8. Time-dependent hydrogen bond analysis of Mpro (PDB: 6M2N) 
bound with the co-crystalized ligand (3WL), Eluxadoline, and Canagliflozin 
calculated from MD simulations trajectories.

Figure 9. Time-dependent hydrophobic interactions analysis of Mpro (PDB: 
6M2N) bound with the co-crystalized ligand (3WL), Eluxadoline, and 
Canagliflozin calculated from MD simulations trajectories.

Figure 10. RMSF plot of Mpro Apo protein (PDB: 6M2N) and Mpro (PDB: 6M2N) 
bound with the co-crystalized ligand (3WL), Eluxadoline and Canagliflozin 
versus time of the simulation.
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interactions and dynamics, they are limited by factors such 
as the accuracy of force fields, simulation parameters, and the 
simplification of complex biological environments, all of which 
can impact results. Therefore, it is essential to complement 
computational findings with experimental validations 
conducted in vitro (in controlled laboratory settings) and in vivo 
(within living organisms). In vitro experiments enable detailed 
analysis of molecular interactions under controlled conditions, 
while in vivo studies provide crucial insights into biological 
systems, including metabolism, toxicity, and efficacy. These 
combined experimental approaches provide robust validation 
of computational predictions, bolstering confidence in the 
potential therapeutic applications of molecules like Eluxadoline 
against targets such as Mpro. Interestingly, Eluxadoline has been 
used to treat abdominal cramps associated with COVID-19 and 
has shown good efficacy in alleviating abdominal disturbances 
[41,42]. The findings of the current study suggest that 
Eluxadoline might also play a role in eradicating the virus.

CONCLUSION
In conclusion, a computational approach, combining 

e-pharmacophore-based virtual screening, molecular docking, 
MM-GBSA calculations, and MD simulations’ studies, has 
successfully identified Eluxadoline as a potential inhibitor of 
the SARS-CoV-2 main protease. These findings shed light on 
the molecular interactions driving Eluxadoline’s inhibitory 
activity and highlight the promise of repurposing existing 
drugs to combat emerging viral threats such as SARS-CoV-2. 
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