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INTRODUCTION
Diabetes Mellitus (DM) represents a multifaceted 

metabolic disorder stemming from various causes, including 
deficiencies in insulin secretion and/or action. DM disrupts 
glucose homeostasis, inducing metabolic alterations and 
complications. Effective management strategies are vital 
to mitigate long-term health risks associated with glycemic 
dysregulation and metabolic abnormalities.[1–2] Chalcones 
are a family of naturally occurring 1,3-diphenyl-2-propen-
1-ones Figure 1 that have fascinated researchers due to their 
distinctive structure and the great potential they provide 
across a wide range of scientific fields [3]. Chalcones exhibit 
promising anti-inflammatory [4–8] and anticancer activities 
[9–12], suggesting their potential therapeutic role in managing 
these severe conditions [13]. Further exploration, particularly 

regarding their ability to influence diabetes [14], is a crucial 
area of future research.

Chalcones have been widely explored for several 
decades and have been used for treating diabetes [15]. Their 
potential lies in targeting glycemic control and regulating pathways 
involved in carbohydrate, lipid, and protein metabolism, offering 
comprehensive management strategies to mitigate long-term 
health risks associated with diabetes [16]. PPARγ, prominently 
expressed in adipose tissue, orchestrates adipogenesis and insulin 
sensitivity, making it a key player in metabolic homeostasis. 
Dysregulation of PPARγ signaling has been implicated in the 
pathogenesis of metabolic disorders, underscoring the significance 
of targeting PPARγ for therapeutic purposes [17]. An important 
function of PPARs is to regulate the transcription of several target 
genes that regulate adipocyte differentiation, glucose, and lipid 
metabolism, as well as insulin sensitivity and inflammation. 
Moreover, beyond their metabolic regulatory functions, PPARγ 
exerts pleiotropic effects encompassing cell proliferation, 
differentiation, angiogenesis, inflammation, and oxidative stress. 
[18]. Consequently, dysregulated PPARγ activity contributes 
to the development and progression of metabolic disorders. By 
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ABSTRACT
In recent years, chalcones have attracted researchers with their unique structure and promising potential across 
a wide range of scientific disciplines. They are naturally occurring 1,3-diphenyl-2-propen-1-ones. As well as 
regulating cell proliferation, differentiation, and angiogenesis, PPARs are also involved in cell differentiation. 
The present study evaluates the molecular activity of 60 chalcone analogs and two marketed drugs as potential 
PPAR gamma agonists. Molecular docking studies, structural property calculations, and 2D QSAR studies 
were carried out to screen the best molecule in the library. The compound coded with 2i was found to have the 
highest binding affinity and selectivity for PPAR gamma. Firm interactions within 5.0 Å were considered for the 
docking analysis. Ramachandran plot interpretations also helped us to justify the firm binding at the catalytic 
site. The correlational studies using the QSAR model were carried out, and the coefficient of regression was 
found to be 0.9247, and the results were plotted. The 2i was found to be the most suitable compound from the 
library.
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Molecular docking
The virtual screening of the bioactive molecules was 

carried out using molecular docking studies using the referenced 
software under standard protocol. The autodock software [21] 
under the Vina module was used for molecular docking studies. 
A crystal structure of human PPAR-gamma was obtained from 
the protein database (PDB ID: 2P4Y) (https://www.rcsb.org/) 
[22] as a .pdb format from the protein databank. Discovery 
Studio was used to prepare the protein and remove the pre-
associated ligand from the protein during its preparation. In 
Discovery Studio, the active sites of the protein were defined 
using the define sites module.

It was necessary to construct the ligands as 2D 
structures using chemsketch software and then convert them 
to SMILES using Avogadro software. The SMILES were then 
optimized for the geometry using the Avogadro software. UFF 
force fields were used to minimize the energy of the molecules in 
Avogadro software’s energy minimization module, and the data 
were then saved in a file format known as .pdb [23]. Analysis 
of the results was done using the Maestro suite of Schrodinger 
software [24] and Discovery Studio [25].

Structural property calculation
The structural property calculation was carried out 

using DruLiTo software [26]. A QSAR model was developed 
using the information obtained from the property calculations 
to predict the best antidiabetic molecules in the library. It was 
developed in the context of converting the molecules into 
.sdf files, loading them in the program, and calculating their 

targeting PPARγ, chalcones offer a comprehensive approach to 
addressing the multifaceted nature of metabolic dysfunction. 
Through their modulation of PPARγ activity, chalcones not only 
impact metabolic processes but also influence cellular functions 
crucial for overall metabolic health. Understanding the intricate 
mechanisms underlying chalcone-PPARγ interactions provides 
insights into novel therapeutic strategies for combatting metabolic 
disorders, including obesity, diabetes, and atherosclerosis [19,20]. 
In this work, we critically studied the article Chi-Ting Hsieh et.al. 
[21] entitled Synthesis of chalcone derivatives as potential anti-
diabetic agents which were published in Bioorganic & Medicinal 
Chemistry Letters in 2012 [21]. This study employs a combined 
computational and experimental approach to screen 61 analogs 
of 1,3-diphenyl-2-propen-1-ones for potential anti-diabetic 
properties. Computational analyses predict interactions with key 
molecular targets involved in diabetes, while animal experiments 
assess direct effects on blood glucose levels. By correlating 
computational predictions with empirical data, researchers 
identify promising compounds for further development as 
anti-diabetic agents. This integrated strategy aims to advance 
diabetes treatment by identifying compounds with favorable 
pharmacological profiles, facilitating subsequent experimental 
validation and potential therapeutic advancements.

MATERIALS AND METHODS

Library creation
This article from Chi-Ting Hsieh et al. [21] provided 

the authors with information about chalcone analogs that could 
be used as bioactive. The chalcone analogs were set up using 
computational software, and they were converted into .pdb 
format [20] and are represented in Table 1. The initial energy 
associated with the molecules was minimized before to inhibit 
the hindrance of that with the binding energies. The .pdb files 
were further analyzed to determine their reactivity and stability. 
The results showed that the chalcone analogs had the potential 
to be used as bioactives. Before the binding energy was 
inhibited by the initial energy associated with the molecules, 
these energies were minimized so that the hindrance to that 
was prevented from occurring. This allowed the molecules to 
be bound together more tightly, resulting in a stronger bond. 
In addition, this minimized the energy required to keep the 
molecules together, leading to more efficient and stable bonds.

Table 1. Analogs of 1,3-diphenyl-propen-1-ones. 

Compound 
Code

A-Ring B-Ring

2 3 4 5 3’ 4’ 5’

1a H H H H H H H

1b H H H H H -OCH3 H

1c H H H H -OCH3 H H

1d H H H H OBn H H

1e H H H H H -OBn H

1f H H H H H OH H

1g H H H H H -OCH3 H

1h OH H H H H H H

1i OH H H H H -OCH3 H

1j OH H H H -OCH3 H H

1k OH H H H -OBn H H

1l OH H H H H -OBn H

1m OH H H H H OH H

1n OH H H H H -OCH3 H

1o OH H OH H H H H

Figure 1. Structure of 1,3-diphenyl-2-propen-1-ones. 

Continued
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properties. The model was then used to predict the inhibitory 
activity of antidiabetic molecules. The model was validated 
by comparing the predicted values with the experimentally 
obtained values from molecular docking studies.

QSAR studies
BuildQSAR® open-source software was used to study 

the correlation of the structural features with the binding affinities 
obtained by the screening studies [27]. All 60 molecules, along 
with pioglitazone and rosiglitazone, were included in the study. 
10 descriptors were used for the study, and correlational studies 
were performed with binding energy (Kcal/mol) as activity.

RESULTS AND DISCUSSION

Library creation
A library of 60 analogs and two marketed drugs was 

created, and the energy of all the molecules was minimized 
using UFF force fields. All the molecules were saved in the 
required format in the working directory of the system. 

Molecular docking
The results of molecular docking studies are tabulated 

in Table 2. The studies represent the compounds as 1a to 6k, 
Pioglitazone and Rosiglitazone, with their binding affinities. 
Total energy, internal energy, Van der Waal energy, and 

Compound 
Code

A-Ring B-Ring

2 3 4 5 3’ 4’ 5’

1p OH H OH H H -OCH3 H

1q OH H OH H -OCH3 H H

1r OH H OH H -OBn H H

1s OH H OH H H -OBn H

2a OH H H F -OCH3 H H

2b OH H H Cl H H H

2c OH H H Cl H -OCH3 H

2d OH H H Br -OCH3 H H

2e OH H H Br H H H

2f H H H Br H -OCH3 H

2g OH H H Br -OCH3 H H

2h OH H H Br H -OBn H

2i OH H H Br -OBn H H

3a F H H H H -OCH3 H

3b F H H H -OCH3 H H

3c H F H H H -OCH3 H

3d H F H H -OCH3 H H

3e H H F H -OCH3 H H

4a Cl H H H H -OCH3 H

4b H Cl H H H H H

4c H Cl H H H -OCH3 H

4d H Cl H H -OCH3 H H

4e H H Cl H H H H

4f H H Cl H H -OCH3 H

4g H H Cl H -OCH3 H H

5a Br H H H H H H

5b Br H H H H -OCH3 H

5c Br H H H -OCH3 H H

5d H Br H H H H H

5e H Br H H H -OCH3 H

5f H Br H H -OCH3 H H

5g H H Br H H H H

5h H H Br H H -OCH3 H

5i H H Br H -OCH3 H H

6a I H H H H H H

6b I H H H H -OCH3 H

6c I H H H -OCH3 H H

6d I H H H H -OBn H

6e H I H H -OBn H H

6f H I H H H H H

6g H I H H H -OCH3 H

6h H I H H -OCH3 H H

6i H H I H H H H

6j H H I H H -OCH3 H

6k H H I H -OCH3 H H

Pioglitazone - - - - - - -

Rosiglitazone - - - - - - -

Table 2. Results of molecular docking studies. 

Compounds Binding 
affinity

Total 
energy

Internal 
energy

Van der 
waal 

energy

Electrostatic 
energy

1a −8.728 21.76 −25.049 −22.606 −2.443

1b −8.941 23.255 −26.052 −23.66 −2.392

1c −8.591 23.604 −26.892 −22.258 −4.634

1d −10.103 50.365 −32.905 −32.107 −0.798

1e −9.614 53.278 −33.191 −31.596 −1.595

1f −8.437 11.432 −31.259 −14.915 −16.344

1g −8.404 13.478 −31.371 −18.014 −13.357

1h −8.694 14.658 −34.724 −16.669 −18.055

1i −8.979 17.906 −34.674 −19.87 −14.804

1j −8.992 14.613 −36.715 −20.04 −16.675

1k −9.76 53.274 −40.522 −24.464 −16.058

1l −9.576 39.45 −37.753 −22.849 −14.904

1m −8.298 10.676 −37.491 −14.528 −22.963

1n −8.838 11.15 −36.9 −21.694 −15.206

1o −8.696 9.378 −37.922 −14.219 −23.703

1p −8.907 12.251 −39.452 −16.74 −22.712

1q −9.013 10.396 −40.708 −17.299 −23.409

1r −9.627 40.164 −44.812 −27.245 −17.567

1s −9.747 50.412 −38.521 −23.872 −14.649

2a −9.08 15.974 −36.535 −17.657 −18.878

Continued
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electrostatic energy were also calculated simultaneously and 
are represented in Table 2.

The 2i molecule’s binding affinity was much higher 
than the other drugs, meaning it was more likely to bind to its 
target tissue. This made it a promising candidate to be developed 
into a drug. Figure 2 shows the results of the docking analysis 
carried out by maestro suite. Figure 2a represents the interacting 
amino acids in the periphery of 5.0 Å. The results show that 
glutamic acid 62 (GLU62) is firmly interacting with the 
hydroxyl group and glutamic acid 110 (GLU110) is interacting 
with bromine at the c-2 position. Other close interactions were 
observed with arginine 55 (ARG55), glutamine 53 (GLN53), 
isoleucine 108,63 (ILE108,63), serine 109,56 (SER109,56), 
leucine 107 (LEU107), and glycine 111,51 (GLY111,51). Figure 
2b, 2c, and 2d represents the interaction at the active catalytic 
site. The Ramchandran plot of the interactions is observed in 
Figure 3.

1d molecule showed the second-best binding affinity 
towards the catalytic site of the receptor. Firm interactions with 
histidine 216 (HIS 216, 90), serine 56 (SER56), isoleucine 
63, 92, 93 (ILE63, 92, 93), tyrosine 94 (TYR94), methionine 
96 (MET96), and leucine 97,100 (leucine97,100). The 
interactions of the molecule on the catalytic side are shown 
in Figure 4a.2h, 6d, and 6e molecules showed significant 
bioactivities in comparison to the other 62 molecules in the 
library. The interactions are represented in Figure 4b, Figure 
4c, and Figure 4d.

Docking studies are vital in drug discovery, 
predicting how potential drugs interact with target proteins. 
Validating these studies is crucial for reliability, comparing 
predicted binding affinities with experimental data. When 
consistent amino acid patterns are seen in binding across 
different molecules, it suggests key interactions at the 
catalytic site, aiding drug design optimization. Identifying 
these key residues helps modify lead compounds for better 
binding affinity and specificity. Overall, validation and 
interpretation of docking results guide rational drug design, 
facilitating the discovery of new therapies for diseases like 
diabetes.

Compounds Binding 
affinity

Total 
energy

Internal 
energy

Van der 
waal 

energy

Electrostatic 
energy

2b −8.491 15.246 −35.691 −18.368 −17.323

2c −8.798 17.079 −35.957 −21.038 −14.919

2d −8.855 17.094 −35.777 −21.806 −13.971

2e −8.654 7.497 −36.276 −20.495 −15.781

2f −9.009 22.979 −28.471 −27.387 −1.084

2g −8.821 18.364 −37.456 −21.603 −15.853

2h −10.094 53.249 −39.864 −28.207 −11.657

2i −10.191 52.981 −41.455 −28.798 −12.657

3a −8.611 19.096 −27.435 −24.271 −3.164

3b −8.943 21.608 −26.51 −24.629 −1.881

3c −8.774 19.65 −26.992 −21.813 −5.179

3d −8.475 15.057 −24.897 −14.288 −8.788

3e −8.822 22.025 −27.534 −23.656 −3.878

4a −8.792 23.943 −28.484 −24.413 −4.071

4b −8.983 18.672 −25.766 −24.038 −1.728

4c −9.184 20.579 −27.583 −25.474 −2.109

4d −9.288 19.033 −29.429 −26.53 −2.899

4e −8.769 21.312 −25.955 −24.195 −1.76

4f −8.659 20.167 −26.188 −24.357 −1.831

4g −9.077 21.856 −28.259 −26.464 −1.795

5a −8.58 21.828 −27.418 −23.838 −3.58

5b −8.839 23.605 −29.642 −25.698 −3.944

5c −8.89 22.718 −30.058 −25.881 −4.177

5d −8.991 17.999 −27.895 −25.468 −2.427

5e −9.208 20.489 −27.573 −25.576 −1.997

5f −8.77 17.02 −30.13 −26.003 −4.127

5g −8.507 20.303 −27.117 −24.136 −2.981

5h −8.486 20.025 −26.98 −23.996 −2.984

5i −9.101 21.809 −28.616 −26.867 −1.749

6a −8.658 20.814 −29.1 −25.23 −3.87

6b −8.591 23.604 −26.892 −22.258 −4.634

6c −8.944 22.454 −31.372 −27.264 −4.108

6d −10.034 44.873 −33.201 −31.904 −1.297

6e −9.788 40.745 −32.158 −31.662 −0.496

6f −9.1 18.398 −29.114 −26.59 −2.524

6g −9.457 22.708 −29.546 −29.375 −0.171

6h −9.109 21.72 −28.648 −28.259 −0.389

6i −8.582 19.974 −28.018 −24.637 −3.381

6j −8.949 14.814 −32.29 −26.875 −5.415

6k −9.075 22.326 −29.091 −29.023 −0.068

Pioglitazone −9.292 29.54 −36.236 −31.201 −5.035

Rosiglitazone −9.085 3.372 −37.862 −31.159 −6.703 Figure 2. Interactions of 2i molecule with amino acids. 
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Structural property calculation and QSAR studies
The results of the structural property calculation 

are represented in Table 3. The properties like molecular 
weight, logP, hydrogen bond acceptors (HBAs), hydrogen 
bond donors (HBDs), total polar surface area (TPSA), 
number of rotatable bonds (nRBs), number of atoms 
(nAtoms), number of rigid bonds (nRigid Bs), number 

of aromatic ring (nArom Ring), and number of hydrogen 
bonds (nHBs) were calculated by using DruLiTo® software. 
These calculated properties were truly considered as the 
descriptors and the binding affinities as the activity. The 
following structural information was used to generate the 
2D QSAR model. The QSAR equation generated by the 
software is as follows.

Figure 3. Ramachandran plot of interactions. 

Figure 4. a. Interactions of 1d molecule with amino acid, b. Interactions of 2h 
molecule with amino acids, c. Interactions of 6d molecule with amino acids, 
and d. Interactions of 6e molecule with amino acids.

Figure 5. Results of correlational studies. 
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Binding Energy = - 0.0001 (± 0.0025) MW–0.5643  
(± 0.2177) LogP–0.6106 (± 0.2386) HBA + 0.5035 (± 0.2568) 
HBD–6.2982 (± 0.5709) (n = 62 ; R = 0.790 ; s = 0.285 ; F = 23.722 
; p < 0.0001 ; Q2 = 0.507 ; SPress = 0.327 ; SDEP = 0.316). 

The results QSAR studies are as follows: 
R² 0.9247 SDEP 0.3157

Q2 0.5072 C.V. −3.1649

The plot of the correlational matrix is represented in 
Figure 5 and shows that serial number 28, i.e., 2i is the best-fit 
molecule. 

CONCLUSION
It was possible to effectively carry out molecular 

docking investigations in the library. The computation of the 
structural properties of the whole library was carried out, and 
the findings were computed with the assistance of software 
that is open source. In the course of the docking study, the 
compound with the code 2i was determined to be the most 
effective molecule. The QSAR investigations were used 
to carry out the correlational examinations of the structural 
attributes with the binding affinities that were ultimately 
achieved. It was determined that the 2i molecule, which had 
a serial number of 28, was the most suitable for the whole 
research and the most effective peroxisome proliferator-
activated receptor-γ agonists when compared to medications 
that are already on the market. Studies on the link between 
structural activity and bioactivity revealed that the presence 
of a hydroxy group in the ortho position of the acetophenone 
analog is necessary for bioactivity. A large amount of activity 
is shown by the electron-withdrawing groups that have been 
replaced on the benzaldehyde derivatives.
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