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INTRODUCTION
Indonesia is a rich country in natural resources. Almost 

all plants that grow on earth can be found in Indonesia [1]. 
Numerous plants exhibit efficacy as herbal medicines. Herbal 
medicine also plays an important role in controlling infectious 
diseases. One of the infectious diseases that has become a global 
concern in the past 2 years is COVID-19. The handling efforts 
carried out by both WHO and the Government of Indonesia are 

to promote vaccination. Massive vaccination efforts have been 
able to reduce the prevalence of COVID-19 sufferers [2,3]. 
Even with a noticeable recent decline, COVID-19 continues 
to exhibit elevated prevalence and mortality rates, further 
accentuated by the lack of a verified, effective treatment. WHO 
also reported 1,009,341 COVID-19 cases in the last 28 days 
until December 24, 2023, an increase of 467,261 cases from 
the previous period [4]. This emphasizes the crucial need for 
rigorous and all-encompassing medical strategies to confront 
the virus.

In vitro, investigations have highlighted the potent 
inhibition of SARS-CoV-2 infection by both Favipiravir and 
Remdesivir in standard Vero E6 cells [5]. Multiple studies 
have assessed various antiviral medications on SARS-CoV-2 
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ABSTRACT
In the past years, the world has experienced a profound impact due to the abrupt appearance of a new virus (COVID-
19), presenting a significant threat to human health. Currently, there exists no widely established treatment for 
COVID-19 that proves consistently effective, but many studies have implemented drug repurposing and the use 
of herbal medicines. The potential of antiviral compounds from natural products can be predicted through in silico 
approach. This study aimed to determine and design flavonoid compounds from red fruits and their derivatives that 
have the potential to suppress the SARS-CoV-2 Mpro, ensuring a stable molecular framework and adhering to a 
standard pharmacokinetic profile. The study started with molecular docking using a lead compound followed by 
Molecular dynamics (MD) simulation up to 100 ns and pharmacokinetic prediction. The analysis of docking outcomes 
reveals that among flavonoid compounds, quercetin 3’-glucoside exhibits the most favorable binding energy value. 
Furthermore, the identification of hydrogen bonds with amino acid residues Asn142 and Cys145 provides additional 
rationale for selecting this compound as a pivotal candidate in the design of novel derivatives. The molecular docking 
procedure and subsequent MD simulations were conducted utilizing the Yasara-structure software. Furthermore, 
the evaluation of the pharmacokinetic profile was performed utilizing pkCSM ADMET to gain insights into the 
compound’s absorption, distribution, metabolism, excretion, and toxicity characteristics. According to the docking 
outcomes, among the 225 newly designed compounds, the ligand with code SR133 demonstrated the most favorable 
binding energy of −8.0950 Kcal/mol, surpassing the reference compound. Subsequent MD simulation analysis 
indicates that this ligand demonstrates good stability. The presence of hydrogen bonds in the active site of SARS-
CoV-2Mpro involving the main amino acid residues Asn142 and Cys145 further clarifies that this new compound 
has excellent inhibitory potential. The pharmacokinetic prediction of SR133 shows that this compound has a good 
pharmacokinetic profile and is worth proposing as a new drug candidate.
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their default values. Materials utilized include the SARS-CoV-
2Mpro crystal structure with PDB ID: 5r7y [26].

Methods
The structural data for the SARS-CoV-2 main protease 

(PDB ID: 5r7y) was sourced from the protein data bank [26]. 
This structure underwent a preparation phase involving the 
removal of water molecules and ions using Yasara-structure 
tools. While the native ligand, JFM (N-(2-phenylethyl) 
methanesulfonamide), remained for benchmarking the potential 
of herbal bioactive compounds as competitors, water molecules, 
and ions were eliminated. To validate the docking methodology, 
100 redocking iterations of the native ligand were conducted 
utilizing supplementary plug-ins within the Yasara-structure.

There have been 225 compound modifications 
performed. Each compound design of quercetin 3’-glucoside 
derivatives can be seen in Supplementary Table 1. Figure 1 
depicts the lead compound of quercetin 3’-glucoside. Preparation 
begins with the separation of the protein and its native ligand. 
The next stage of preparation produces 5r7y_receptor.sce and 
5r7y_ligand.yob files. All compound modification changes 
were energy-reduced, before moving on to the molecular 
docking stage.

Molecular docking
Yasara-structure, employing a force field scoring 

function approach, serves as the basis for the docking method 
utilized to calculate the binding energy value. The docking 
process is performed using macro command (dock_run.mcr) 
which is available in Yasara-structure. The grid box was created 
with a radius of 5.0 Å around the native ligand. The Vina docking 
method within the Yasara-structure was utilized to compute 
binding energy and identify receptor residues involved in the 
interaction. Upon finishing the docking process, the outcomes 
were stored in the PDB (.pdb) file format. Subsequently, the 
post-docking data underwent analysis and visualization using 
DSV [25].

MD simulation
Yasara-structure was employed for conducting 

molecular dynamics simulations on a Linux system, leveraging 
the md_runmembrane.mcr macro command for preparation, 
minimization, equilibration, and production phases. During 
the preparation phase, crucial parameters encompassed a cubic 
simulation cell containing water solvent, cell configuration with 
periodic boundaries, a membrane box size 30 Å larger than 
the protein, and a water box size 20 Å larger than the protein. 
Additionally, 0.9% NaCl ions were introduced, employing 
the AMBER14 forcefield. The simulation was set at pH 7.4, 
a temperature of 300 K, and a pressure of 1 bar [27,28]28]. 
Executed at a speed of 2.5 fs, the simulation data were 
automatically saved in .sim file format, lasting for 100 ns. Post-
simulation, the md_analyze.mcr macro command in Yasara-
structure was utilized for determining RMSD and RMSF 
values, while the BEcalculation.mcr macro command evaluated 
the binding free energy from the MD simulation results.

patients, such as hydroxychloroquine [6], Lopinavir-Ritonavir, 
and Ribavirin [7], Remdesivir [8], and Tocilizumab [9]. The 
FDA in the United States has granted authorization for the use 
of Nirmatrelvir and Ritonavir (Paxlovid) as a treatment for mild 
to moderate COVID-19 in both adults and children [10].

Other than the use of synthetic drugs, there is clinical 
evidence that herbal plants can be used as an alternative therapy 
for SARS-CoV-2. [11,12]12]. Indonesia also contributes a 
variety of herbal plants, one of them is the red fruit plant 
(Pandanus conoideus Lamk) that can inhibit SARS-CoV-2. Red 
fruit is a typical plant from Papua, Indonesia. Red fruit contains 
antioxidants, antitumor, immunomodulator, antiparasitic, and 
anti-HIV [13,14,15]. Previous research reported that flavonoid 
compounds contained in red fruit have the potential to an anti-
SARS-CoV-2 Mpro. The hydrogen bonds formed on the main 
protease active sites of SARS-CoV-2 Mpro are Asn142 and 
Cys145 [16].

The potency of antiviral compounds from herbal 
plants can be predicted through in silico method. This 
approach enables a quick and precise selection of various 
compounds. In addition, this approach can also save time and 
money when compared to the conventional drug discovery 
stage. Moreover, for the COVID-19 antiviral test, a minimum 
laboratory standard of Biosafety Level 3 (BSL-3) is required 
[17]. The molecular docking method approach can be used to 
design or select compounds that act precisely on target proteins 
and observe the mechanism of action of these compounds 
molecularly [18]. This method allows researchers to determine 
the anti-COVID-19 activity by looking at the binding energy 
value of the compound’s ability to bind the receptor and the 
compound engages with the amino acid residues on the target 
receptor through a specific type of bond [19]. By studying the 
dynamics of systems in the body, Molecular dynamics (MD) 
simulations can reveal the ligand-protein’s stability complex 
[20,21,21,22]21,22].

The stability of ligand-protein complexes in the 
body is just one aspect of research in the identification of 
new substances with therapeutic capabilities. In addition, the 
pharmacokinetic characteristics of these drugs should still be 
considered. The pharmacokinetic profile of a substance can 
be seen by estimating its absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) [23].

Therefore, based on all of the reasons above, this 
study’s aim is to determine and design flavonoid compounds 
found in red fruit, and the derivatives that possess the potential 
to inhibit SARS-CoV-2 Mpro with a stable structure and 
standard pharmacokinetic profile. The study started with 
molecular docking followed by MD simulation up to 100 ns 
and pharmacokinetic prediction. 

MATERIAL AND METHODS

Materials
The main instrument employed in this study was a 

PC with an Intel Core i7-13700KF CPU, and 64 GB of RAM. 
The OS utilized is Linux, and the primary software installed 
is Yasara-Structure 23.8.19 [24], Discovery Studio Visualizer 
(DSV) 21.1.0.20298 [25]. All software settings were left at 
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The molecular dynamics analysis revealed the 
binding free energy to be exceptionally stable, subsequently 
undergoing rigorous internal validation. This validation process 
encompassed an extensive assessment conducted across 
1,000 redocking iterations, enabling a comparison of docked 
postures for the calculation of RMSD values concerning the 
docked ligand poses [27,28]28]. The first step in this redocking 
process involves using the target_prep.mcr macro command 

to dissociate the protein from the ligand. Subsequently, the 
redocking procedure can be iteratively repeated 1,000 times 
using the dock_run_1,000.mcr macro command. The RMSD 
value obtained can be used to determine the outcome of this 
validation.

Pharmakokinetic prediction
pkCSM ADMET was utilized to forecast the 

pharmacokinetic profiles of selected ligands, evaluating both 
the quality and safety of these compounds. The generation 
of SMILES strings for each ligand involved the conversion 
of PDB ligand files into SMI format using DSV, enabling 
comprehensive analysis.

RESULTS AND DISCUSSION

Molecular docking 
Molecular docking can predict the structure of ligand-

protein complexes. Docking simulations can illustrate how 
a drug candidate attaches to its target protein to determine 
its potential affinity and activity [29]. As an outcome of this 
docking simulation, the docking score was utilized to gauge 
the binding energy value, reflecting the strength of interaction 
between the ligand and the receptor [30].

Table 1. Binding energy value and contacting receptor residue from docking result. 

No Ligand Binding energy  
(Kcal/mol) Contacting receptor residues

1 4′,6,6′,8-tetrahydroxy-3-
methoxy-flavon

−7.0620 A THR24 A THR25 A HIS41 A CYS44 A THR45 A SER46 A MET49 A ASN142 A GLY143 
A CYS145 A HIS164 A MET165 A GLU166 A LEU167 A ARG188 A GLN189

2 3,4′,5-trihydroxy-7,3′-dimethoxy 
flavon

−7.0170 A THR24 A THR25 A THR26 A LEU27 A HIS41 A CYS44 A THR45 A SER46 A MET49 A 
LEU141 A ASN142 A GLY143 A CYS145 A HIS163 A HIS164 A MET165 A GLU166

3 Taxifolin 3-O-α-arabinopyranose −7.2700  A THR25 A THR26 A LEU27 A HIS41 A VAL42 A CYS44 A THR45 A SER46 A MET49 A 
ASN142 A GLY143 A CYS145 A MET165 A GLU166 A ASP187 A ARG188 A GLN189

4 Quercetin 3-O-glucose −7.8410 A THR25 A THR26 A LEU27 A HIS41 A CYS44 A THR45 A SER46 A MET49 A ASN142 
A GLY143 A CYS145 A MET165 A GLU166 A ARG188 A GLN189 A THR190

5 Quercetin 3-methyl-ether −7.2820 A THR25 A HIS41 A CYS44 A THR45 A SER46 A MET49 A ASN142 A GLY143 A CYS45 
A HIS163 A MET165 A GLU166 A ARG188 A GLN189 A GLN192

6 Quercetin −7.3950 A THR25 A HIS41 A VAL42 A CYS44 A THR45 A SER46 A MET49 A ASN142 A GLY143 
A CYS145 A HIS163 A HIS164 A MET165 A GLU166 A ARG188 A GLN189 A THR190

7 Taxifolin −7.1040 A THR25 A HIS41 A CYS44 A THR45 A SER46 A MET49 A ASN142 A GLY143 A 
CYS145 A HIS163 A HIS164 A MET165 A GLU166 A ARG188 A GLN189 A THR190

8 Quercetin 3′-glucoside −8.0950 A THR24 A THR25 A THR26 A HIS41 A CYS44 A THR45 A SER46 A MET49 A PHE140 
A LEU141 A ASN142 A GLY143 A SER144 A CYS145 A HIS163 A HIS164 A MET165 A 
GLU166 A HIS172 A ASP187 A GLN189

9 Ligand native −4.8710 A THR24 A THR25 A THR26 A LEU27 A HIS41 A CYS44 A THR45 A SER46 A MET49 A 
GLY143 A CYS145

10 Remdesivir −7.5200 A THR25 A LEU27 A HIS41 A CYS44 A THR45 A SER46 A MET49 A ASN142 A CYS145 
A HIS163 A HIS164 A MET165 A GLU166 A LEU167 A PRO168 A ASP187 A GLN189 A 
THR190

11 Paxlovid −7.3450 A THR24 A THR25 A THR26 A LEU27 A HIS41 A CYS44 A THR45 A SER46 A MET49 A 
ASN142 A GLY143 A CYS145 A HIS164 A MET165 A GLU166 A ASP187 A GLN189

12 SR133 −8.3370 A THR24 A THR25 A THR26 A LEU27 A HIS41 A CYS44 A THR45 A SER46 A MET49 
A ASN142 A GLY143 A CYS145 A HIS163 A HIS164 A MET165 A GLU166 A LEU167 A 
PRO168 A ARG188 A GLN189 A THR190 A GLN192

Figure 1. Lead compound of quercetin 3’-glucoside.
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The crystal structure with PDB ID 5r7y is employed as 
the target for the SARS-CoV-2 Mpro due to scientific evidence 
indicating that compounds interacting with this protein hold 
potential as antiviral agents. As a crucial component of SARS-
CoV-2 Mpro, the 5r7y protein serves as a significant focus 
in the quest for antiviral drug development against the virus. 
Through computational analyses and laboratory investigations, 
compounds exhibiting strong binding affinity to the 5r7y 
protein have demonstrated inhibitory effects against SARS-
CoV-2 Mpro, presenting themselves as promising candidates 
for combating SARS-CoV-2 infection. Scientific research 
underscores the pivotal role of the 5r7y protein in the replication 
cycle of the SARS-CoV-2 virus, thus inhibiting its activity 
holds the potential to impede viral development. Consequently, 
leveraging the 5r7y protein as a target for inhibiting SARS-
CoV-2 Mpro represents a promising strategy in the endeavor 
to develop antiviral medications to combat COVID-19 [26,31].

Based on Supplementary Table 1, design of new 
compound is intended to increase the value of the docking 
score, binding energy, and contact with receptor residue. 
The substituting groups are electron-donating and electron-
withdrawing groups. Furthermore, the reason for using the 
groups is also based on the substitution of isosteres groups. This 
is done because the substitution of isosteres groups can increase 
the resulting docking score of the ligand-protein complex [32].

The validation of the docking methodology involved 
100 times redocking against the native ligand. This validation 
method produced a delta RMSD value of less than 1.5 (Fig. 2). 
Therefore, the docking method to be used is proven to be valid. 

After the docking approach was determined to be 
valid, the next step was to dock all flavonoid compounds 
discovered in red fruit. In addition, we employed remdesivir 
and paxlovid as positive controls. The binding energy value of 
flavonoid compounds from the best docking results is then used 
as a lead compound to design new compounds. Table 1 displays 
the binding energy and contacting receptor residue values for 
red fruit flavonoids, remdesivir, paxlovid, and the design of a 
new compound derivative of quercetin 3′-glucoside as the best 
docking results.

Based on the docking results of flavonoid compounds 
found in red fruit, the quercetin 3′-glucoside compound had 
the highest binding energy value. This follows the previous 
research which declares that flavonoid (quercetin 3′-glucoside) 
has the potential to inhibit SARS-CoV-2 Mpro [16]. Therefore, 

we further used this compound as a lead compound in designing 
new compounds. A total of 225 proposed compounds were 
docked showing that the design compound with code number 
133 (SR133) had a better binding energy value than the native 
ligand, lead compound, or reference ligands (remdesivir and 
paxlovid) (Fig. 3). This docking stage uses 999 iterations of 
each ligand (Table 1). Based on the table, it can be seen that 
SR133 has a better binding energy value than other ligands. The 

Figure 2. RMSD value for redocking 100 times. 

Figure 3. Docking for SR133 results. 

Figure 4. The visualization of the ligan-protein complex after MD simulation. 
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stable during the computation of binding free energy (Fig. 6). 
According to thermodynamics, if a ligand-receptor complex was 
formed that has a lower potential energy, then interconnection 
between the ligand and the receptor can occur [37]. 

The experiment was subsequently expanded to include 
measuring the RMSF values of amino acid residues. This 
described the interaction’s stability throughout the simulation, 
as measured at each residue position based on the fluctuations 
that occur. Figure 5b illustrates a graphical depiction of the 
correlation between the RMSF value and the corresponding 
residue number. Amino acid residue fluctuations occur as a 
result of ligand-induced binding, where increased fluctuation 
values indicate increased residue flexibility and thus indicate 

free binding energy of the complex is −8.3370 Kcal/mol. This 
table also provides a visual representation of the contacting 
receptor residues between ligands and proteins.

MD simulation
The ligand-protein complex’s stability can be 

determined via MD simulation. The MD simulation data 
was subsequently employed to calculate both the RMSD 
and free-binding energy values. Figure 4 illustrates the 
visualization of the ligand-protein complex. The authors chose 
to conduct molecular dynamic simulations at 300 K because 
this temperature is commonly used in MD simulations to 
represent room temperature, and it allows for comparison with 
a wide range of other studies. The impact of this temperature 
on their results is important to consider, as it may affect the 
conformational space sampled by the protein and the stability 
of the system. While enzymes are bioactive at body temperature 
(~310 K), the use of 300 K is often justified by the fact that the 
conformational space sampled by the protein is not significantly 
different from that at 310 K. The thermal equilibrium reached 
at 300 K ensures a consistent kinetic energy distribution, 
crucial for accurately representing system behavior. Moreover, 
simulating at this temperature facilitates direct comparison with 
experimental data, enhancing validation and interpretation of 
simulation outcomes, especially in fields where experiments are 
commonly conducted at or around room temperature [33,34]34]. 
Furthermore, simulations conducted at elevated temperatures 
were prevalent in the early stages of MD development, yet they 
resulted in unrealistic trajectories, highlighting the need for 
their integration with runs performed at room temperature [35].

The visual representation highlights the presence of 
crucial hydrogen bonds with key amino acid residues (Asn142 
and Cys145), essential for inhibiting SARS-CoV-2 Mpro. 
Prior research has emphasized that the active site of SARS-
CoV-2 Mpro encompasses hydrogen bonds specifically with 
the primary amino acid residues Asn142 and Cys145 [36]. 
Furthermore, there exist supplementary hydrogen bonds 
involving Asn119, Ser144, Pea161, and Glu166 collectively 
contributing to an augmented potential for inhibiting this virus.

The MD simulation findings indicated stabilization of 
the RMSD value after 2 ns. Calculations of the delta RMSD 
value were conducted every 5 ns, consistently yielding values 
less than 1 Å (Fig. 5a). Moreover, the system exhibited a free 
binding energy value of −5.7040 Kcal/mol, signifying the most 

Figure 5. (a) RMSD (Å) vs time (ns) relationship graph; (b) RMSF vs residue number relationship graph.

Figure 6. The system with the highest level of stability. 

Figure 7. (a) Interaction between SR133 and Asn142. (b) Interaction between 
SR133 and Cys145. 
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reduced stability in the amino acid residue interactions formed 
[38]. The suggested ligand demonstrated high interaction 
stability within the main catalytic site of SARS-CoV-2Mpro, 
evident from its low RMSF values.

During the visual analysis of the MD simulation report, 
hydrogen bonds were observed forming between the ligand’s H 
atom and Asn142 residue, as well as between the ligand’s O atom 

and Cys145. The calculated bond distances were 2.184 Å and 
2.936 Å, respectively (Fig. 7). According to the criteria where a 
donor and/or acceptor within ≤3.5 Å indicate potential hydrogen 
bond formation [39], these interactions were noted. Consequently, 
this system was purposefully chosen and meticulously examined 
for validation. By conducting internal validation through 1,000 
ligand-receptor redocking iterations, each with 25 iterations, 
a comprehensive set of 1,000 datasets featuring RMSD values 
under 2 Å was generated. The detailed RMSD values for these 
datasets are available in Supplementary Table 2.

Pharmacokinetics prediction
The best-suggested chemical has undergone 

pharmacokinetic prediction, and the outcome was ADMET 
prediction for the SR133 ligand (Table 2). Based on their 
solubility properties, drugs can be categorized as follows. A 
drug has high solubility if its LogS value is greater than −2, 
slightly soluble between −2 and −4, and insoluble below −4. 
SR133 has good solubility, as seen from the findings of the 
ADMET prediction study. The potent ligand exhibited strong 
oral absorption and skin penetration, as identified by HIA values 
>30% and Log Kp for skin permeability < −2.5. In addition, the 
ligand was not registered as a P-glycoprotein II inhibitor [40]. 

Ligand distribution was excellent when the log Vdss 
value was −1.44 log l/kg and the plasma’s free fraction exceeded 
20%. The higher the free fraction, the higher the medicine’s 
effectiveness, requiring a reduced amount of drug per dosage. 
Additionally, the ligand only barely penetrated the blood barrier 
(logBB < −1 and logPS < −3), suggesting that it will not have 
direct impacts on the central nervous system. It may be claimed 
that the ligand does not interact with the metabolism of other 
medications because it neither acts as a substrate nor inhibits 
cytochrome P450 [27]. SR133 has a total clearance of 0.462, 
and the ligand is not an OCT2 substrate. The maximum SR133 
dosage that is tolerated for humans is 0.597 log mg/kg/day. 
Table 2 also displays the ligand’s acute and long-term toxicity 
to rats when administered orally. The ligand was non-irritating 
and non-hepatotoxic.

CONCLUSION
The molecular docking results of flavonoid 

compounds from red fruit reveal that quercetin 3’-glucoside 
exhibits the highest binding energy value of −8.0950 Kcal/mol. 
Additionally, this compound interacts with critical receptor 
residues, such as Asn142 and Cys145 located in the active site 
of the SARS-CoV-2 Mpro, further justifying its selection as 
a lead compound for designing novel derivatives. Moreover, 
a successful design process has yielded a total of 225 new 
compounds. Based on molecular docking results, molecular 
dynamics simulation, and pharmacokinetic prediction, it is 
evident that quercetin 3′-glucoside derivatives [7-diazenyl-
3,5-dihydroxy-2-(4-hydroxy-3-{(3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl)oxy}phenyl)-4H-chromen-4-one], 
show considerable promise as SARS-CoV-2Mpro inhibitors. 
The docking result reveals that this novel compound exhibits 
the highest binding energy value of −8.3370 kcal/mol. 
Additionally, it forms hydrogen bonds with key amino acid 
residues, namely Asn142 and Cys145. Molecular dynamic 

Table 2. ADMET prediction of SR133. 

Property Name of model Predictive 
value Unit

Absorption Solubility in water −3.386 Numerical (log mol/l)

Permeability of 
Caco2

−0.521 Numerical (log Papp in 
10–6 cm/s)

Intestinal absorption 
(human)

37.849 Numerical (% 
Absorbed)

Skin permeability −2.763 Numerical (log Kp)

P-glycoprotein 
substrate

Yes Category (Yes/No)

P-glycoprotein I 
inhibitor

Yes Category (Yes/No)

P-glycoprotein II 
inhibitor

No Category (Yes/No)

Distribution VDss (human) −1.44 Numerical (log L/kg)

Fraction unbound 
(human)

0.419 Numerical (Fu)

BBB permeability −1.617 Numerical (log BB)

CNS permeability −4.256 Numerical (log PS)

Metabolism CYP2D6 substrate No Category (Yes/No)

CYP3A4 substrate Yes Category (Yes/No)

CYP1A2 inhibitior No Category (Yes/No)

CYP2C19 inhibitior No Category (Yes/No)

CYP2C9 inhibitior No Category (Yes/No)

CYP2D6 inhibitior No Category (Yes/No)

CYP3A4 inhibitior No Category (Yes/No)

Excretion Total clearance 0.462 Numerical (log ml/
min/kg)

Renal OCT2 
substrate

No Category (Yes/No)

Toxicity AMES toxicity No Category (Yes/No)

Max. tolerated dose 
(human)

0.597 Numerical  
(log mg/kg/day)

hERG I inhibitor No Category (Yes/No)

hERG II inhibitor Yes Category (Yes/No)

Oral rat acute 
toxicity (LD50)

2.225 Numerical (mol/kg)

Oral rat chronic 
toxicity (LOAEL)

2.121 Numerical (log mg/
kg_bw/day)

Hepatotoxicity No Category (Yes/No)

Skin sensitisation No Category (Yes/No)

T.Pyriformis toxicity 0.285 Numerical (log ug/l)

Minnow toxicity 4.033 Numerical (log mM)
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simulations further confirm the stability of its structure. 
Moreover, the pharmacokinetic evaluation indicates that this 
compound possesses a favorable adsorption, distribution, 
metabolism, excretion, and toxicity profile, positioning it as a 
promising candidate for drug development. 
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