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INTRODUCTION
Diabetes mellitus (DM) is a major international health 

emergency that affects 415 million persons aged 20–70 years, 
and its prevalence is increasing [1]. The most common forms 
of DM include type 2 DM (T2DM), gestational DM, and 

type 1 DM (T1DM) [2]. T1DM is characterized by absolute 
insulin deficiency and results from autoimmune damage to 
pancreatic β-cells [3]. T2DM, which leads to at least 90% of 
DM occurrences, is characterized by long-term hyperglycemia, 
altered insulin secretion, and insulin resistance (IR) [4]. In 
addition to chronic hyperglycemia, lipid accumulation is also 
closely associated with IR [5].

The key organ in glucose, lipid, and protein 
metabolism and the primary target of insulin is the liver, which 
plays a substantial task in the improvement of IR in people with 
T2DM [6]. DM may produce hepatic injury and liver cirrhosis 
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[7], this action may be due to inflammation that developed in 
fatty tissues and the liver through increases in mitochondrial 
oxidative stress and inflammatory chemical mediators such as 
adiponectin, leptin, interleukin (IL)-6, and TNF-α [8,9]. The 
formation of these chemical mediators in adipose tissues is 
substantially stimulated by IR. A deeper comprehension of the 
connection between these adipocytokines and DM may provide 
new insight regarding the physiopathology of diabetes [10]. 

Carbohydrate metabolism disorders in DM lead 
to high levels of free radicals that cause oxidative damage 
to biomolecules within the body, gradually resulting in 
premature aging and chronic illnesses such as hepatic disorder, 
atherosclerosis, and cancer. However, the use of antioxidant-
rich plants and plant constituents may improve the antioxidant 
protection system, thereby defending against oxidative stress 
and damage produced by free radicals in DM [11].

Oleuropein, which is responsible for the distinctive 
bitter flavor of olive fruits, is the highest common phenolic 
element in the flesh of olives (Olea europaea). It is composed 
of 2%–3% (w/w) phenolic compounds [12]. Oleuropein was 
shown to have a maximum content of dry matter in olive 
fruit and 6%–9% dry material in olive leaves. However, some 
sources claim that olive leaves have an oleuropein concentration 
of up to 19% (w/w) [13]. Some preparations of olive oil, the 
consumption of which is associated with declined risks of 
DM, obesity, and cardiovascular disease [14,15] have been 
shown to contain up to 9.0 mg/l of oleuropein [16]. Following 
metabolic degradation, oleuropein can produce other bioactive 
constituents, namely hydroxytyrosol and tyrosol. Oleuropein 
and its degradation product, hydroxytyrosol, have been shown 
to possess anti-proliferative, anti-apoptotic, anti-inflammatory, 
and anti-obesity properties [17]. The present study will examine 
the roles of oleuropein, on hyperlipidemia, oxidative stress, 
inflammatory status, and liver dysfunction in diabetic male 
Wistar rats induced by streptozotocin (STZ).

MATERIALS AND METHODS

Chemicals
STZ and oleuropein were delivered from Sigma-

Aldrich Co. in Germany. Entirety other chemicals were 
commercially available, and they were of ultragrade.

Experimental animals
Male albino rats (mean body weight, 180 ± 20 g) of 

the Wistar strain were gained from the College of Medicine, 
Alexandria University, Alexandria, Egypt. The environment in 
which the animals were kept was managed to have a 12-hour 
cycle of light and darkness as well as a constant temperature 

 
 

 

To induce DM, male Wistar rats were fasting 
overnight and given a single fresh preparation of 40 mg/kg BW 
STZ (pH 4.5) intraperitoneally. Using an Accu-Chek Sensor 

Comfort glucometer, the glucose level of blood from the lateral 
tail vein was measured 1 week after the injection to check for 
hyperglycemia. The rats were judged diabetic and participated 
in the experimental study if their blood glucose concentrations 
at 2 hours postprandial were more than 200 mg/dl [18].

Experimental design
Following the accommodation period and induction of 

DM, the rats were allocated to the following groups (Fig. 1).
Normal negative control group: The animals were 

healthy normal rats that were supplied with the same volume of 
distilled water (vehicle in which oleuropein was dissolved) by 
oral gavage daily for 15 days. The animals in this group were 
considered as controls to those in the STZ animals group.

STZ animals positive control group: This group included 
STZ animals rats that were supplied with the corresponding 
amount of distilled water (vehicle in which oleuropein was 
dissolved) by oral gavage daily for 15 days. In this group, rats 
were considered as STZ animals’ control over those in the STZ 
animals group that were treated with oleuropein.

STZ animals + oleuropein group: The STZ animal 
rats were supplied with oleuropein (5 mg/kg BW/day) for 15 
consecutive days using oral gavage.

Blood sampling and tissue sampling
The rats were denied food and water, and blood 

sampling was assembled from the jugular vein into dry 
centrifuge tubes while being lightly sedated with inhalation 
anesthesia. For the blood to coagulate, room temperature 
(24°C–26°C) was used. The serum was then isolated from the 
clot by centrifuging for 10 minutes at 3,000 ×g. When not in 
use, the sera were placed in sterile, clean Eppendorf tubes and 
kept at −20°C.

Following the blood sampling, the rats were dissected, 
by decapitation, and livers were rapidly excised and perfused 
in sterile isotonic saline (0.9% NaCl). A half gram of liver 
was homogenized in 5 ml of phosphate-buffered saline at pH 
7.4. Then, homogenates were centrifuged at 10,000 ×g for 15 
minutes and cooled to 4°C. Liver homogenate supernatants 
were prepared to determine enzymatic and nonenzymatic 
antioxidants as well as lipid peroxidation (LPO).

Figure 1. Scheme of animal grouping and schedule of doses.

and humidity. The study protocol was approved by the (IACUC)
College  of   Medicine,   Alexandria   University,   Egypt  with
approval  no.  Alex/FS/2017/4  and the steps were followed by
the committee’s guidelines and standards for the management
of animals.
Induction of DM
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(p < 0.05) superior, whereas liver G6PDH activity was 
significantly (p < 0.05) lesser than those in the control 
group. Oral giving of oleuropein to STZ animals rats 
significantly (p < 0.05) ameliorated hepatic enzyme 
activities (ALT, AST, and ALP) and total bilirubin level, 
while oleuropein, induced an increase (p < 0.05) in liver 
G6PDH activity compared to the STZ animals control 
group (Table 1). 

Effects of oleuropein on lipid profile, adiponectin, and leptin
The STZ animals group showed a significant 

elevation (p < 0.05) in cholesterol, LDL-C, VLDL-C, TG, and 
leptin, while a significant decrease (p < 0.05) in HDL-C and 
adiponectin when compared with the normal control group 
(Table 2).

Oleuropein administration in STZ animals rats caused 
a significant improvement in cholesterol, LDL-C, TG, VLDL-C, 
and leptin (p < 0.05) and enhanced HDL-C and adiponectin 
levels when compared with the STZ rats.

Effects of oleuropein on oxidative stress and antioxidant 
defense biomarkers

Table 3 reveals that hepatic CAT, SOD, GPx, GST 
activities, and GSH levels considerably reduced (p < 0.05), 
whereas TBARS significantly heightened (p < 0.05) in the 

Biochemical analysis
Based on the technique developed by Bergmeyer et al. 

[19], the activity of ALT and AST were assayed. In accordance 
with the International Federation of Clinical Chemistry, alkaline 
phosphatase (ALP) activity was determined using kits provided 
by BioSystems S.A. Costa Brava 30, Barcelona, Spain. Liver 
glucose-6-phosphate dehydrogenase (G6PDH) was measured 
by rat G6PDH ELISA kit (E-EL-R0428) according to the 
instruction of the manufacturer (Elabscience Biotechnology 
Inc., USA). Serum leptin level was measured by using Abcam’s 
rat leptin ELISA kit (ab100773) obtained from Abcam, 
Cambridge, United Kingdom, according to the manufacturer’s 
instructions. 

Serum adiponectin was measured by using a rat 
adiponectin ELISA kit (#JIM-K4903-100) attained from 
MBL International Corporation (Woburn, MA) following the 
manufacturer’s instruction. Total serum bilirubin was measured 
as per [20]. The levels of TC, TG, LDL-C, and HDL-C were 
assayed by the enzymatic procedure in a Labmax Plenno® 
biochemical analyzer using Labtest® kits (Labtest Inc. Lagoa 
Santa, MG, Brazil). To calculate vLDL-C values, the formula 
vLDL-C = TG/5 was used [21].

Detection of LPO and antioxidant defense biomarkers
The hepatic thiobarbituric acid reactive substance 

(TBARS) as an indicator of LPO and reduced glutathione 
(GSH) level was assayed using a spectrophotometer (Chem-7 
Semi-Auto Chemistry Analyzer, Erba Diagnostics Mannheim 
GmbH, Germany). The catalase (CAT), superoxide dismutase 
(SOD), glutathione peroxidase (GPx), and Glutathione-S-
transferase (GST), activities were estimated in the hepatic 
tissues by using kits. 

Determination of the TNF-α and COX-2 by quantitative RT-
PCR assay (qRT-PCR) in the liver

TNF-α and COX-2 genes mRNA expression levels 
were evaluated using qRT-PCR. As described in other studies, 
hepatic tissues’ total RNAs were extracted by means of Biozol 
reagent using the GStractTM RNA separation kit II guanidinium 
thiocyanate technique. The fold change was computed using the 
formulation 2−ΔΔct concerning β-actin as revealed by Livak and 
Schmittgen [22]. The primer sequences used for β-actin, TNF-α, 
and COX-2 [23] are described in the previous publications.

Statistical analysis
Data analysis was performed by SPSS version 22.0 

(Chicago, IL). Multiple group comparisons were made using the 
post hoc Tukey’s test, and the changes were judged significant 
at p < 0.05. Symbol “a” is used to refer to a comparison with the 
normal control and Symbol “b” is used to indicate a comparison 
with the STZ animal control.

Results

Effects of oleuropein on liver function biomarker
Hepatic function test, AST, ALT, ALP, and total 

bilirubin quantities in STZ animals’ rats were significantly 

Table 1. Effects of oleuropein on serum AST, ALT, ALP, total 
bilirubin, and liver G6PDH levels in male diabetic rats. 

Normal Diabetic Diabetic + Oleuropein

AST (U/l) 39.33 ± 2.18 85.33 ± 4.43a 46.14 ± 2.55ab

ALT (U/l) 28.30 ± 2.18 63.60 ± 2.37a 36.54 ± 0.50ab

ALP (U/l) 163.29 ± 10.66 601.85 ± 40.76a 206.44 ± 7.00ab

Total bilirubin 
(mg/dl) 0.399 ± 0.05 2.28 ± 0.19 a 0.81 ± 0.053ab

G6PDH (ng/
mg protein) 258.43 ± 5.37 77.57 ± 2.39a 126.57 ± 5.47ab

aSignificant versus (vs.) the normal group at p < 0.05. 
bSignificant versus the diabetic group at p < 0.05.
The data are represented as mean ± standard error of mean (SEM). 

Table 2. Effects of oleuropein on serum lipid profile, leptin and 
diponectin in diabetic male rats.

Normal Diabetic Diabetic + 
Oleuropein

TG (mg/dl) 67.77 ± 4.05 111.00 ± 4.72a 83.60 ± 4.11ab

TC (mg/dl) 95.77 ± 1.16 172.98 ± 3.13a 90.95 ± 1.69ab

LDL-C (mg/dl) 23.72 ± 2.01 90.94 ± 10.15a 34.48 ± 4.89ab

vLDL-C (mg/dl) 12.80 ± 0.30 22.20 ± 0.94a 15.82 ± 0.41ab

HDL-C (mg/dl) 58.50 ± 9.55 29.08 ± 0.98a 44.25 ± 0.83ab

Leptin (ng/ml) 1.57 ± 0.10 8.99 ± 0.15a 4.38 ± 0.16ab

Adiponectin (μg/ml) 23.08 ± 0.14 19.13 ± 0.19a 21.98 ± 0.27ab

aSignificant versus the normal group at p < 0.05. 
bSignificant versus the diabetic group at p < 0.05.
The data are represented as mean ± SEM.
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STZ animals in comparison with the normal group. The STZ 
animals’ group that received oral oleuropein had considerably 
lower TBARS (p < 0.05), higher glutathione levels, and higher 
antioxidant enzyme activities when matched to the only STZ 
animals group.

Effects of oleuropein on liver TNF-α and COX-2 mRNA 
expression

Serum TNF-α and COX-2 were considerably higher 
(p < 0.05) in the diabetes group in comparison with the normal 
group. Oleuropein-treated STZ rats showed a substantial 
improvement (p < 0.05) in TNF-α and COX-2 levels when 
evaluated with the STZ animals’ group (Table 4).

DISCUSSION
Serums ALT, AST, and the total bilirubin levels were 

the precise bioindicators applied to monitor hepatic disorders 
[24]. The elevation in these parameters in the STZ rats may 
be due to hepatic cell membrane damage or necrosis, which 
releases these enzymes and bilirubin into the circulatory 
system [25]. According to Swamy et al. [26], these increased 
values indicate cellular leaking and a loss of the functional 
integrity of the cell membranes. In addition, people with DM 
are more likely than those without DM to have abnormal liver 
function tests [27]. The development of NASH to cirrhosis 
and chronic liver disease have also been linked to DM. While 
the elevation of serum ALP in conjunction with an increase 
in serum bilirubin levels indicates hepatobiliary illness, the 
rise in the activity of serums ALT and AST in diabetic rats 

suggests damage to hepatocytes caused by STZ-induced DM 
[28]. 

Oleuropein’s ability to stabilize membranes may 
explain why it can reduce the rise in serum liver enzyme levels 
by preventing the release of membrane-bonding enzymes as 
well as leakages of intracellular enzymes. Furthermore, the 
protective effect of oleuropein against hepatic disorders may 
be due to its ability to maintain liver cell integrity. Moreover, 
olive oil’s phenolic hydroxytyrosol and tyrosol compounds (the 
breakdown products of oleuropein) ameliorate hepatotoxicity 
in rats by repressing oxidative stress and programmed cell 
death [29]. 

The current results demonstrate that oleuropein therapy 
significantly reduced the elevated serum bilirubin levels. This 
finding agrees with Karakoç and Sekkin [30], who found that 
the administration of oleuropein to cyclophosphamide and 
epirubicin-injected rats significantly improved the elevated total 
bilirubin level in conjunction with the decrease in the elevated 
serum transaminases’ activities. However, these results are in 
discordance with Domitrović et al. [31] who demonstrated that 
oleuropein, in vivo, induced the liver heme oxygenase, which 
stimulates the breakdown of heme to iron, bilirubin, and carbon 
monoxide.

According to the current investigation, insulin 
insufficiency in the STZ rats that was left untreated may be the 
cause of the decreased liver G6PDH activity, which is important 
as a rate-limiting enzyme of the pentose phosphate pathway 
for nicotinamide adenine dinucleotide phosphate (NADPH) 
synthesis. This contributes significantly to maintaining the 
antioxidant defense mechanism [32]. It was hypothesized that 
the decrease in G6PDH activity in DM is the main reason for 
the redox imbalance [33]. 

Moreover, Choukem et al. [34] stated that G6PDH 
deficiency may be related to oxidative stress in T2DM owing 
to the insufficient or limited production of reduced NADPH 
that recovers GSH (a physiologic antioxidant) to eradicate 
glucose-generated free radicals. It is worth noting that 
oleuropein treatment upregulated the expression of hepatic 
G6PDH by enhancing the synthesis of insulin. Oleuropein 
administration had a positive effect on glucose metabolism 
and the consecutive metabolic correlations between elevated 
glycolysis and lowered gluconeogenesis, elucidating the 
biochemical mechanisms by which regulation of glucose 
homeostasis is achieved [35,36]. 

Serum lipids levels in diabetic rats increased [37], 
leading to a rise in the mobilizations of free fatty acids (FFAs) 
from the peripheral depot fat which is primarily responsible 
for the abnormally high concentration of plasma lipids and 
lipoproteins in DM [38]. A deficiency of insulin diminishes 
lipoprotein lipase activity, resulting in disturbances in the 
metabolism of lipoprotein in DM. The increase in LDL levels 
in STZ animals might be because of the overproduction of LDL 
by the hepatic tissues as a result of the stimulation of hepatic 
triglyceride synthesis by the free fatty acid influx [39]. 

Decreases in plasma HDL-C in a rat model of DM 
and patients with DM were due to defects in reverse cholesterol 
transport. Oleuropein exhibited a hypolipidemic effect that 
may be due to decreased cholesterol formation and fatty acid 

Table 4. The effects of oleuropein on TNF-α and COX-2 mRNA 
expression in the liver of male diabetic rats.

               Normal Diabetic Diabetic + 
Oleuropein

TNF-α (fold change) 1.00 ± 0.00 2.32 ± 0.02a 0.61 ± 0.01ab

COX-2 (fold change) 1.00 ± 0.00 1.90 ± 0.02a 0.15 ± 0.02ab

aSignificant versus the normal group at p < 0.05. 
bSignificant versus the diabetic group at p < 0.05.
The data are represented as mean ± SEM.

Table 3. Effects of oleuropein on oxidative stress markers and 
antioxidant enzyme activities in the livers of male diabetic rats.

Normal Diabetic Diabetic + 
Oleuropein

TBARS (nmole/g tissue) 27.45 ± 0.53 148.08 ± 11.58a 26.59 ± 2.42b

GSH (μmole/g tissue 69.06 ± 4.49 18.19 ± 2.86a 61.57 ± 3.18ab

SOD (U/mg protein) 1.75 ± 0.01 0.86 ± 0.04a 1.48 ± 0.05ab

CAT (U/mg protein) 31.03 ± 0.52 16.30 ± 0.22a 21.77 ± 0.52ab

GPx (U/mg protein) 2.96 ± 0.09 1.38 ± 0.08a 2.97 ± 0.09b

GST (μmol/min/mg 
protein) 7.71 ± 0.35 5.55 ± 0.14a 6.26 ± 0.19ab

aSignificant versus the normal group at p < 0.05. 
bSignificant versus the diabetic group at p < 0.05. 
The data are represented as mean ± SEM. 
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synthesis [40]. Oleuropein also has an anti-diabetic impact by 
improving glucose absorption and utilization, insulin secretory 
response, and antioxidant activities [41]. Mice supplied with a 
high-sugar food, with O. europaea fruit resulted in lower levels 
of triglycerides and VLDL-C; this effect is presumably caused 
by the reduced IR and an anti-diabetic action [42]. In addition, 
studies have shown that oleuropein decreases triglyceride 
formation inside cells and both the quantity and size of lipid 
drops treated with FFAs [43]. 

Leptin is a peptide hormone, produced from adipose 
tissues and encoded by the obese gene [44]. Increased IR 
and vascular damage caused by leptin may have a role in the 
development of DM and cardiovascular disorders [45]. Leptin 
has been shown to have antisteatotic properties, but in some 
situations, such as hyperleptinemia, this hormone may also 
promote the aggravation of liver steatosis. 

Leptin also promotes nonalcoholic fatty liver disease 
(NAFLD) which contributes to the development of nonalcoholic 
steatohepatitis and liver fibrosis [46]. Leptin appears to have 
a dual impact on NAFLD in experimental animals, having 
anti-steatotic, pro-inflammatory, pro-fibrogenic, and perhaps 
carcinogenic properties [47]. In the current study, the serum 
leptin level was significantly raised in STZ-induced diabetic 
rats, which may be due to decreased pancreatic insulin secretion, 
that has been destroyed by STZ, leading to impaired negative 
feedback control [48].

Local and circulating levels of adiponectin decrease 
during obesity, IR, T2DM, and atherosclerosis. This action is 
because it suppresses glucose-6-phosphatase transcription, 
which reduces gluconeogenesis. The high-molecular-weight 
adiponectin complex causes a more pronounced reduction in 
glucose levels in mice [49]. Adiponectin is an efficient preventive 
agent against several types of liver damage, according to animal-
based research, and some data point to adiponectin’s direct 
opposition to TNF-α’s necrotic and destructive effects on liver 
tissues [50] where it binds to its receptor in hepatocytes, which 
increases aldehyde oxidase-1 activity and lowers intracellular 
ROS levels via increasing PPARα activation [51]. 

However, in DM oxidative stress is detrimental to 
adiponectin action; specifically, oxidative stress in adipose 
tissue suppresses adiponectin secretion [52], resulting in a 
decline in adiponectin levels and losing its ability to reduce the 
risky effects of TNF-α within the liver tissue, as demonstrated 
in the current study. Particularly, an inflammatory state raises 
the cytokines as TNF-α and leptin, predisposing tissues to 
hepatic illnesses and causing a concurrent downregulation of 
protective adipocytokines like adiponectin [53]. In the current 
study, serum adiponectin significantly diminished in STZ-
induced diabetic rats [48]. The increased intracellular ROS 
production following mitochondrial dysfunction, STZ-induced 
hyperglycemia, and exacerbated fatty acid oxidation may 
disturb adipocyte functions and suppress adiponectin secretion 
[54,55].

Leptin concentrations were significantly reduced 
in the oleuropein while the opposite results were observed in 
adiponectin. These results are in concurrence with Fki et al. 
[56] who reported a significant decrease in plasma leptin due 
to treatment of high-fat supplemented rats with oleuropein. In 

addition, adiponectin in patients who received oral ascorbic acid 
supplementation improves insulin sensitivity which could be 
associated with increased FFAs’ oxidation as well as decreased 
glucose synthesis in the liver [57].

Oxidative stress is a principal factor in the etiology 
of DM, so antioxidants may help treat this condition (Fig. 2). 
Free radical levels rise as a result of the antioxidant defense 
mechanism being insufficient. Increased LPO, oxidative damage 
to membranes, and disturbances in essential cell activities 
may result from elevated free radical levels [58]. The current 
investigation demonstrated that higher LPO (TBARS) and 
reduced antioxidant enzymes were related to diabetes-induced 
liver damage (GSH, SOD, GPx, and CAT). In the current study, 
the antioxidant enzymes’ decreased activity resulted in higher 
ROS generation in diabetic rats not receiving treatment, which 
exacerbated oxidative stress. 

The progress of diabetes problems may be related 
to the elevated TBARS concentration in STZ rats. Hazardous 
free radicals are scavenged by various enzymatic antioxidants 
involving SOD and CAT [59]. Hyperglycemia enhances the 
production of reactive oxygen species by increasing glucose 
auto-oxidation. As a result, the antioxidant defense mechanism 
is less active, which might damage the liver cells. Since various 
tissues are more susceptible to oxidative damage, which may 
cause several complications in chronic DM, the enhancement 
of antioxidant condition is a vital component to consider when 
evaluating the advantages of antidiabetic medicines [60,61].

Several bioactive ingredients in olive oil are associated 
with antioxidative and anti-inflammatory preventive functions, 
particularly those from biophenols, such as oleuropein and its 
degradation product, hydroxytyrosol. Oleuropein incubated with 
the cells displayed a significant decrease in cytokine-induced ROS 
generation and alleviated the attenuated antioxidant protection 
system [62]. The antioxidant ability of oleuropein is to remove 
ROS. Oleuropein-treated rats showed a significant reduction in 
LPO and oleuropein has beneficial antioxidant properties against 
gastric damage and reduces hepatic oxidative stress in rats [63]. 

Hyperglycemia can stimulate stress signaling as well 
as pro-inflammatory pathways. Nuclear factor-kappaB (NF-
κB) signaling to form NF-κB p65 and NF-κB p50 is the main 

Figure 2. Schematic figure depicting the effects and modes of action of 
oleuropein in STZ-induced rats.



232 Mohamed et al. / Journal of Applied Pharmaceutical Science 14 (09); 2024: 227-234

signal transduction pathway, which is connected with the gene 
control and activation of pro-inflammatory cytokines, including 
COX-2, inducible nitric oxide synthase (iNOS), TNF-α and 
IL-1β, [64]. Increased synthesis of chemokines and cytokines 
from activated Kupffer cells recruit the neutrophils and other 
inflammatory cells to inflamed liver and activate endothelial 
cells, resulting in more production of ROS and the progress of 
liver necrosis and damage [65].

Oleuropein oral administration to STZ rats reduced 
COX-2 and TNF-α expression in the diabetic rats’ livers (Fig. 
2). According to Wardyn et al. [66], oleuropein decreased NF-
κB p65, phospho-p65, COX-2, and TNF-α, production in the 
kidneys as a result of cisplatin therapy. The degradative metabolic 
product of oleuropein, hydroxytyrosol, also showed anti-
inflammatory characteristics, decreasing iNOS, COX-2, TNF-α, 
and nitric oxide release in the lipopolysaccharide-activated 
human monocytic cell line [67]. Oleuropein, a polyphenolic 
substance, allegedly reduced NF-κB phosphorylation in models 
of spinal cord injury and ileum ischemia/reperfusion in mice 
[68]. Oleuropein specifically reduced the expression of IL-1β 
and IL-6 in the colon, and in diabetic rats [69].

Overall, oleuropein has potent ameliorative effects 
on liver function, lipid profile, leptin and adiponectin, 
inflammation, and oxidative stress (Fig. 2). In our opinion, the 
improvement in lipid profile and adipocytokines (leptin and 
adiponectin) levels as well as the inhibition of oxidative stress 
and improvement of antioxidant defense system may show a 
vital effect in the prevention of liver disorders in DM.

In conclusion, the oral administration of oleuropein 
could prevent liver dysfunctions in diabetic rats through its 
anti-hyperlipidemic, antioxidant, and anti-inflammatory effects 
(Fig. 2).
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