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INTRODUCTION
The second most common cancer among men 

worldwide, according to fatality rates, is prostate cancer (PC). 
The World Health Organization estimates that 1.4 million new 
instances of PC will be diagnosed globally in 2022, making up 
roughly 7.3% of all new cases of cancer in males. In addition, 
PC was responsible for nearly 375,000 deaths, or 3.8% of all 
fatalities in men from cancer. Numerous genetic and molecular 
variables affect PC [1]. The androgen receptor, Androgen 
Receptor (AR), a nuclear hormone receptor that binds to 
androgens [such as testosterone and dihydrotestosterone (DHT)] 
and controls gene expression in prostate cells, is one of the class 
of enzymes involved in molecular pathways that contribute to 

the onset and progression of the cancer [2]. Although it also 
plays a significant role in PC, AR signaling is necessary for 
healthy prostate growth and function [3]. The AR pathway can 
become hyperactivated in PC cells, causing unchecked growth 
and survival of cancer cells. The main therapeutic approach 
used for advanced PC is androgen deprivation therapy [4,5]. 
DHT, a more potent androgen, is created when testosterone is 
converted by the 5-alpha reductase enzyme. DHT has a stronger 
affinity for the androgen receptor and is essential for the growth 
and proliferation of both healthy prostate cells and PC cells. 
Finasteride and dutasteride are 5-alpha reductase inhibitors that 
are used to treat benign prostatic hyperplasia and have also been 
investigated for the prevention of PC [6–8].

Matrix metalloproteinases (MMPs), on the other 
hand, were a family of enzymes involved in the disintegration 
of extracellular matrix constituents. Some MMPs, including 
MMP-2 and MMP-9, have been discovered to be elevated in PC. 
Increased MMP production encourages the breakdown of the 
extracellular matrix, which can aid tumor invasion, metastasis, 
and angiogenesis. Poly (ADP-ribose) polymerase (PARP) 
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ABSTRACT
Aldo-keto reductase 1C3 is a promising drug target for castration-resistant prostate cancer. In the present 
study, quantitative structure-activity relationship studies were carried out by QSARINS software on 3-(3, 
4-dihydroisoquinolin-2(1H)-yl sulfonyl) benzoic acid derivatives having AKR1C3 inhibitory activity. The 
developed Quantitative Structure-activity relationship (QSAR) model suggests that the descriptors play key roles 
and are extremely helpful in predicting bioactivity. The best model shows validated statistical values, and residual 
information predicts the obtained model is robust, stable, and can be utilized to the extent of a novel series of 
isoquinoline derivatives.
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dihydroxy-TIQ [(R)-Nmethyl-salsolinol] among others, have been 
used to treat behavioral problems [20]. After being created from 
2-methyl-1,4-naphthoquinone, benzo[g]isoquinoline-5,10-diones 
were tested against virulent strains, and better anti-tubercular 
potency was seen for derivatives with position-3 substitution. The 
acute cytotoxic doses of these substances are >128 M, while their 
minimum inhibitory concentrations range from 1.05 to 28.92 M, 
respectively [21].

The anti-neoplastic properties of different substituted 
isoquinoline1-carboxyaldhyde thiosemicarbazones (Compound 
3) were examined by Liu et al. [2,23] Potential candidates 
include 4-amino and 4-(methylamino). Using the compound 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(Compound 4), which was found to be the most effective anti-cancer 
agent, isoquinoline and -methylene-butyrolactone derivatives were 
examined [24]. Acetoxysubstituted 5,6-dihydropyrrolo[2,1-a]
isoquinoline (Compound 5) plays a significant function in inhibiting 
estrogen receptors [25]. In addition, isoquinoline derivatives, such 
as Lamellarin D, function as a strong topoisomerase-I inhibitor 
and cause death in cancer cell lines via the mitochondria-mediated 
mechanism [26]. When compared to the drug tamoxifen, recently 
developed pyrrolo[2,1-a] isoquinoline derivatives and 1,2-diaryl-
5,6-dihydropyrolo[2,1a]-isoquinoline derivatives (Compound 
6) have demonstrated improved breast cancer suppression [27]. 
Fasudil (Compound 7), an Isoquinoline (ISOQ) sulphonamides-
based mild Rho-kinase inhibitor, has been successfully tested for 
clinical investigations [28,29].

Structure-bioactivity relationships between 
isoquinoline derivatives and the AKR1C3 enzyme are 
revealed by molecular modeling-based QSAR studies using 
molecular representation of structure-property relationships 
(MoRSE) descriptors. These particular molecular descriptors 
are employed to store the structural data of molecules [30]. It 
provides a numerical representation of a molecule’s topology, 
connectivity, and atomic characteristics and is based on the idea 
of graph theory. In this regard, the development of an effective, 
stable, and robust model with strong forecasting of future 
effective ligands to target the PC enzyme AKR1C3 has been 
worked on.

EXPERIMENT AND METHODS
The software validates the multiple linear regression 

models created with QSARINS using the chemometric 
approaches [30]. The literature by Jamieson et al. [31] and 
Zheng et al. [32] was used to compile the dataset series 
of 3-(3, 4-dihydroisoquinolin-2(1H)-yl sulfonyl) benzoic 
acid derivatives with AKR1C3 inhibitory values. The 
dataset compounds’ IC50 values were transformed to their 
corresponding logarithmic values; pIC50 and numbering were 
given in accordance with references in the literature [31,32]. 
Compounds from the dataset are included in Table 1, along with 
their IC50 and pIC50 values.

Chemical structure preparation and 3-D optimization
Avogadro V1.2.0’s geometry optimization tool was 

used to optimize compound structures after structures were 
sketched using ACD Laboratories’ chemsketch 2017.2.1 [33] 
using the steepest descent technique and MMFF94 [34]. Where 

enzymes are also said to be involved in DNA repair [9,10]. 
PARP inhibitors have demonstrated potential as a targeted 
treatment for patients with particular genetic abnormalities, 
such as BRCA1/2 mutations, in PC. These inhibitors stop the 
repair of DNA damage, which results in the buildup of DNA 
mistakes and the death of cancer cells. In addition, digital rectal 
examinations and blood tests for prostate-specific antigen 
are frequently used for PC screening. PC patients frequently 
have increased PSA levels, and the enzyme is necessary for 
the liquefaction of semen. Although its efficacy in screening 
is debatable because raised PSA levels can sometimes occur 
owing to noncancerous diseases, monitoring PSA levels can aid 
in the diagnosis, staging, and development of PC [11–14].

The aldo-keto reductase family member AKR1C3 
catalyzes the conversion of less potent hormones to their more 
potent counterparts by driving nuclear receptor activation [15]. 
It is also known as 17-hydroxysteroid dehydrogenase type 5. 
Dehydroepiandrosterone, a weak androgen, is converted by the 
enzyme AKR1C3 into the more potent androgens testosterone 
and DHT, which can promote the proliferation of PC cells. 
It has been discovered that castration-resistant PC patients 
have elevated AKR1C3 expression, making them prospective 
targets. Non-steroidal anti-inflammatory drugs (NSAIDs), 
benzodiazepines, jasmonates, cinnamic acids, and compounds 
containing flavonoids are among the few AKR1C3 inhibitors 
that have been documented [16]. However, the demand for 
AKR1C3 inhibitors with nanomolar/sub-nano molar range of 
efficacy remains. To target the PC enzyme AKR1C3, we tried 
to create an effective, stable, and reliable model with strong 
forecasting of upcoming potent compounds.

Aldo-keto reductase 1C2 contributes to androgen 
metabolism in addition to AKR1C3. It has been discovered to 
be elevated in PC, notably in Castrate resistant prostate cancer 
(CRPC), and it is involved in the conversion of androstenedione to 
testosterone. Increased AKR1C2 expression may support androgen 
receptor activation and intratumoral androgen production, which 
favors PC cell proliferation and survival. Aldo-keto reductase 
1B10, another isozyme, is similarly overexpressed in a number 
of malignancies, including PC. It contributes to the metabolism 
of carbonyl compounds and retinoids. Increased AKR1B10 
expression has been linked to PC tumor invasion, progression, and 
a poor prognosis. It could lead to changes in cellular metabolism, 
resistance to apoptosis, and the multiplication of cancer cells. 
Although the precise processes through which these Ald-Keto 
Reductases (AKRs) contribute to the onset and progression of PC 
are unknown, they are still being researched. 

Derivatives of isoquinolines have been investigated 
as potential anti-PC treatments in this regard. On PC cells, these 
substances are shown to have cytotoxic effects that stop cell 
development and trigger apoptosis. Inhibiting the androgen 
receptor signaling pathway, which is essential for the development 
and spread of PC, has also shown promise. Isoquinolines and their 
derivatives are found in a variety of natural products and are thought 
to be pharmacologically active due to their potential for expressing 
a wide range of biological activities, such as anti-glaucoma, anti-
HIV, anti-tumor, anti-fungal, anti-tubercular, and anti-Parkinson’s 
disease [17–19]. A number of TetrahydroIsoquinoline (TIQ) 
compounds, including 1-methyl-TIQ and (R)-1,2-dimethyl-5,6-
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appropriate, several molecule representations were retrieved 
from Open Babel V2.4.1 [35]. Using the “energy” score 
function, the best conformer for each compound in the dataset 
was found using the Avogadro genetic algorithm program.

Data setup
To determine their respective molecular descriptor 

values, the aforementioned compounds were submitted to 
PaDEL software and other descriptor computation tools on 
chemdes—chemopy servers [36]. By eliminating all-zero value, 
missing value, and semi-constant or near-constant value (>50%) 
descriptors, the variables were pre-filtered and arranged. 678 
descriptors with a value >0.85 were filtered out using pairwise 
correlation. 39 variables in total with cut-off correlation values 
greater than 0.35 were chosen for the investigation. A cut-off 
value of 6.00 pIC50 was used to select the compounds, and 
64 compounds were used in the investigation. After excluding 
compounds S16, S36, S48, and S65, 64 molecules included in 
the study were divided into training and test sets in a 5:1 ratio 
based on response order. The best model follow-up method 
was covered in this article out of numerous models that were 
obtained from various trials.

Variable selection and model calculation
The QSARINS program offers a variety of options 

that examine several possible descriptor combinations [37,38]. 
Friedman’s “lack-of-fit” (LOF) function was used to assess 
the model’s fitness, and the genetic algorithm was applied 
to determine the link between structure and bioactivity. To 
investigate more alternatives, an LOF smoothness level of 
1.0, population size of 200, mutation probability of 0.1, and 
maximum generations of 5,000 were chosen.

Model validation
The applicability domain and internal and external 

validation criteria were applied to QSARINS models. Every 
time Q2LMO was internally evaluated, 30% of the training set’s 
objects were randomly removed. To avoid chance correlation, 
the Y-scrambling technique was set to 5,000 iterations, which 
involves randomizing the response data. This requires that 
R2 and Q2loo values be logically higher than the scrambled 
ones and that Relative mean square error (RMSE) under 
prediction be lower than the scrambled ones. The concordance 
correlation coefficient was examined as an external validation 
metric for model repeatability. Descriptors specify the range 
of applications for a model that has undergone a leverage 
analysis. hi = xi (XT X)−1 xTi (i = 1, 2,..., m), where xi is the 
query compound’s descriptor row-value and m is the number of 
query compounds, was used to compute the leverage or crucial 
value (hat). For the training set, X was a n * p matrix, where n 
represents the number of samples and p is the number of model 
descriptors. The leverage cut-off value was 3 (p + 1)/n, which is 
the limit of the model domain. A leverage larger than h* for the 
training set indicates that the compound was very significant 
in the model’s determination, and the prediction in the test set 
(X outlier) will be made using extrapolation from the model. Y 
outlier was defined as a compound with a standardized residual 
greater than 2.5 (2.5 SD units).

RESULTS AND DISCUSSION

Model information
By applying MMFF94 and optimizing for geometry, 

the molecules in the chosen dataset were processed. Using 
the PaDEL program and the Chemopy-chemdes (RDKit and 
Bluedesc) server, around 3,000 descriptors were calculated. 
Based on the diversity of the dataset’s chemical and biological 
components, training and test groups were created. QSARINS 
was used to create a number of QSAR model equations. Some 
models had higher R2 and Q2LOO values, but their external 
validation was poor, and they had an excessive number of 
outliers. In general, a QSAR model should undergo cross-
validation to assess both its resilience on the inside and 
predictability on the outside [39]. The statistical values that the 
model 1 developed using the aforementioned options,

Model 1
pIC50 = 6.7294 + 2.5913 (MoRSEP27) + 0.1929 

(MoRSEE5) + 0.7471 (nF10HeteroRing)
ntr = 54, npred = 10, R2 = 0.6440, R2

adj = 0.6226, R2-R2
adj 

= 0.0214, LOF = 0.1803, RMSEtr = 0.3775, MAEtr = 0.3049, 
RSStr = 7.6945, CCCtr = 0.7834, s = 0.3923, F = 30.1461, Q2

LOO 
= 0.5756, Q2LMO = 0.5606, R2

Yscr = 0.0570, Q2
Yscr = −0.1016, 

RMSEcv = 0.4122, MAEcv = 0.3311, PRESScv = 9.1731, CCCcv 
= 0.7423, R2

ext = 0.9179, MAEext = 0.2294, PRESSext = 0.7599, 
RMSEext = 0.2757, CCCext = 0.8947, Q2

F1 = 0.7802, Q2
F2 = 

0.7775, and Q2
F3 = 0.8101.

This model showed up hat value of h* = 0.222 with 
one outlier (compound S10) in William’s plot at 2.5 SD unit 
level, with high “s” value and low Q2

LOO and Q2
LMO values. On 

removing the above compound S10, model 2 was generated and 
validated.

Model 2
pIC50 = 6.7216 + 2.4190 (MoRSEP27) + 0.2214 

(MoRSEE5) + 0.8102 (nF10HeteroRing)
ntr = 53, npred = 10, R2 = 0.6905, R2

adj = 0.6716, R2-R2
adj 

= 0.0189, LOF = 0.1597, RMSEtr = 0.3544, MAEtr = 0.2920, 
RSStr = 6.6580, CCCtr = 0.8169, s=0.3686, F=36.4442, Q2

LOO 
= 0.6285, Q2LMO = 0.6109, R2

Yscr = 0.0569, Q2
Yscr = −0.1052, 

RMSEcv = 0.3883, MAEcv = 0.3179, PRESScv = 7.9916, CCCcv 
= 0.7807, R2

ext = 0.9130, MAEext = 0.2612, PRESSext = 0.9286, 
RMSEext = 0.3047, CCCext = 0.8805, Q2

F1 = 0.7320, Q2
F2 = 

0.7280, and Q2
F3 = 0.7712.

The model 2 showed up hat value of h* = 0.226 
with one outlier (compound S3) in William’s plot at a 2.5 SD 
unit level, with betterment in statistical values. However, on 
removing the above compound S3, model 3 was generated and 
validated.

Model 3
pIC50 = 6.6108 + 2.5415 (MoRSEP27) + 0.1927 

(MoRSEE5) + 0.8701 (nF10HeteroRing)
ntr = 52, npred = 10, R2 = 0.7279, R2

adj = 0.7109, R2-R2
adj 

= 0.0170, LOF = 0.1427, RMSEtr = 0.3341, MAEtr = 0.2794, 
RSStr = 5.8054, CCCtr = 0.8425, s=0.3478, F=42.8065, Q2

LOO 
= 0.6736, Q2LMO = 0.6641, R2

Yscr = 0.0590, Q2
Yscr = −0.1064, 
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Table 1. Dataset compounds with akr1c3 inhibitory activity.

Compound Structure IC50 (µM) pIC50

S1 0.013 7.886057

S2 0.39 6.408935

S3 0.025 7.60206

S4 0.21 6.677781

S5 0.047 7.327902

S6 0.20 6.69897

S7 0.60 6.221849

S8 0.068 7.167491

S9 0.40 6.39794

S10 0.032 7.49485

Continued
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S11 0.38 6.420216

S12 0.50 6.30103

S13 0.55 6.259637

S14 0.74 6.130768

S15 0.39 6.408935

S16 24.4 4.61261

   

Compound R IC50 (µM) pIC50

S17 9-Me 0.027 7.568636

S18 2-Me 0.0086 8.065502

S19 5-NH2 0.053 7.275724

S20 5-NO2 0.0089 8.05061

S21 5-Cl 0.011 7.958607

S22 5-Br 0.011 7.958607

S23 5-I 0.014 7.853872

S24 5-OH 0.016 7.79588

S25 5-OMe 0.016 7.79588

S26 6-Me 0.017 7.769551

S27 6-NO2 0.022 7.657577

S28 6-CN 0.029 7.537602

S29 6-Cl 0.0087 8.060481

S30 6-Br 0.0061 8.21467

S31 6-I 0.039 7.408935

Continued
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Compound R IC50 (µM) pIC50

S32 6-OH 0.027 7.568636

S33 6-OMe 0.038 7.420216

S34 7-Me 0.013 7.886057

S35
7-

0.042 7.376751

S36
7- 

1.31 5.882729

S37 7-C-Tetrazole 0.068 7.167491

S38 7-NO2 0.017 7.769551

S39 7-F 0.021 7.677781

S40 7-Cl 0.020 7.69897

S41 7-Br 0.012 7.920819

S42 7-I 0.014 7.853872

S43 7-CN 0.034 7.468521

S44 7-OMe 0.029 7.537602

S45 8-Cl 0.019 7.721246

S46 6, 7-DiOMe 0.16 6.79588

S47 H(5′-aza) 0.042 7.376751

S48 4′-COOH 1.24 5.906578

S49 3′-NHCOCOOH 0.062 7.207608

S50 3′-Tetrazole 0.0095 8.022276

S51 3′-CONH2 0.17 6.769551

S52 3′-CONHmorpholide 0.078 7.107905

S53 3′-CONHthiomorpholide 0.45 6.346787

S54 3′-CONH(CH2)2NMe2 0.90 6.045757

S55 3′-CONHMe 0.050 7.30103

S56 3′-CONMe2 0.053 7.275724

S57

3′- 

0.35 6.455932

S58 3′-CONH(CH2)2(4-pyridyl) 0.058 7.236572

S59

3′- 

0.042 7.376751

S60 H 0.22 6.657577

S61 2-F 0.33 6.481486

S62 3-Cl 0.21 6.677781

S63 4-Cl 0.14 6.853872

S64 3-OMe 0.74 6.130768

S65 4-OMe 1.44 5.841638

S66 3-OPh 0.53 6.275724

S67 3-Me 0.22 6.657577

S68 4-Me 0.64 6.19382

X = 4-trifluoromethoxyphenyl.
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RMSEcv = 0.3660, MAEcv = 0.3043, PRESScv = 6.9641, CCCcv 
= 0.8116, R2

ext = 0.9085, MAEext = 0.2770, PRESSext = 1.0756, 
RMSEext = 0.3280, CCCext = 0.8673, Q2

F1 = 0.6907, Q2
F2 = 

0.6850, and Q2
F3 = 0.7379.

Model 3 demonstrated good validation values and good 
criteria fitting. Model 3 outperformed earlier models in terms of 
internal validation parameters and had no outliers in William’s 
plot. Table 2 shows the model 3 descriptor correlation matrix. 
The scatter plot shows the “AKR1C3 inhibitory activities of 
3-(3, 4-dihydroisoquinolin-2(1H)-yl sulfonyl) benzoic acid 
derivatives” in comparison to calculated results, and Figure 1 
shows predicted values that are consistent with corresponding 
experimental results. Figure 2 shows the Kxy, the inter-
correlation between descriptors, and response versus Q2LMO 
of model 3, along with the Leave many out (LMO) parameter 
values surrounding the model parameters, indicating the 
robustness and stability of the model. The correlation values of 
model 3 are substantially higher than those following endpoint 
scrambling, and a broken relationship between structure and 
responses can be shown. Figure 3 shows the Y-scramble plot of 
Kxy versus R2Yscr and Q2Yscr. 

Williams plot in Figure 4 of the standardized residuals 
versus leverage values illustrates the applicability domain of the 
model, allowing one to determine whether or not the molecules 
are situated within it. Leverage values were discovered to be 

lower from the plot than the warning h* of 0.231. The threshold 
values of 0.70 and concordance correlation coefficient 
parameter values of more than 0.80 are being approached 
by Q2F1 and Q2F2 values, respectively. According to these 
findings, there is no random association and a real connection 
between the structural features of 3-(3, 4-dihydroisoquinolin-
2(1H)-yl sulfonyl) benzoic acid derivatives and their AKR1C3 
inhibitory action.

The model 3 with molecular descriptors contributed 
structural data pertaining to predicted bioactivity, and the 
data gained is compared to investigations of the dataset’s 
structure-activity relationships. The residuals data for chemical 
bioactivity when compared to the best experimental and QSAR 
models, are shown in Table 3.

Molecular descriptors information
3-D molecular representations of structure based on 

electron diffraction descriptors, also called 3-D-MoRSE [40] 
descriptors provide molecule structure information derived 
from euclidean interatomic distances, scattering parameter (0–
31 integer values), and weighting by atomic mass (MoRSEM15, 
where 15 is scattering parameter), atomic properties such as 
atomic charges (MoRSEC9), atomic number (MoRSEN26), 
Sanderson electronegativity (MoRSEE12), atomic van der 
Waals volume (MoRSEV23), atomic polarizability (MoRSEP4), 
and unweighted (MoRSEU13). 

A simplified equation to determine the MoRSE 
function:

correlation between descriptors, and response versus Q2LMO of model 3, along with the 

LMO parameter values surrounding the model parameters, indicating the robustness and 

stability of the model. The correlation values of model 3 are substantially higher than those 

following endpoint scrambling, and a broken relationship between structure and responses 

can be shown. Figure 3 shows the Y-scramble plot of Kxy versus R2Yscr and Q2Yscr.  

Williams plot in Figure 4 of the standardized residuals versus leverage values illustrates the 

applicability domain of the model, allowing one to determine whether or not the molecules 

are situated within it. Leverage values were discovered to be lower from the plot than the 

warning h* of 0.231. The threshold values of 0.70 and concordance correlation coefficient 

parameter values of more than 0.80 are being approached by Q2F1 and Q2F2 values, 

respectively. According to these findings, there is no random association and a real 

connection between the structural features of 3-(3, 4-dihydroisoquinolin-2(1H)-yl sulfonyl) 

benzoic acid derivatives and their AKR1C3 inhibitory action. 

The model 3 with molecular descriptors contributed structural data pertaining to predicted 

bioactivity, and the data gained is compared to investigations of the dataset's structure-

activity relationships. The residuals data for chemical bioactivity when compared to the best 

experimental and QSAR models, are shown in Table 3. 

 

Molecular descriptors information 

3-D molecular representations of structure based on electron diffraction descriptors, also 

called 3-D-MoRSE [40] descriptors provide molecule structure information derived from 

euclidean interatomic distances, scattering parameter (0–31 integer values), and weighting by 

atomic mass (MoRSEM15, where 15 is scattering parameter), atomic properties such as 

atomic charges (MoRSEC9), atomic number (MoRSEN26), Sanderson electronegativity 

(MoRSEE12), atomic van der Waals volume (MoRSEV23), atomic polarizability 

(MoRSEP4), and unweighted (MoRSEU13).  

A simplified equation to determine the MoRSE function: 

 
where rij is the Euclidean distance b/w ith and jth atoms, s is the scattering parameter, Ai and 

Aj are different atomic properties used as weights, and N is the total number of atoms. Each 

functional term depends on distance and acts as a radial basis function. 

Table 2. Correlation matrix of model 3.

MoRSEP27 MoRSEE5 nF10HeteroRing

MoRSEP27 1

MoRSEE5 0.3856 1

nF10HeteroRing 0.3043 0.1514 1

Figure 2. The LMO scatter plot (plot of Kxy vs. Q2
LMO).

Scatter plot of dataset compounds.Figure 1.
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Figure 4. Williams plot of the best model. The dashed lines are the cut-off 2.5σ 
and the warning value of hat (h*, 0.231).

Figure 3. Y-Scramble plot (plot of Kxy vs. R2 and Q2
LOO from Y-Scrambling 

procedure).

Table 3. Residuals from model equation versus experimental values.

Compound pIC50 MoRSEP27 MoRSEC5 nF10HeteroRing Predicted activity Residuals
S1 7.886057 0.1 −0.91 1 7.559693 0.326364

S2 6.408935 −0.046 −0.938 0 6.313138 0.095797

S3 7.60206 0.062 −1.098 0 6.556788 1.045272

S4 6.677781 0.211 −0.959 0 6.962257 −0.28448

S5 7.327902 0.238 −1.058 0 7.0118 0.316102

S6 6.69897 0.077 −0.794 1 7.523592 −0.82462

S7 6.221849 0.08 −1.019 0 6.617759 −0.39591

S8 7.167491 0.044 −0.83 0 6.562685 0.604806

S9 6.39794 −0.058 −0.956 0 6.279172 0.118768

S10 7.49485 0.083 −0.946 0 6.63945 0.8554

S11 6.420216 −0.043 −1.008 0 6.307274 0.112942

S12 6.30103 0.063 −0.755 0 6.625426 −0.3244

S13 6.259637 0.033 −0.879 0 6.525286 −0.26565

S14 6.130768 0.177 −0.951 0 6.877388 −0.74662

S15 6.408935 −0.045 −0.723 0 6.35711 0.051825

S16 4.61261 −0.198 −0.924 0 5.929528 −1.31692

S17 7.568636 0.021 −0.976 1 7.346196 0.22244

S18 8.065502 0.208 −0.917 1 7.832826 0.232676

S19 7.275724 0.17 −0.991 1 7.721989 −0.44626

S20 8.05061 0.208 −0.986 1 7.81953 0.23108

S21 7.958607 0.111 −0.976 1 7.574931 0.383676

S22 7.958607 0.145 −0.946 1 7.667123 0.291484

S23 7.853872 0.035 −0.901 1 7.39623 0.457642

S24 7.79588 0.15 −0.963 1 7.676555 0.119325

S25 7.79588 0.134 −1.076 1 7.614116 0.181764

Continued
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where rij is the Euclidean distance b/w ith and jth 
atoms, s is the scattering parameter, Ai and Aj are different 
atomic properties used as weights, and N is the total number of 
atoms. Each functional term depends on distance and acts as a 
radial basis function.

The compound information can be sensitized using 
specific molecule fragments by weighting descriptors. Weighting 
atomic partial charge, for instance, reflects the distance between 
atoms with an excessive or insufficient electron density. The 
3-D-MoRSE descriptors weighted with schemes where the 

Compound pIC50 MoRSEP27 MoRSEC5 nF10HeteroRing Predicted activity Residuals
S26 7.769551 0.079 −0.937 1 7.501119 0.268432

S27 7.657577 0.1 −0.909 1 7.559886 0.097691

S28 7.537602 0.144 −0.951 1 7.663618 −0.12602

S29 8.060481 0.139 −0.963 1 7.648598 0.411883

S30 8.21467 0.203 −0.977 1 7.808557 0.406113

S31 7.408935 0.037 −0.984 1 7.385319 0.023616

S32 7.568636 0.093 −0.926 1 7.538819 0.029817

S33 7.420216 0.106 −0.97 1 7.56338 −0.14316

S34 7.886057 0.148 −0.92 1 7.679758 0.206299

S35 7.376751 0.201 −0.929 1 7.812723 −0.43597

S36 5.882729 0.12 −1.031 1 7.587206 −1.70448

S37 7.167491 0.051 −0.961 1 7.425332 −0.25784

S38 7.769551 0.139 −0.938 1 7.653416 0.116135

S39 7.677781 0.137 −0.978 1 7.640625 0.037156

S40 7.69897 0.173 −0.91 1 7.745223 −0.04625

S41 7.920819 0.234 −0.965 1 7.889656 0.031163

S42 7.853872 0.148 −0.97 1 7.670123 0.183749

S43 7.468521 0.213 −1.001 1 7.829347 −0.36083

S44 7.537602 0.071 −0.987 1 7.471152 0.06645

S45 7.721246 0.088 −0.979 1 7.515899 0.205347

S46 6.79588 0.077 −0.938 1 7.495843 −0.69996

S47 7.376751 −0.005 −0.931 1 7.288789 0.087962

S48 5.906578 0.093 −1.009 1 7.522825 −1.61625

S49 7.207608 0.138 −0.902 1 7.657812 −0.4502

S50 8.022276 0.17 −0.881 1 7.743186 0.27909

S51 6.769551 0.074 −0.921 1 7.491494 −0.72194

S52 7.107905 −0.064 −0.877 1 7.149246 −0.04134

S53 6.346787 −0.001 −0.835 1 7.317454 −0.97067

S54 6.045757 −0.126 −0.814 1 7.003813 −0.95806

S55 7.30103 0.014 −0.883 1 7.346327 −0.0453

S56 7.275724 0.031 −0.942 1 7.378163 −0.10244

S57 6.455932 −0.009 −0.971 1 7.270915 −0.81498

S58 7.236572 −0.017 −0.804 1 7.282764 −0.04619

S59 7.376751 −0.018 −1.03 1 7.236672 0.140079

S60 6.657577 0.046 −1.088 0 6.518051 0.139526

S61 6.481486 0.07 −1.118 0 6.573266 −0.09178

S62 6.677781 0.001 −1.007 0 6.419293 0.258488

S63 6.853872 0.042 −1.102 0 6.505188 0.348684

S64 6.130768 0.046 −1.056 0 6.524218 −0.39345

S65 5.841638 −0.019 −1.094 0 6.351698 −0.51006

S66 6.275724 0.05 −1.138 0 6.518582 −0.24286

S67 6.657577 0.106 −1.027 0 6.682296 −0.02472

S68 6.19382 −0.019 −1.128 0 6.345146 −0.15133
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of AKR1C3 inhibition. The obtained QSAR model provides 
insights for better lead generation and optimization, which 
were discussed in section 3.3, structure-activity relationship for 
AKR1C3 inhibitory activity. It is worth noting that the electron-
withdrawing functional groups at the fifth and sixth position of 
the Isoquinoline ring provided better lead bioactive compounds 
(S20, S29, and S30). However, further conformational analysis 
of the compounds will provide planarity, isomerism, and energy 
information through which better compounds can be designed. 
Overall, these results would serve as a significant guideline for 
the discovery and design of novel AKR1C3 inhibitors.
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role of hydrogen is diminished should exhibit lower variation 
with increasing scattering parameters. With an increase in 
scattering, the atomic mass, van der Waals volume, atomic 
number, and polarizability weightings exhibit the least relative 
variation, according to published research. The dynamics of 
the cumulative sum of the 3-D-MoRSE terms can be used to 
determine the value of different interatomic distances.

Ring count descriptor, nF10HeteroRing, meaning a 
number of 10-membered fused rings containing hetero atoms 
(N, O, P, S, or halogens), reflected molecular topological 
complexity.

SAR studies of the dataset
On analyzing the bioactivity results from the original 

dataset [4,5], as shown in Table 1, compounds 1 to 16 having 
quinoline rings have shown activity compared to others. 
Similarly, compounds 48 to 59 with substitutions on the R 
position of the quinoline ring:

1. R substituted with the nitro group at the fifth position 
of the quinoline ring (compound 20) has shown an increase in 
bioactivity compared to the sixth position (compound 27) and 
seventh position (compound 38).

2. R substituted with methoxy, hydroxyl, and cyano 
groups at the fifth position of the quinoline ring (compounds 25, 
24, and 28, respectively) have shown an increase in bioactivity 
compared to other positions.

3. R substituted with electron-withdrawing groups 
(Cl and Br) group at the sixth position of the quinoline ring 
(compounds 29 and 30 for Cl and Br, respectively) have 
shown an increase in bioactivity compared to the fifth position 
(compounds 21 and 22), seventh position (compounds 40 and 
41), and eighth position (compound 45). At the same time, the 
Iodine group at the sixth position has shown no increment in 
activity (compound 31).

4. R substituted with electron donating group (Methyl) 
group at the second position of the quinoline ring (compound 
18) has shown an increase in bioactivity compared to other 
positions.

Compounds 48 to 59 with substitutions on the R 
position of the quinoline ring:

1. Substituted carbamides at the third position with 
thiomorpholide (compound 53) have shown decrement in activity 
compared with its morpholide (compound 52) derivative.

Compounds 60 to 68 with substitutions on the R 
position of the quinoline ring:

1. Compared with the substitution of the electron-
withdrawing group (chlorine) at the third and fourth position, the 
electron-donating group (methyl) has shown decrement in activity.

2. The Methoxy group at the third position has shown 
better activity compared with the fourth position.

CONCLUSION
QSAR best-fit model developed using 3-D-MoRSE 

(weighted by polarizability and Sanderson’ electronegativity 
indices) and 2D-Ring count descriptors was validated using 
statistical parameters to establish a meaningful relationship 
between chemical structures of 3-(3, 4-dihydroisoquinolin-
2(1H)-yl sulfonyl) benzoic acid derivatives and bioactivity 
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