INTRODUCTION

It has become widely recognized throughout the years that there is a strong connection between health benefits and nutrition [1]. As a result, consumers have increasingly been inclined to select food products that are filled with bioactive compounds, as these substances have been found to have a good impact on human health [2]. Plant materials have garnered significant attention due to their high concentration of bioactive chemicals [3]. Typically, most bioactive chemicals are situated within the cellular environment and necessitate liberation into the extracting solvent during extraction [4,5]. The conventional extraction methods, namely maceration, distillation, and soxhlet extraction, are frequently employed to extract bioactive compounds from plant materials [6].

Nevertheless, these methods are associated with drawbacks, including low extraction efficiency, excessive use of extracting solvents, high energy consumption, and prolonged extraction duration [7]. Hence, the concept of green...
extraction has garnered considerable attention and has been put out by numerous scholars in the field [8]. Green extraction refers to a type of extraction that involves using solvents with reduced extraction capabilities, resulting in lower energy consumption and shorter process durations while increasing the yield of the extraction process [9]. The development of green extraction methods has been motivated by producing environmentally friendly and economically viable solutions in response to industrial issues. These approaches aim to minimize ecological and environmental impacts throughout the extraction process [10].

Microwave-assisted extraction (MAE) is a widely utilized sophisticated technique to extract phytochemicals from plant sources. This technique involves the utilization of microwaves to induce thermal energy, establishing a pressure gradient within the sample [11]. Consequently, phytochemicals present in the plant are released via diffusion, tissue bursting, or cell wall rupturing. The increase in temperature additionally facilitates the softening of plant tissue, enhances mass transfer, heat transfer, and solvent penetration within the sample, disrupts the chemical structure, and aids in the extraction of polyphenols into the solvent [12]. Multiple factors contribute to the phenomenon of MAE, potentially influencing both the quantity and quality of phytochemicals extracted from botanical substances [13]. The utilization of MAE in the extraction process has predominantly been documented for obtaining a flavonoid compound [14]. However, optimizing several factors, such as solvent concentration, microwave power level, and irradiation period, is necessary to achieve improved extraction outcomes [15].

Piper scrotum Ruiz and Pav, generally known as redbetel, is frequently observed in several Southeast Asian nations, with a notable presence in Indonesia. The plant in question is a member of the Piperaceae family and is indigenous to the region [16]. In Indonesian society, the leaves of this plant have been traditionally used for medicinal purposes. Numerous research has documented the pharmacological properties exhibited by this particular plant, including antioxidant [17], antibacterial [18], anti-inflammatory [19], and anticancer activity [20]. Piper crocatum has been shown to possess many secondary metabolites, primarily steroids, tannins, saponins, alkaloids, and flavonoids. The P. crocatum plant possesses pharmacological properties attributed explicitly to its components, notably flavonoids [21]. As documented in scientific literature, there is a significant correlation between flavonoids and their antioxidant qualities and antibacterial activity [22]. Nevertheless, the significant accumulation of flavonoids might be a health advantage due to their antioxidant and antibacterial properties, making them suitable for utilization in the pharmaceutical and food sectors [23,24].

The food business has encountered challenges in improving process efficiency without a concurrent investment and resource use increase. Investigating to determine the optimal conditions for the system or the food optimization process is crucial in resolving this predicament [25]. Historically, the optimization process involved examining the impact of altering one parameter at a time on a given output while keeping other parameters constant. However, this approach failed to consider the interactive effects between specific parameters, resulting in a lack of comprehensive understanding of the combined effects of all factors on the response [26]. Moreover, this methodology necessitates further experimentation, escalating expenses, and time consumption. Hence, multivariate statistical methods have been employed to improve the process parameters in food applications [27]. Response surface methodology (RSM) is widely recognized as a prominent approach for analyzing multivariate statistical approaches [28]. The RSM is a statistical and mathematical technique that uses polynomial models to assess data compatibility [29]. Its primary objective is to reveal the underlying patterns and behaviors within the data, ultimately leading to the development of mathematical models to make predictions [30].

Currently, there is a lack of research investigating optimizing flavonoid content extraction from P. crocatum leaf utilizing MAE and RSM as well as the correlation with antioxidant and antibacterial activities. This approach establishes the ideal extraction conditions by considering independent factors such as ethanol concentration, microwave power, and extraction duration. The investigation of various parameters on the efficacy of MAE involved the determination of total flavonoid content (TFC) and the assessment of antioxidant and antibacterial activities. In addition, the relationship between TFC, and antioxidant and antibacterial activities will be examined to elucidate the extract’s mechanism as an antioxidant and antibacterial agent.

MATERIALS AND METHODS

Plant material

The leaf of P. crocatum was cultivated inside the botanical areas of the Faculty of Pharmacy at Universitas Sumatera Utara, located in Indonesia. The leaf was identified as P. crocatum Ruiz and Pav by the Herbarium Medanese, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, with a voucher ID of 512/UN.5.1.1-HM/2023. The collected leaves were subjected to a drying process and stored at an ambient temperature. The dried leaves were pulverized using a household blender, and the resulting material’s average particle size (0.450 mm) was determined using a set of sieves. The dried powder was stored at room temperature before its utilization in the extraction process.

Chemicals and media

Chemicals such as ethanol, methanol, 1,1-diphenyl-2-picrylhydrazyl (DPPH), aluminum chloride, and quercetin were used in this research and are analytical and certified by Sigma-Aldrich, United Kingdom. The Staphylococcus aureus (ATCC 29737), deMann Rogosa and Sharpe Agar (MRSA), and then Nutrient Agar (NA) were obtained from the Microbiology Laboratory, Faculty of Pharmacy, Universitas Sumatera Utara, Indonesia.

MAE procedure

Single conditions of MAE were performed in a homemade setup consisting of the microwave with modification (Samsung ME731K, Seoul, South Korea). Seventeen experimental MAE runs on different ethanol
concentrations \((X_1)\), microwave power \((X_2)\), and extraction time \((X_3)\), were performed according to the results of Design-expert v.13. In every iteration of the experiment, a mass of 10 g of the sample was combined with a volume of 100 ml of the extraction solvent. The flasks were subsequently positioned within the MAE device, and extractions were conducted at a predetermined frequency. Following the extraction process, the crude extracts were promptly subjected to filtration using filter paper with a pore size ranging from 4 to 12 µm, employing a vacuum system. The collected samples were placed into glass flasks and thereafter stored at a temperature of 4ºC until they were ready for additional examination [31].

Selection of factors

A significant number of characteristics may influence the researched extraction system. Consequently, it is crucial to choose the carefully most substantial impact elements. Several factors can potentially affect a given study’s MAE. These factors include the nature of the solvent used, the ratio of solvent to solid material, the duration of the extraction process, the power level of the microwave used, the temperature at which the extraction is conducted, the properties of the sample being analyzed, and the number of extraction cycles performed [32]. Understanding the effects and combinations of these elements on the MAE process holds significant importance. The initial phase was the selection of the most appropriate solvent. Numerous findings indicate that ethanol is suitable for extracting diverse polyphenolic components from plant sources [33]. The selection of condition ranges for the MAE was informed by existing literature. The \(X_1\) exhibited an influence ranging from 180 to 400 W, while the \(X_2\) ranged from 3 to 14 minutes. The analytical findings are provided in Table 1.

Total flavonoids content

The TFC of extracts was obtained using spectrophotometry methods. Briefly, 2 ml of extracts in methanol was mixed with 0.10 ml of 10% AlCl\(_3\), 0.10 ml of NaC\(_2\)H\(_3\)O\(_2\)-3H\(_2\)O (1 M), and 2.80 ml of distilled water. The samples were incubated for 40 minutes, and after that, the absorbance of samples was measured at 432 nm. To determine the TFC of the samples, a calibration curve was built utilizing quercetin as the standard compound. The flavonoid concentration is expressed as mg QE/g sample. The equation to determine TFC as can see below (Eq. 1) [34]

\[
C (QE) = \frac{C \times V}{M} \times F
\]

\(C\) (QE): Concentration of flavonoid as quercetin equivalent
\(C\): Concentration determined from standard curve (µg/ml)
\(V\): Volume used in the assay (ml)
\(M\): Mass of the sample which used in the assay (g)
\(F\): Dilution factor

Table 1. The experimental domain used in BBD.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Symbol</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol concentration (%)</td>
<td>(X_1)</td>
<td>50</td>
</tr>
<tr>
<td>Microwave power (W)</td>
<td>(X_2)</td>
<td>180</td>
</tr>
<tr>
<td>Extraction time (min)</td>
<td>(X_3)</td>
<td>3</td>
</tr>
</tbody>
</table>
Optimal extraction parameters were discovered for three separate responses: TFC, antioxidant, and antibacterial activity. Various responses were handled based on the desirability function, and the best conditions were chosen. Using Design-Expert v. 13 (Stat-Ease, Minneapolis, MN, USA), multiple linear regression analysis and the experimental design were carried out. ANOVA was used to assess the results statistically, using 0.05 as the significance level. The coefficient of determination (R^2), coefficient of variance (CV), and p-values for the model and lack of fit testing were used to assess the models’ suitability [36].

\[
Y = A_0 + \sum_{i=1}^{3} A_i X_i + \sum_{j=1}^{3} A_j X_j + \sum_{j=i+1}^{3} A_{ij} X_i X_j
\]

RESULTS AND DISCUSSION

Model fitting analysis

The response surface approach was used to successfully optimize the MAE of flavonoid content from the *P. crocatum* leaf. Seventeen runs of the experimental design comprised streamlined experimental sets with five independent variable central values. Table 2 lists the BBD configuration and the observed responses for TFC, DPPH scavenging, and antibacterial activity. Using the second-order equation (Eq. 3), the R^2 of the model’s intercept, linear, quadratic, and interaction terms were determined. ANOVA was used to determine the significance of the influence of the linear, quadratic, or interaction coefficients on the answer (Table 3). Each component’s p-value indicates its significance (Table 3). The fitted model accurately represents the experimental data, which has high correlation values (R^2) ranging from 0.9339 to 0.9976 (Table 3). Table 3’s ANOVA demonstrates that the regression models for TFC, DPPH scavenging activity, and antibacterial activity were statistically significant, with significance levels ranging from $p = 0.0001$, $p = 0.0023$, and $p = 0.0002$, respectively. The models also showed no statistically significant lack of fit with $p > 0.05$. This led to the establishment of successful well-fitting models for TFC, DPPH scavenging activity, and antibacterial activity [29].

The effect of independent variables on TFC

The TFC of *P. crocatum* leaf extracts varied from 152.94 to 231.57 mg QE/g DW, depending on different investigated parameter levels. The lowest yield of TFC was obtained on the lower concentration of ethanol (X_1, 50%), higher level of microwave power (X_2, 450 W), and middle level of extraction time (X_3, 8.5 minutes), while the higher TFC was obtained on the middle of X_1, X_2, and X_3 (75%, 300 W, and 8.5 minutes, respectively). According to p values of regression coefficients (Table 3), the TFC was the most significantly influenced by X_1 and quadratic of independent variables (X_1^2, X_2^2, and X_3^2) ($p < 0.0001$, Table 3). In addition, the other variables namely X_1 ($p < 0.0038$), interaction of ethanol concentration and microwave power (X_1X_2, $p < 0.0023$), interaction of ethanol concentration and extraction time (X_1X_3, $p < 0.0067$), and interaction of microwave power and extraction time (X_2X_3, $p < 0.0375$) statistically significantly affect the total

<table>
<thead>
<tr>
<th>Run</th>
<th>Ethanol concentration (%)</th>
<th>Microwave power (W)</th>
<th>Extraction time (min)</th>
<th>TFC (mg QE/g)</th>
<th>Antioxidant activity (% Scavenging)</th>
<th>Antibacterial activity (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>50</td>
<td>300</td>
<td>14</td>
<td>157.21</td>
<td>60.09</td>
<td>13.00</td>
</tr>
<tr>
<td>2.</td>
<td>100</td>
<td>300</td>
<td>14</td>
<td>184.32</td>
<td>67.33</td>
<td>15.23</td>
</tr>
<tr>
<td>3.</td>
<td>75</td>
<td>450</td>
<td>3</td>
<td>205.63</td>
<td>70.51</td>
<td>16.20</td>
</tr>
<tr>
<td>4.</td>
<td>50</td>
<td>450</td>
<td>8.5</td>
<td>152.94</td>
<td>67.94</td>
<td>12.90</td>
</tr>
<tr>
<td>5.</td>
<td>100</td>
<td>450</td>
<td>8.5</td>
<td>182.33</td>
<td>65.92</td>
<td>15.90</td>
</tr>
<tr>
<td>6.</td>
<td>75</td>
<td>300</td>
<td>8.5</td>
<td>231.57</td>
<td>75.22</td>
<td>18.50</td>
</tr>
<tr>
<td>7.</td>
<td>75</td>
<td>300</td>
<td>8.5</td>
<td>226.21</td>
<td>73.93</td>
<td>17.43</td>
</tr>
<tr>
<td>8.</td>
<td>100</td>
<td>180</td>
<td>8.5</td>
<td>174.03</td>
<td>65.36</td>
<td>14.90</td>
</tr>
<tr>
<td>9.</td>
<td>75</td>
<td>450</td>
<td>14</td>
<td>192.45</td>
<td>69.3</td>
<td>15.90</td>
</tr>
<tr>
<td>10.</td>
<td>75</td>
<td>180</td>
<td>8.5</td>
<td>203.39</td>
<td>68.09</td>
<td>16.05</td>
</tr>
<tr>
<td>11.</td>
<td>50</td>
<td>180</td>
<td>8.5</td>
<td>163.56</td>
<td>58.93</td>
<td>12.50</td>
</tr>
<tr>
<td>12.</td>
<td>75</td>
<td>180</td>
<td>14</td>
<td>200.09</td>
<td>70.65</td>
<td>16.20</td>
</tr>
<tr>
<td>13.</td>
<td>100</td>
<td>300</td>
<td>3</td>
<td>180.03</td>
<td>64.66</td>
<td>14.50</td>
</tr>
<tr>
<td>14.</td>
<td>75</td>
<td>300</td>
<td>8.5</td>
<td>230.95</td>
<td>70.56</td>
<td>18.98</td>
</tr>
<tr>
<td>15.</td>
<td>75</td>
<td>300</td>
<td>8.5</td>
<td>228.35</td>
<td>74.01</td>
<td>19.05</td>
</tr>
<tr>
<td>16.</td>
<td>75</td>
<td>300</td>
<td>8.5</td>
<td>229.14</td>
<td>73.94</td>
<td>18.40</td>
</tr>
<tr>
<td>17.</td>
<td>50</td>
<td>300</td>
<td>3</td>
<td>168.32</td>
<td>59.43</td>
<td>12.15</td>
</tr>
</tbody>
</table>

Table 2. BBD with natural and coded MAE conditions and experimentally obtained values of TPC (mg QE/g), antioxidant activity (% Scavenging activity), and antibacterial activity (mm).
flavonoids content. Linear term of X_1 and interaction terms of X_1X_2 and X_1X_3 exhibited positive influence. The positive effects of independent variables demonstrated that a rise in the response value can result from their positive modifications [37]. The following graph illustrates the second-order polynomial model that was used to represent the TFC as a function of independent variables:

$$
\text{TFC (mg QE/g) = 229.34 + 10.10X_1 - 0.9650X_2 + 4.72X_1X_2 + 3.85X_1X_3 - 2.59X_2X_3 - 44.47X_1^2 - 16.65X_2^2 - 12.30X_3^2}
$$

Response surface plots (Fig. 1a and b) show the relation of X_1X_2 and X_1X_3 on the TFC of extracts. The TFC of extracts reached the maximum when the X_1 was around 75% with X_2 of 300 W. The TFC will decrease after the X_1 and X_2 increase. The interaction of X_1X_2 was described as a significant effect of X_1, the graphs in Figure 1b, also show that the TFC slightly increased with an increase of X_1 from 50% to 80%, and decreased after 80% although the X_3 in the lowest or highest conditions.

That was described as the effect of X_1 is significant on TFC [38]. In addition, the interaction of X_1X_3 and X_1X_1 was significantly proven through total flavonoid extraction ($p < 0.0023$ and $p < 0.0067$, respectively). In this research, ethanol was used as the solvent due to its high extraction efficacy, compatibility with human consumption, and environmental safety considerations [39]. The efficacy of flavonoid extraction is enhanced when alcohol is combined with water, as compared to using alcohol as a solvent alone [40]. This is attributed to

Table 3. Corresponding p-values of linear, interaction, quadratic, and ANOVA of the fitted second-order polynomial model for TFC, antioxidant, and antibacterial activities.

<table>
<thead>
<tr>
<th>Source</th>
<th>TFC (mg QE/g)</th>
<th>Antioxidant activity (%Scavenging)</th>
<th>Antibacterial activity (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>p-value</td>
<td>Coefficient</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant (A_0)</td>
<td>229.34</td>
<td>73.70</td>
<td>0.0023</td>
</tr>
<tr>
<td>X_1</td>
<td>10.10</td>
<td><0.0001</td>
<td>1.99</td>
</tr>
<tr>
<td>X_2</td>
<td>-0.9650</td>
<td>0.2202</td>
<td>1.33</td>
</tr>
<tr>
<td>X_3</td>
<td>-3.06</td>
<td>0.0038</td>
<td>0.5314</td>
</tr>
<tr>
<td>X_1X_2</td>
<td>4.72</td>
<td>0.0023</td>
<td>-2.21</td>
</tr>
<tr>
<td>X_1X_3</td>
<td>3.85</td>
<td>0.0067</td>
<td>+0.5025</td>
</tr>
<tr>
<td>X_2X_3</td>
<td>-2.59</td>
<td>0.0375</td>
<td>-0.9640</td>
</tr>
<tr>
<td>X_1^2</td>
<td>-44.47</td>
<td><0.0001</td>
<td>-7.88</td>
</tr>
<tr>
<td>X_2^2</td>
<td>-16.65</td>
<td><0.0001</td>
<td>-1.28</td>
</tr>
<tr>
<td>X_3^2</td>
<td>-12.30</td>
<td><0.0001</td>
<td>-2.78</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9976</td>
<td>0.9339</td>
<td></td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.9945</td>
<td>0.8489</td>
<td></td>
</tr>
<tr>
<td>CV (%)</td>
<td>1.04</td>
<td>2.93</td>
<td>3.72</td>
</tr>
</tbody>
</table>

Table 4. Pearson’s correlation coefficient (R) and p-values for TFC, antioxidant and antibacterial activities.

<table>
<thead>
<tr>
<th>Investigated response</th>
<th>TFC</th>
<th>Antioxidant activity</th>
<th>Antibacterial activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>p-value</td>
<td>Coefficient</td>
</tr>
<tr>
<td>TFC</td>
<td>0.863a</td>
<td>0.957b</td>
<td>0.000b</td>
</tr>
<tr>
<td>Antioxidant activity</td>
<td>0.000b</td>
<td>0.892a</td>
<td>0.000b</td>
</tr>
<tr>
<td>Antibacterial activity</td>
<td>0.957b</td>
<td>0.892a</td>
<td></td>
</tr>
</tbody>
</table>

aPearson’s correlation coefficient (R).

bp-value ($p < 0.05$ significant).
the fact that the extraction and separation of flavonoids are
heavily influenced by the polarity of solvents and the chemical
properties of the molecules involved [41]. The presence of a
specific quantity of water is likely to induce the expansion of
plant material, leading to an augmentation in the surface area of
contact between the solvent and the plant matrix. This, in turn,
directly influences the effectiveness of the extraction process
[42]. Furthermore, to achieve optimal extraction of target
compounds, it is advisable to conduct the extraction using a
solvent mixture with a ratio determined based on the chemical
composition and polarity of the target compound(s) [43]. The
selection of a suitable solvent for MAE is contingent upon its
capacity to absorb microwave energy and then convert it into
heat. The dielectric characteristics of the solvent influence this
conversion process [44].

Furthermore, Figure 1c, shows the significant interaction of $X_1 X_2$ ($p < 0.0375$). This interaction has not
depended on one factor. The X_2 and X_1 affect TFC and will
increase if the X_2 and X_1 increase to 330 W and 10 minutes.
The TFC has slightly decreased after the maximum point of X_2
and X_1. This phenomenon can be elucidated by the following
observation: an elevation in microwave power resulted in a rise
in system temperature, facilitating the extraction of nonflavonoid
components [45]. Consequently, there was a proportional
reduction in the overall concentration of flavonoids in the
extracted samples. One notable advantage of utilizing MAE
compared to traditional extraction methods is the reduction in the
time necessary for extracting phytochemicals from plant sources
[46]. The concentration of flavonoids in the extracts exhibited
a decline when the duration of the extraction process exceeded
10 minutes, as depicted in Figure 1c. The extended duration of
the sample’s exposure to microwave irradiation and the solvent
likely resulted in the extraction of chemical compounds from the
extract, besides from flavonoids. These chemicals may include
minerals and carbohydrates. Our findings were consistent with
the outcomes reported in other studies [47].

The effect of independent variables on DPPH scavenging
activity

This work aimed to assess the antioxidant activity of the
leaf extracts of *P. crocatum* by in vitro experiments, specifically
the DPPH radical scavenging assay. The DPPH radical
scavenging assay involves the radicals’ quenching by hydrogen
atom transfer by antioxidants [48]. The DPPH scavenging activity
of the extracts is quantified as the percentage of scavenging. The
percentage of DPPH scavenging exhibited by the extracts
obtained using MAE fell within a specific range from 58.93% to
75.22% (Table 2). The lowest % activity was observed on the
lower level of X_1 (50%) and X_2 (180 W), but the middle level of
X_1 (8.5 min). These results more highest than those reported by
Alfarabi *et al.* [49] of 59.34% in 100 µg/ml conventional extract
of *P. crocatum* leaf and ethanolic extract of *P. crocatum* leaf
(33.00%) in 100 µg/ml reported by Fatmawaty *et al.* [17]. On
the other hand, the antioxidant activity of this work is higher than
that reported by Rahardjo *et al.* [50], and hot water extract of *P.
crocatum* leaf reported by Kamaruzaman *et al.* [51] of 74.90%
in 20 mg/ml. The antioxidant activity of the extract has a strong
correlation with TFC which is $R = 0.863$ (Table 4). The increase
in the total content of flavonoid extract has a significant impact on
increasing its antioxidant activity. This result is similar to other
studies that were reported by Do *et al.* [32] and Alide *et al.* [52].

Response surface plots (Fig. 2a) show the interaction of X_1 and X_2 is not significantly affected by % DPPH scavenging
activity, but X_1 has significantly ($p < 0.0262$) affected the
% DPPH scavenging activity. The increasing X_1 up to 85%
was identified, leading to the % DPPH scavenging activity increase, and above 85%, the % DPPH scavenging activity
will decrease. This phenomenon was identified in a range X_2
of 180–450 W. Similar to the previous factor, the interaction of
X_1, X_2, and X_3 was described not significantly. The response
of % DPPH scavenging activity with these factors’ interaction
can be seen in Figure 2b and c. The second-order polynomial

![Figure 2. 3D plots of antioxidant activity (2a: interaction of $X_1 X_2$, 2b: interaction of $X_1 X_3$, 2c: interaction of $X_2 X_3$.)](image)

![Figure 3. 3D plots of antibacterial activity (3a: interaction of $X_1 X_2$, 3b: interaction of $X_1 X_3$, 3c: interaction of $X_2 X_3$.)](image)
model used to express the % DPPH scavenging activity as a function of independent variables (in terms of coded values) is shown below:

\[
\% \text{ DPPH scavenging activity} = 73.70 + 1.99 X_1 + 1.33 X_1 + 0.5314 X_1^2 - 2.21 X_2 X_1^2 + 0.5025 X_1 X_2 - 0.9640 X_1 X_2^2 - 7.88 X_2 - 1.28 X_2^2 - 2.78 X_3^2
\]

The \(X_1 \) has a factor with a significant impact against % DPPH scavenging activity with a positive coefficient. Many studies have reported the impact of changing \(X_1 \) led % DPPH scavenging activity. Kania \textit{et al.} [53] reported that the 75% methanolic extract is the best solvent for the highest % DPPH scavenging activity from \textit{A. indica} and \textit{M. zapota}. Mannoubi \textit{et al.} [54] reported that 80% ethanol is the best solvent compared to 80% methanol and acetone to get the highest antioxidant activity using the DPPH method. In addition, Gonfa \textit{et al.} [55] showed that the 80% ethanolic extract has a better DPPH scavenging activity than absolute ethanol and absolute methanol, although 80% methanol is the best solvent. Furthermore, ethanol is a solvent with a low toxicity risk, so it is better used in the extraction [56]. These reports described the significant impact of \(X_1 \) through % DPPH scavenging activity and all results are similar to this study.

The effect of independent variables on antibacterial activity

The antibacterial effect of the extract was carried out using the diffusion disc method against \textit{Staphylococcus aureus} (ATCC 29737). The 100 µg/ml extracts were used to observe antibacterial activity through the inhibition zone (mm). The inhibition zone after treated extracts varies from 12.15 to 19.05 mm. The lowest inhibition zone was obtained from lower \(X_1 \) (50%), middle \(X_2 \) (300 W), and lower \(X_3 \) (3 minutes), while the highest inhibition zone from middle \(X_1 \), \(X_2 \), and \(X_3 \) of 75%, 300 W, and 8.5 minutes, respectively. This result shows better antibacterial activity against \textit{S. aureus} than the previous reports by Kusuma \textit{et al.} [57]. Based on our observation, only \(X_1 \) has significantly affected the antibacterial effect from three linear variables with a positive coefficient (\(p < 0.0005 \)). In addition, the quadratic variables \(X_1^2 \), \(X_2^2 \), and \(X_3^2 \) have significantly impacted the antibacterial activity with \(p < 0.0001 \), \(p < 0.0082 \), and \(p < 0.0021 \), respectively. In more detail, the second-order polynomial model to express the antibacterial activity as a function of independent variables (in terms of coded values) is shown below:

\[
\text{Antibacterial activity} (\text{mm}) = 18.50 + 1.26 X_1 + 0.1563 X_1 + 0.1712 X_1 + 0.1604 X_2 X_1 - 0.0300 X_1 X_3 - 0.1357 X_2 X_3 - 3.39 X_2^2 - 1.06 X_2^2 - 1.36 X_3^2
\]

Response surface plots (Fig. 3a and b) show the effect of \(X_1 \) against antibacterial activity in interaction with \(X_2 \) and \(X_3 \). The graphs describe the \(X_1 \) significantly impacts the antibacterial activity of extracts. The superior effect was identified in specific conditions of \(X_1 \), which is 75% to 85%, with increasing or decreasing \(X_2 \) and \(X_3 \). These are correct with the ANOVA analysis that is shown in Table 3. Figure 2c gives a different impact on antibacterial activity. It is not identified which one is more affected by the interaction between \(X_2 \) and \(X_3 \). The maximum antibacterial activity is described at a certain point from \(X_2 \) and \(X_3 \) of 300 W to 380 W and 7 to 10 minutes, respectively. This study shows that antibacterial activity has a strong correlation with TFC which is \(R = 0.957 \) (Table 4) and it is similar to previous studies by Yuan \textit{et al.} [58] who mention that flavonoid compounds have antibacterial activity with correlation coefficients above 0.93. As reported by Jawhari \textit{et al.} [59], the \textit{Anacyclus pyrethrum} capitula extract has the highest flavonoid content than seeds extract and the strongest antibacterial activity against \textit{S. Aureus}. Similar to reports by Bouchelaghem \textit{et al.} [60], about the antibacterial activity of Hungarian propolis ethanol extract lead increase and with the TFC increase and Sartini \textit{et al.} [61] described the phenolic content as correlated with antibacterial activity. Furthermore, the activity of flavonoid compounds as antibacterial was identified in many reports. Various processes explain flavones’ antibacterial properties. Chen’s study found that baicalein at 32 and 64 µg/ml reduced quorum-sensing system regulators agrA, RNAIII, and sarA and gene expression of intercellular adhesin (ica) in \textit{S. aureus} biofilm producer cells [62]. The most effective antibacterial flavonoids are quercetin, myricetin, morin, galangin, entadanin, rutin, pilostigimol, and their derivatives. For instance, quercetin and its derivatives inhibited \textit{S. aureus} and other germs [63]. Morin is reported to be efficient against Gram-positive bacteria [64]. Combining plant-derived flavonol with β-lactam antibiotics significantly increased MRSA sensitivity to oxacillin [58]. Conversely, flavonoid-rich plants can affect bacterial surface and cellular leakages [65].

Optimization of MAE and validation of the models

The primary aim of this study was to determine the optimal conditions for generating extracts with elevated levels of flavonoids, as well as enhanced antioxidant and antibacterial properties. Based on the analysis of the maximum content of total flavonoids, the percentage of DPPH scavenging, and the inhibitory zone, it can be concluded that the ideal conditions for all three examined responses were as follows: \(X_1 \) at a level of 78.48%, \(X_2 \) at a level of 327.96 W, and \(X_3 \) at a level of 8.60 minutes. The TFC, % DPPH scavenging activity, and antibacterial activity are displayed in Table 5. The determination of optimal conditions, predicted value, and observed value are achieved by the utilization of a desirability function, which yielded a value of 0.944 for multiresponse optimization [66]. To validate the predictive mathematical model of the researched process, MAE was conducted on the estimated ideal conditions for all three examined responses.

This experiment showed the observed results in optimum conditions which are mentioned in Table 5 are not significantly different from the predicted results by RSM. The observed values of TFC, % DPPH scavenging activity, and antibacterial activity were 232.532 ± 1.05 mg GAE/g, 75.352% ± 0.85%, and 17.863 ± 0.92 mm, respectively. While, the predicted values of 229.647 mg GAE/g, 73.915%, and 18.621 mm, respectively. If we compared between observed and predicted values, the entire results were not significantly different even though the observed values of TFC and % DPPH scavenging activity showed a slight rise and the antibacterial activity showed a slight decrease than predicted values. The comparison between the observed experimental findings and the expected values revealed that all response variables fell within the 95% confidence interval of the predicted model. The strong connection seen in the results provides evidence for the
Table 5. Predicted and observed values of each response at optimal conditions.

<table>
<thead>
<tr>
<th>Optimal conditions</th>
<th>Investigated response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TFC (mg GAE/g)</td>
</tr>
<tr>
<td>Ethanol concentration (78.48%)</td>
<td>Predicted 229.647</td>
</tr>
<tr>
<td>Microwave power (327.96 W)</td>
<td>73.915</td>
</tr>
<tr>
<td>Extraction time (8.60)</td>
<td>18.621</td>
</tr>
<tr>
<td></td>
<td>Antioxidant activity (%Scavenging)</td>
</tr>
<tr>
<td></td>
<td>232.532 ± 1.05</td>
</tr>
<tr>
<td></td>
<td>75.352 ± 0.85</td>
</tr>
<tr>
<td></td>
<td>17.863 ± 0.92</td>
</tr>
</tbody>
</table>

* Mean ± SD (standard deviation; n = 3)

appropriateness of the employed model and the effectiveness of RSM in optimizing the studied conditions for minimizing MAE.

CONCLUSION

RSM was used to find the best options for MAE of TFC, percentage of DPPH scavenging, and antibacterial activity of the extracts. The ANOVA showed that the second-order polynomial model was a good mathematical representation of the MAE linked with flavonoids with strong antioxidant and antibacterial properties. Taking into account all of the factors, it is clear that X_1 had a big effect on the MAE. In the end, the best settings for the three factors that were looked at were for X_1 to be 78.48%, X_2 to be 327.96 W, and X_3 to be 8.60 minutes. The results of this study show that a very effective natural extract can be made when all of the factors are met. Furthermore, the utilization of MAE as an environmentally friendly way to make flavonoid-rich extracts from P. crocatum has provided better antioxidant and antibacterial properties.

ACKNOWLEDGMENTS

The authors are grateful to Universitas Sumatera Utara for their support in providing the chemical reagents and facilities.

AUTHOR CONTRIBUTIONS

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. All the authors are eligible to be an author as per the International Committee of Medical Journal Editors (ICMJE) requirements/guidelines.

FINANCIAL SUPPORT

There is no funding to report.

CONFLICTS OF INTEREST

All authors declare that have no conflict of interest.

ETHICAL APPROVALS

This article does not contain any studies with human or animal subjects.

DATA AVAILABILITY

All data generated and analyzed are included in this research article.

PUBLISHER’S NOTE

All claims expressed in this article are solely those of the authors and do not necessarily represent those of the publisher, the editors and the reviewers. This journal remains neutral with regard to jurisdictional claims in published institutional affiliation

USE OF ARTIFICIAL INTELLIGENCE (AI)-ASSISTED TECHNOLOGY

The authors declares that they have not used artificial intelligence (AI)-tools for writing and editing of the manuscript, and no images were manipulated using AI.

REFERENCES

11. Rizwan M, Gilani SR, Durrani AI, Naseem S. Low temperature green extraction of Acer platanoides cellulose using nitrogen protected microwave-assisted extraction (NPMAE) technique.

13. Alvi T, Asif Z, Khan MKI. Clean label extraction of bioactive compounds from food waste through microwave-assisted extraction technique-A review. Food Biosci. 2022;46:101580. doi: https://doi.org/10.1016/j.fbios.2022.101580

17. Fatmawaty, Anggreni NGM, Fadhil N, Prasasty VD. Phytochemical profile of antibacterial agents from red betel leaves (Piper crocatum Ruiz and Pav) leaves extract towards H 2 O 2-induced HepG 2 cells via anti-inflammatory, anti necrotic, antioxidant potency. SPJ. 2020;28(10):1182–89. doi: https://doi.org/10.14499/indonesianjcanchemoprev9iss1pp1-8

22. Kumari M and Gupta SK, Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nano adsorbents (sMNP)—an endeavor to diminish probable cancer risk. Sci Rep. 2019;9:18339. doi: https://doi.org/10.1038/s41598-019-54902-8

33. Alora AR, Nour AH, Mudalip SKA, Screening of microwave-assisted-batch extraction parameters for recovering total phenolic and flavonoid contents from Chromolaena odorata leaves through two-level factorial design, Indones J Chem. 2019;19(2):511–21. doi: https://doi.org/10.22146/ijc.40863

35. Astyka A, Fernandez J, Rubio M, Anackov GT, Optimization of the microwave assisted extraction parameters for recovering total phenolic compounds from Chromolaena odorata. ISCC, 2018;9:18339.

46. Jha AK, and Sit N. Comparison of response surface methodology (RSM) and artificial neural network (ANN) modelling for supercritical fluid extraction of phytochemicals from Terminalia chebula pulp and optimization using RSM coupled with desirability function (DF) and genetic algorithm (GA) and ANN with GA. Ind Crops Prod. 2021;170(13769). doi: https://doi.org/10.1016/j.indcrop.2021.113769

50. Neto OSZ, Batista EAC, Meirelles AJA. The employment of ethanol as solvent to extract Brazil nut oil. J Clean Prod. 2018;180:866–75. doi: https://doi.org/10.1016/j.jclepro.2018.01.149

53. Jawhari FZ, Moussaoui AEL, Bourhia M, Imtara H, Saghrohchi H, Ammor K et al. Anacystis pyrethrum var. pyrethrum (L.) and Anacystis pyrethrum var. depressus (Ball) Maire: correlation between total phenolic and flavonoid contents with antioxidant and antimicrobial activities of chemically characterized extracts. Plants. 2021;10(1):149. doi: https://doi.org/10.3390/plants10010149

56. Neto OSZ, Batista EAC, Meirelles AJA. The employment of ethanol as solvent to extract Brazil nut oil. J Clean Prod. 2018;180:866–75. doi: https://doi.org/10.1016/j.jclepro.2018.01.149

59. Jawhari FZ, Moussaoui AEL, Bourhia M, Imtara H, Saghrohchi H, Ammor K et al. Anacystis pyrethrum var. pyrethrum (L.) and Anacystis pyrethrum var. depressus (Ball) Maire: correlation between total phenolic and flavonoid contents with antioxidant and antimicrobial activities of chemically characterized extracts. Plants. 2021;10(1):149. doi: https://doi.org/10.3390/plants10010149

How to cite this article: Astyka R, Hasibuan PAZ, Sumaiyah S, Juwita NA, Lubis MF. Optimization of microwave-assisted extraction of total flavonoid content from red betel leaf (Piper crocatum Ruiz and Pav) and its correlation with antioxidant and antibacterial activities using response surface methodology. J Appl Pharm Sci. 2024. http://doi.org/10.7324/JAPS.2024.170411