
INTRODUCTION
Menopause refers to the permanent cessation of ovarian 

function, marking the transition of women from a reproductive 
phase to a nonreproductive phase in life. This crucial stage 
involves notable alterations in hormonal and menstrual cycles, 
alongside various physiological and psychological challenges. 
Considering the average life expectancy of around 81 years for 
women in the US, a significant portion of their lives, up to 40%, 
will be spent in the postmenopausal phase [1].

After menopause, women have a higher susceptibility 
to developing high blood pressure compared to men. While 
males were more likely to experience hypertension before 
the age of 65, data from NHANES 2013–2016 revealed that 
beyond that age, the likelihood of hypertension increased more 

in women. Moreover, women over 60 years old are less likely 
to have their blood pressure under control (49.2%) compared to 
younger women (40–49 years: 54.2%; 18–39 years: 62.6%) [1]. 

The presence of hypertension poses a significant risk 
for cardiovascular disease (CVD). Despite significant declines 
in CVD mortality in the past 30 years, it continues to be the 
leading cause of death among women [2]. Throughout the 
menopausal transition, there is a notable rise in risk factors 
for CVD that remains independent of age. As women progress 
through this phase, they become more susceptible to developing 
coronary heart disease later in life compared to males [1,3].

Endothelial dysfunction is a crucial early stage 
in the development of CVD. It is suggested that there are 
considerable reductions in endothelial vasodilator function 
during the menopausal transition [2–4]. It is believed that 
improving endothelial function could lead to a decreased risk of 
cardiovascular events during menopause.

One of the natural substances with the potential to 
improve endothelial function is the extract of Physalis spp. 
leaves. There are primarily two types of Physalis in Indonesia, 
particularly in Java, known as Physalis angulata L. and Physalis 
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ABSTRACT
This study examined the impact of methanol extract of Physalis minima leaf (MEP) on vascular function and blood 
pressure in ovariectomized (OVX) rats simulating postmenopausal syndrome. Thirty Wistar rats underwent bilateral 
ovariectomy. After five weeks, OVX rats were divided into groups, receiving MEP at doses of 500, 1,500, and 2,500 
mg/kg BW for four weeks. Two groups served as OVX controls (5-week and 9-week OVX rats). Six sham-operated 
rats were included as a control. Thoracic aortic rings were isolated for endothelium-dependent vascular relaxation 
analysis. Endothelial cell count was determined via hematoxylin-eosin staining. Systolic blood pressure (SBP) was 
measured using a tail-cuff method. Results showed significant (p < 0.01) vascular relaxation decline in 9-week OVX 
rats. MEP at 1,500 and 2,500 mg/kg BW restored vascular dilation. Endothelial cell number decreased significantly 
(p < 0.0001) in 5-week and 9-week OVX rats. MEP at 2,500 mg/kg BW raised endothelial cell numbers significantly 
(p < 0.0001). SBP increased significantly (p < 0.0001) in 9-week OVX rats. MEP at 1,500 mg/kg BW lowered SBP, 
nearing sham levels, while 2,500 mg/kgBW further reduced SBP significantly (p < 0.0001). Physalis minima extract 
has the potential to treat postmenopausal vascular issues and hypertension. The strong hypotensive effect at the 
highest dose emphasizes dosage determination and potential side effects investigation.
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The control group consisted of six sham-operated rats without any 
treatment. At the end of the four-week experimental period, rats 
were euthanized using a lethal dose of diethyl ether, and the aorta 
was isolated from the surrounding tissue for vascular relaxation 
analysis and histological sample preparation [9].

Measurement of the vascular relaxation response
The descending thoracic aorta was carefully isolated, 

and any adherent fat and connective tissue were thoroughly 
cleaned. Subsequently, the aorta was cut into 4 mm segments. 
These aortic segments were placed in an organ bath filled with 
Krebs solution (pH 7.4) at a constant temperature of 37°C and 
continuously gassed with carbogen (95% O2, 5% CO2). Each 
aortic ring was then mounted on a wire connected to an isometric 
transducer. Afterward, the aortic rings were equilibrated for 60 
minutes at a resting tension of 1 g [10].

To assess the function of the endothelial cells, the 
aorta was pre-contracted using 10−6 M phenylephrine (Sigma-
Aldrich, St. Louis, MO). Subsequently, a cumulative dose of 
methacholine (10−6 to 10−4 M, Sigma-Aldrich) was administered 
[10]. The response of the aorta was recorded using the PowerLab 
data acquisition system (ADInstruments Pty Ltd., Bella Vista, 
NSW, Australia). The relaxation response to methacholine was 
determined by calculating the percentage (%) reduction of the 
aortic constriction.

Counting the number of thoracic aorta endothelial cells
One segment of the thoracic aorta (5 mm) was excised 

and fixed in 10% buffered formalin. After fixation, it was 
dehydrated in ethanol, embedded in paraffin, cross-sectioned at 
a thickness of 3–4 μm, and stained with hematoxylin-eosin (HE). 
The number of thoracic aorta endothelial cells was quantified as 
the mean from ten microscope fields (magnification x100).

Analysis of systolic blood pressure (SBP)
SBP was measured in un-anesthetized rats using an 

indirect tail-cuff method with an animal blood pressure analyzer 
from IITC Life Science (Woodland Hills, CA).

Statistical analysis
The data were analyzed using the Shapiro-Wilk test, a 

one-way analysis of variance (ANOVA), followed by Tukey’s 
multiple comparisons test. A significance level of p < 0.05 was 
considered statistically significant. All statistical analyses were 
performed using GraphPad Prism for Windows, Version 9.3.0, 
San Diego, CA.

RESULTS

Endothelium-dependent vascular relaxation of the thoracic 
aortic ring

The study revealed a significant (p < 0.01) reduction 
in endothelium-dependent vascular relaxation of the thoracic 
aortic ring in 9-week OVX rats (0.260% ± 4.160%) when 
contrasted with the sham group (12.55% ± 2.225%). Treatment 
with MEP at doses of 1,500 and 2,500 mg/kg BW (12.24% 
± 3.064% and 12.03% ± 2.981%, respectively) significantly  
(p < 0.01) enhanced aortic ring dilation in OVX rats in 

minima L. [5]. These species have been extensively studied for 
their phytochemical and medicinal properties, and both have a 
long history of traditional usage [6].

Previous studies have demonstrated that the extract 
of P. minima leaves has beneficial effects in hypertensive rat 
models induced with deoxycorticosterone acetate (DOCA)-salt. 
These effects include the promotion of re-endothelialization 
and reduction in blood pressure [7]. Additionally, the extract 
of P. minima leaves has been shown to reduce anxiety [8] and 
cardiac fibrosis [9] in ovariectomized (OVX) rats. Given these 
findings, this is the first study to investigate the effects of the 
methanol extract of P. minima leaves (MEP) on endothelium-
dependent vascular relaxation and blood pressure in OVX rats.

MATERIAL AND METHODS

Ethical considerations
Ethical standards were followed, adhering to EU 

Directive 2010/63/EU for animal experiments. The study 
protocol was approved by the ethics committee of the 
Faculty of Medicine, Universitas Brawijaya (No. 359/EC/
KEPK-S2/06/2014). Every effort was made to alleviate 
any animal distress. Competent researchers carried out all 
procedures, which included tasks such as injections, surgeries, 
and the administration of the extract using an oral gavage 
feeding tube.

Plant material and extraction
Physalis minima plants were collected from Materia 

Medica, Batu, East Java, Indonesia (GPS coordinates: 
−7.867432426003079, 112.5192695810684). The fresh leaves 
were thoroughly washed with distilled water and then dried 
at 40°C in a dark condition for three days. Subsequently, they 
were ground into a fine powder using a miller.

The dried powder was subjected to maceration with 
95% methanol (100 g dried powder/1,000 ml of 95% methanol) 
for 24 hours (x3) at room temperature (RT) with continuous 
shaking. Afterward, the filtrates were collected, and the solvent 
was removed under vacuum conditions at 45°C using a rotary 
evaporator (Janke and Kunkel, IKA-Labortechnik, Germany). 
The obtained crude extracts were stored at −20°C in airtight 
containers until further application.

Animals
Female Wistar rats were obtained from Institut 

Teknologi Bandung (ITB), Bandung, West Java, Indonesia. 
They were housed in conventional cages with six rats in each 
cage, maintained at a room temperature of 21°C ±1°C, and 
subjected to a 12-hours light/dark cycle. The rats had access to 
standard pellets and tap water ad libitum.

Thirty female rats, 12 weeks old, weighing between 180 
and 220 g, were anesthetized using intraperitoneal ketamine (40 
mg/kg BW). Through a transabdominal incision, both ovaries were 
removed, and the rats were allowed a recovery period of five weeks 
after ovariectomy (OVX). Following the recovery period, the rats 
were randomly divided into five groups: 5-week OVX rats, 9-week 
OVX rats, and 5-week OVX rats treated with the MEP at doses 
of 500, 1,500, and 2,500 mg/kg BW for four weeks, respectively. 
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OVX rats. A significant (p < 0.0001) decrease in the number of 
endothelial cells was noted in 5-week (7.875 ± 0.126) and 9-week 
OVX rats (4.150 ± 0.379) compared to the sham group (13.23 ± 
0.435). Treatment with the extract at a 2,500 mg/kg BW dose 
significantly (p < 0.0001) increased endothelial cell number in 
OVX rats (12.43 ± 0.330) compared to both 5-week and 9-week 
OVX rats, although not fully recovering to sham levels (p < 0.05).

SBP
The study indicated a significant (p < 0.0001) increase 

in SBP in 9-week OVX rats (154.5 ± 2.887 mmHg) compared 
to the sham group (124.3 ± 3.096 mmHg). Treatment with the 
1,500 mg/kg BW extract significantly (p < 0.01) reduced SBP 
(133.3 ± 5.252 mmHg) compared to 9-week OVX rats, nearing 
the sham level (p = 0.395). Moreover, the 2,500 mg/kg BW 
extract further lowered SBP (81.25 ± 10.66 mmHg), even below 
the sham group (p < 0.0001), as illustrated in Fig. 3.

DISCUSSION
Since the 20th century, the study of endothelial health 

has been a prominent subject of research. The endothelium, 
a single layer of cells that lines the innermost layer of blood 
vessels (intima), regulates vascular tone by producing 
endothelium-derived relaxing factors as well as endothelium-
derived contracting factors. Substances that induce vasodilation 
include nitric oxide (NO), prostacyclin (PGI2), and endothelium-
derived hyperpolarizing factor. On the other hand, substances 
that induce vasoconstriction include endothelin-1 (ET-1), 
thromboxane A2 (TXA2), and angiotensin II (Ang II). These 
substances are released depending on the specific cell type 
that responds to the stimulus, whether it is endothelial cells or 
vascular smooth muscle cells (VSMCs) [2,10].

Endothelial dysfunction plays a crucial role in 
the development of CVD, with considerable reductions in 
endothelial vasodilator function believed to occur during the 
menopausal transition. The degradation of endothelial function 
is linked to estrogen insufficiency and is not solely dependent 
on chronological age. The onset of menopause is associated 

comparison to 9-week OVX rats, reaching levels observed in 
the sham group (p > 0.999), as shown in Fig. 1.

Thoracic aorta endothelial cells
As depicted in Fig. 2, numerous endothelial cells were 

observed to be detached from the thoracic aortic tunica intima in 

Figure 1. Relaxation response of the isolated thoracic aortic rings to methacholine. 
Data are presented as mean ± SD (n = 5). The different notations indicate 
significant differences from all other groups, determined by ANOVA followed by 
Tukey’s multiple comparisons test (p < 0.05). OVX 5w: 5-week ovariectomized 
rats; OVX 9w: 9-week ovariectomized rats; MEP500, 1,500, 2,500: 5-week 
ovariectomized rats treated with the methanol extract of Physalis minima leaves 
at doses of 500, 1,500, and 2,500 mg/kg BW, respectively, for 4 weeks.

Figure 2. Thoracic aorta endothelial cells. A. The photomicrograph displays 
the representative HE-stained thoracic aorta (magnification × 100). The black 
arrows indicate representative endothelial cells in the tunica intima. B. The 
bar graph represents the number of thoracic aorta endothelial cells. Data are 
expressed as mean ± SD (n = 5). The different notations indicate significant 
differences from all other groups, determined by ANOVA followed by Tukey’s 
multiple comparisons test (p < 0.05). OVX 5w: 5-week ovariectomized 
rats; OVX 9w: 9-week ovariectomized rats; MEP500, 1,500, 2,500: 5-week 
ovariectomized rats treated with the methanol extract of Physalis minima leaves 
at doses of 500, 1,500, and 2,500 mg/kg BW, respectively, for 4 weeks.

Figure 3. SBP. Data are expressed as mean ± SD (n = 5). The different notations 
indicate significant differences from all other groups, as determined by ANOVA 
followed by Tukey’s multiple comparisons test (p < 0.05). OVX 5w: 5-week 
ovariectomized rats; OVX 9w: 9-week ovariectomized rats; MEP500, 1,500, 
2,500: 5-week ovariectomized rats treated with the methanol extract of Physalis 
minima leaves at doses of 500, 1,500, and 2,500 mg/kg BW, respectively, for 
4 weeks.
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KATP channels are triggered, an influx of Ca2+ into endothelial 
cells occurs, triggering the production of CaM. CaM production 
can activate eNOS via calcium-dependent mechanisms [15].

Estrogen acts on blood vessels through the activation 
of the estrogen receptor (ER), which consists of two isoforms, 
namely ERα and ERβ. The stimulation of ER induces NO 
production via the activation of eNOS (chronic effects/
genomics) and NOS-dependent activation of Ca2+ (rapid effects/
non-genomics) [16,17]estrogen and progesterone, or estrogen 
and MPA. Isolated cerebral vessels were also treated in vitro 
with estrogen in the absence and presence of progesterone, 
MPA, tamoxifen, and the estrogen receptor antagonist ICI 
182 780. Levels of eNOS were measured by Western blot, and 
NOS activity was measured by [14C]arginine-[14C]citrulline 
conversion. Results - Chronic hormone treatment in vivo 
resulted in plasma levels of 17β-estradiol, progesterone, and 
MPA in the range of values found in humans. Estrogen treatment 
resulted in higher levels of cerebrovascular NOS activity that 
paralleled increases in eNOS protein. In vitro estrogen treatment 
for 18 hours also resulted in a concentration-dependent increase 
in eNOS protein (EC50 ≈300 pmol/L. Thus, the reduction of 
estrogen in OVX rats can lead to endothelial dysfunction. A 
previous study reported a significant correlation between serum 
estradiol levels and NO in postmenopausal women [18].

The results of this study revealed that the most 
significant decline in methacholine-mediated dilations in the rat 
aorta occurred after 9 weeks following ovariectomy. Previous 
studies have also reported impaired vascular reactivity to ACh 
in blood vessels isolated from OVX rats [19,20]. Another study 
documented the maximum loss of ACh-mediated dilations in 
rat tail arteries occurring after 12 weeks of ovariectomy [11]. 
These reduced dilations indicate endothelial dysfunction, which 
is associated with reduced eNOS activity and/or expression, 
leading to a decrease in NO bioavailability [15].

Endothelial dysfunction can be attributed, in part, 
to increased oxidative stress. NADPH oxidase-generated 
O2

•– rapidly degrades NO into peroxynitrite (ONOO−), a 
highly reactive and potentially harmful molecule. This potent 
oxidant intensifies eNOS uncoupling by oxidizing its cofactor 
BH4. Moreover, ONOO− induces protein oxidation and 
nitration, resulting in cellular damage. In addition to its role 
in scavenging NO, O2

•– triggers eNOS uncoupling. The key 
mechanisms of eNOS uncoupling include oxidative depletion 
of the crucial eNOS cofactor BH4, eNOS substrate (L-Arg) 
deficiency, accumulation of L-Arg analog (asymmetrical 
dimethylarginine/ADMA), and eNOS S-glutathionylation. 
Uncoupled eNOS generates O2

•- rather than NO, becoming a 
source of damaging free radicals that exacerbate oxidative 
stress. Uncoupling of eNOS is thought to be a major underlying 
component in the development of endothelial dysfunction seen 
in the pathophysiology of vascular disorders [21,22].

Numerous studies have demonstrated the presence 
of oxidative stress in OVX rats [23–27]. Additionally, some 
studies have confirmed a higher level of oxidative stress in 
post-menopausal women [28–30]. After ovariectomy or during 
postmenopause, the absence of estrogen leads to changes in the 
redox state. Estrogens, particularly estradiol, have been shown 
to reduce vascular oxidative stress by regulating the expression 

with accelerated vascular aging, which seems distinct from 
the gradual decline in vascular function that accompanies 
chronological aging. This condition creates a favorable 
environment for the development of vascular diseases such 
as hypertension and atherosclerosis [2]. These facts highlight 
the significance of conducting vascular studies that include 
endothelial cells to analyze the risk of cardiovascular disorders 
during menopause.

To investigate the effects of sustained reductions in 
steroid hormone levels, bilateral ovariectomy in mice and rats 
serves as a valuable surgical menopausal model in preclinical 
research [11,12]. In our study, we employed the ovariectomy 
model in rats and conducted isolated rat aorta experiments to 
evaluate the functional changes in endothelial regulation of 
vasodilation. The endothelium-dependent relaxation induced 
by acetylcholine (ACh) in phenylephrine (PHE)-precontracted 
rings is a suitable method for testing endothelial functional 
integrity [10]. Phenylephrine primarily acts as an α1-adrenergic 
receptor agonist and exhibits similar potency to norepinephrine, 
but it has a slightly extended duration of action. When α1-
receptors are activated by phenylephrine on the arterial 
vasculature, it results in elevations in arterial pressure, systemic 
vascular resistance (SVR), and ventricular afterload [13]. 
Whereas, ACh serves as the predominant neurotransmitter in 
the parasympathetic branch of the autonomic nervous system 
[14]. However, in this study, we used methacholine. 

The main differences in the pharmacological effects 
of methacholine and ACh lie in their duration of action 
and selectivity. Unlike ACh, methacholine is broken down 
exclusively by acetylcholinesterase at a considerably slower 
rate. Consequently, methacholine’s effects last much longer than 
those of ACh. Additionally, the presence of a methyl group at 
the carbon of choline enhances the specificity of methacholine’s 
action. Methacholine primarily targets muscarinic receptors in 
smooth muscle, glands, and the heart, with minimal impact on 
nicotinic receptors in skeletal muscle autonomic ganglia [14]. 

Blood vessels exhibit relaxation solely in the 
presence of the endothelium when stimulated by either ACh or 
methacholine. They indirectly induce the relaxation of VSMCs 
by triggering the release of established EDRFs. NO is the 
primary and most effective EDRF that regulates endothelial-
dependent relaxation in the majority of blood vessels. In 
response to ACh, shear pressure, or bradykinin, the calcium-
calmodulin complex (CaM) binds to endothelial NO synthase 
(eNOS), facilitating the interaction of phosphorylated protein 
kinase B (Akt) with eNOS. This interaction, supported by the 
presence of tetrahydrobiopterin (BH4) as an essential cofactor, 
leads to the conversion of the amino acid L-arginine (L-Arg) 
into NO and L-citrulline [10,15].

The endothelium also uses nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase and the ATP-sensitive 
K+ (KATP) channel to promote endothelial-dependent relaxation 
and vascular tone. NADPH oxidase serves a fundamental 
function in creating reactive oxygen species (ROS). The 
endoplasmic reticulum (ER)-resident NADPH oxidase (NOX4) 
is well-known for producing hydrogen peroxide (H2O2) and 
superoxide (O2

•–). H2O2 is an important signaling chemical that 
promotes the activation of KATP channels. When endothelial 
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signaling pathway. Additionally, trigonelline has been shown 
to enhance the Ca2+-dependent eNOS/NO signaling pathway 
[53]. In this study, the deliberate choice of crude extract was 
made to preserve potential synergistic effects among its 
various components, ensuring a comprehensive and effective 
intervention.

However, there was a limitation in using the isolated 
rat aorta to evaluate functional changes in endothelial regulation 
of vasodilation instead of the rat tail artery, which was chosen 
due to limitations in transducer sensitivity. It is worth noting 
that for evaluating the effects of substances on blood pressure 
and considering SVR, using the rat tail artery may be more 
relevant. Some studies consider the tail artery a resistance artery. 
Resistance vessels, comprising arterioles and small arteries, 
play a significant role in SVR, with approximately 40 to 55% of 
the resistance residing in vessels with diameters >100 μm up to 
a limit of 400 μm [54]. Additionally, although the isolated organ 
bath has been widely used to assess vascular function in animal 
models, it only evaluates biological activities that occur within 
endothelial cells and VSMCs [55]. It falls short of explaining 
the intricate pathophysiology of blood pressure.

In this study, we also observed histopathological 
changes in the vascular endothelial layer of OVX rats, which 
exhibited arterial denudations. This result is consistent with 
a previous study that showed impairment of the integrity of 
the vascular endothelium in OVX rats [20]. The endothelial 
dysfunction, apoptosis, and pyroptosis of endothelial cells, 
along with alterations in tight junctions, may contribute to the 
detachment of endothelial cells [56,57]. In certain situations, 
endothelial cells may not detach as entire cells but as apoptotic 
endothelial microparticles. Arterial denudation may trigger 
important atherosclerotic processes, such as smooth muscle cell 
proliferation, migration, and matrix secretion [58].

The administration of P. minima methanol extract at 
doses of 1,500 and 2,500 mg/kg BW significantly increased 
the number of thoracic aorta endothelial cells in OVX rats. 
An in vitro study demonstrated that withaferin A, a type of 
withanolide contained in the extract of Physalis leaves, can 
dose-dependently increase VEGF secretion in endothelial cells, 
thereby enhancing endothelial cell proliferation and migration 
[59]. However, in this study, the extract did not fully restore the 
number of thoracic aorta endothelial cells to the levels observed 
in the sham group. Nevertheless, the methacholine-mediated 
dilations in the aorta isolated from OVX rats treated with the 
extract at doses of 1,500 and 2,500 mg/kg BW were significantly 
enhanced, almost approaching the levels observed in the sham 
group. This suggests a limitation in using endothelial cell counts 
in histopathological specimens within a predetermined fixed 
frame, as the frame size may significantly affect accuracy [60]. 
To validate these histopathological findings, it is recommended 
to use flow cytometry and a combination of magnetic bead 
selection and fluorescent microscopy to measure circulating 
markers of endothelial cell damage, such as endothelial 
microparticles derived from activated or apoptotic cells, as well 
as whole endothelial cells [61].

The consequence of endothelial dysfunction is an 
increase in blood pressure. Following this phenomenon, our 
study found that the SBP in 9-week OVX rats was significantly 

and activity of NADPH oxidases and antioxidant enzymes 
(superoxide dismutase/SOD, glutathione peroxidase/GPx, 
catalase). This modulation offers protection against oxidative 
stress during the reproductive stage. Estradiol molecules possess 
a chemical structure that allows them to function as scavengers 
for free radicals, thereby protecting against oxidative damage. 
The crucial component responsible for their antioxidant effect 
is the phenolic ring located in the A position of the estradiol 
molecules [30].

In this study, treatment with P. minima methanol 
extract at doses of 1,500 and 2,500 mg/kg BW significantly 
improved methacholine-mediated dilations in the aorta 
isolated from OVX rats. These enhanced dilations indicate 
an improvement in endothelial function. A previous in vitro 
study found that the extract of P. minima leaves increased the 
cellular expression of eNOS and the generation of NO in human 
umbilical vein endothelial cells [31]. A study has shown that 
the ethanol extract of P. minima leaves at a dose of 500 mg/
kg BW significantly increased serum NO levels in DOCA-salt-
induced hypertensive rats [7]. Another study using a different 
species of Physalis demonstrated that the administration of the 
ethanol extract of P. angulata leaves at a dose of 2,500 mg/
kg BW in L-NG-nitro arginine methyl ester (L-NAME)-induced 
hypertensive rats also increased serum NO levels [32]. Studies 
on L-NAME-induced preeclampsia rats treated with the extract 
of P. angulata leaves have also revealed an increase in tail artery 
eNOS expression and serum NO levels [33,34].

The improvement in endothelial function may be 
attributed to the antioxidant activity of the extracts. A study 
confirmed that the ethanol extract of P. minima leaves exhibits 
strong antioxidant activity, as evidenced by 2,2-diphenyl-1-
picrylhydrazyl (DPPH) assay, Fe2+ chelating activity assay, 
and Fe3+ reducing power assay [35]. A previous study has 
demonstrated that extracts of Physalis leaves can alleviate 
oxidative stress, as indicated by reduced serum malondialdehyde 
(MDA) levels and increased serum SOD activity [32–34]. 

The ethanol extract of Physalis leaves contains various 
bioactive compounds, including trigonelline, DL-stachydrine 
(alkaloid), chlorogenic acid (polyphenol), quercetin, rutin, 
kaempferol (flavonoid), and withanolides (steroid lactones) 
[34]. Numerous studies have demonstrated the antioxidant 
activities of these bioactive compounds [36–43]cardiovascular 
disease and cancer. These beneficial effects have partly been 
attributed to the antioxidant activity of coffee. We determined 
composition and antioxidant potential of differentially roasted 
coffee extracts and investigated the impact of selected original 
constituents and roast products.Methods and results: Parameters 
studied were direct antioxidant activity (trolox equivalent 
antioxidant capacity/oxygen radical absorbing capacity. The 
inherent antioxidant capabilities within the compounds present 
in the P. minima methanol extract demonstrate proficiency 
in scavenging superoxide, consequently alleviating eNOS 
uncoupling and preserving the bioavailability of NO. This dual 
action significantly contributes to the enhancement of endothelial 
function [21,22]. Furthermore, studies have highlighted the 
positive impact of specific compounds, including stachydrine 
[44], chlorogenic acid [39,45,46], quercetin [47–50], rutin [51], 
and also kaempferol [52], on the improvement of the eNOS/NO 
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pressure. This initial reduction in blood pressure is followed 
by a subsequent decrease in vascular resistance, contributing 
to sustained lower blood pressure. In individuals with 
hypertension, their blood vessels become “waterlogged” with 
excessive amounts of sodium and water, making them more 
responsive to sympathetic nervous system stimuli. Diuretics, 
however, counteract this effect on the vessels, making them 
less sensitive to vasoconstrictive activity [74].

The hypotensive effect observed with the highest dose 
of methanol extract of P. minima could serve as a cautionary signal 
for determining the appropriate dosage to treat hypertension 
in postmenopausal conditions. We should be mindful of the 
potential side effects, such as postural hypotension, electrolyte 
imbalance, and the possibility of dehydration when using the 
extract. Further studies are necessary to validate and investigate 
these potential side effects in greater detail.

Another limitation of our study is the absence of a 
direct comparison with controls, such as standard hypertension 
medication. Future research is essential to assess the efficacy 
of P. minima leaf extract compared to standard medication in 
improving endothelium-dependent vasodilation and reducing 
blood pressure in OVX rats. This comparison is crucial for 
determining the extract’s relative effectiveness, guiding 
potential alternative or complementary treatment strategies, 
and enhancing our understanding of its role in addressing 
postmenopausal vascular issues and hypertension.

CONCLUSION
Our findings revealed that 9-week OVX rats exhibited 

diminished aortic relaxation and detachment of endothelial 
cells, paralleled by increased SBP compared to sham-operated 
rats. Notably, treatment with P. minima methanol extract 
at 1,500 and 2,500 mg/kg BW significantly restored aortic 
dilation, while the 2,500 mg/kg BW dose remarkably lowered 
SBP below even the sham level.  

These results suggest the potential of P. minima 
methanol extract as a therapeutic agent to address vascular 
dysfunction and hypertension associated with postmenopausal 
conditions. Nevertheless, to fully understand the underlying 
mechanisms and assess their applicability in human subjects, 
further investigations are warranted. The notable hypotensive 
effect at the highest dose underscores the importance of dosage 
determination, warranting further investigation into potential 
side effects.
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higher than that of sham rats and 5-week OVX rats. In contrast, 
treatment with the methanol extract of P. minima at a dose 
of 1500 mg/kg BW significantly reduced SBP in OVX rats 
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