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INTRODUCTION
It has become widely recognized throughout the years 

that there is a strong connection between health benefits and 
nutrition [1]. As a result, consumers have increasingly been 
inclined to select food products that are filled with bioactive 
compounds, as these substances have been found to have a 

good impact on human health [2]. Plant materials have garnered 
significant attention due to their high concentration of bioactive 
chemicals [3]. Typically, most bioactive chemicals are situated 
within the cellular environment and necessitate liberation into 
the extracting solvent during extraction [4,5]. The conventional 
extraction methods, namely maceration, distillation, and 
soxhlet extraction, are frequently employed to extract bioactive 
compounds from plant materials [6].

Nevertheless, these methods are associated with 
drawbacks, including low extraction efficiency, excessive 
use of extracting solvents, high energy consumption, and 
prolonged extraction duration [7]. Hence, the concept of green 
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extraction has garnered considerable attention and has been 
put out by numerous scholars in the field [8]. Green extraction 
refers to a type of extraction that involves using solvents with 
reduced extraction capabilities, resulting in lower energy 
consumption and shorter process durations while increasing 
the yield of the extraction process [9]. The development of 
green extraction methods has been motivated by producing 
environmentally friendly and economically viable solutions 
in response to industrial issues. These approaches aim to 
minimize ecological and environmental impacts throughout 
the extraction process [10].

Microwave-assisted extraction (MAE) is a widely 
utilized sophisticated technique to extract phytochemicals 
from plant sources. This technique involves the utilization of 
microwaves to induce thermal energy, establishing a pressure 
gradient within the sample [11]. Consequently, phytochemicals 
present in the plant are released via diffusion, tissue bursting, 
or cell wall rupturing. The increase in temperature additionally 
facilitates the softening of plant tissue, enhances mass transfer, 
heat transfer, and solvent penetration within the sample, 
disrupts the chemical structure, and aids in the extraction of 
polyphenols into the solvent [12]. Multiple factors contribute 
to the phenomenon of MAE, potentially influencing both the 
quantity and quality of phytochemicals extracted from botanical 
substances [13]. The utilization of MAE in the extraction 
process has predominantly been documented for obtaining a 
flavonoid compound [14]. However, optimizing several factors, 
such as solvent concentration, microwave power level, and 
irradiation period, is necessary to achieve improved extraction 
outcomes [15].

Piper scrotum Ruiz and Pav, generally known as red 
betel, is frequently observed in several Southeast Asian nations, 
with a notable presence in Indonesia. The plant in question is a 
member of the Piperaceae family and is indigenous to the region 
[16]. In Indonesian society, the leaves of this plant have been 
traditionally used for medicinal purposes. Numerous research 
has documented the pharmacological properties exhibited by 
this particular plant, including antioxidant [17], antibacterial 
[18], anti-inflammatory [19], and anticancer activity [20]. 
Piper crocatum has been shown to possess many secondary 
metabolites, primarily steroids, tannins, saponins, alkaloids, and 
flavonoids. The P. crocatum plant possesses pharmacological 
properties attributed explicitly to its components, notably 
flavonoids [21]. As documented in scientific literature, there is a 
significant correlation between flavonoids and their antioxidant 
qualities and antibacterial activity [22]. Nevertheless, the 
significant accumulation of flavonoids might be a health 
advantage due to their antioxidant and antibacterial properties, 
making them suitable for utilization in the pharmaceutical and 
food sectors [23,24].

The food business has encountered challenges in 
improving process efficiency without a concurrent investment 
and resource use increase. Investigating to determine the optimal 
conditions for the system or the food optimization process is 
crucial in resolving this predicament [25]. Historically, the 
optimization process involved examining the impact of altering 
one parameter at a time on a given output while keeping other 
parameters constant. However, this approach failed to consider 

the interactive effects between specific parameters, resulting in 
a lack of comprehensive understanding of the combined effects 
of all factors on the response [26]. Moreover, this methodology 
necessitates further experimentation, escalating expenses, and 
time consumption. Hence, multivariate statistical methods 
have been employed to improve the process parameters in 
food applications [27]. Response surface methodology (RSM) 
is widely recognized as a prominent approach for analyzing 
multivariate statistical approaches [28]. The RSM is a statistical 
and mathematical technique that uses polynomial models 
to assess data compatibility [29]. Its primary objective is to 
reveal the underlying patterns and behaviors within the data, 
ultimately leading to the development of mathematical models 
to make predictions [30].

Currently, there is a lack of research investigating 
optimizing flavonoid content extraction from P. cronatum 
leaf utilizing MAE and RSM as well as the correlation with 
antioxidant and antibacterial activities. This approach establishes 
the ideal extraction conditions by considering independent 
factors such as ethanol concentration, microwave power, and 
extraction duration. The investigation of various parameters 
on the efficacy of MAE involved the determination of total 
flavonoid content (TFC) and the assessment of antioxidant and 
antibacterial activities. In addition, the relationship between 
TFC, and antioxidant and antibacterial activities will be 
examined to elucidate the extract’s mechanism as an antioxidant 
and antibacterial agent.

MATERIALS AND METHODS

Plant material
The leaf of P. crocatum was cultivated inside the 

botanical areas of the Faculty of Pharmacy at Universitas 
Sumatera Utara, located in Indonesia. The leaf was identified as 
P. crocatum Ruiz and Pav by the Herbarium Medanese, Faculty 
of Mathematics and Natural Sciences, Universitas Sumatera 
Utara, with a voucher ID of 512/UN.5.1.1-HM/2023. The 
collected leaves were subjected to a drying process and stored 
at an ambient temperature. The dried leaves were pulverized 
using a household blender, and the resulting material’s average 
particle size (0.450 mm) was determined using a set of sieves. 
The dried powder was stored at room temperature before its 
utilization in the extraction process.

Chemicals and media
Chemicals such as ethanol, methanol, 1,1-diphenyl-2-

picryhydrazyl (DPPH), aluminum chloride, and quercetin were used 
in this research and are analytical and certified by Sigma-Aldrich, 
United Kingdom. The Staphylococcus aureus (ATCC 29737), 
deMann Rogosa and Sharpe Agar (MRSA), and then Nutrient Agar 
(NA) were obtained from the Microbiology Laboratory, Faculty of 
Pharmacy, Universitas Sumatera Utara, Indonesia.

MAE procedure
Single conditions of MAE were performed in 

a homemade setup consisting of the microwave with 
modification (Samsung ME731K, Seoul, South Korea). 
Seventeen experimental MAE runs on different ethanol 
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C (QE): Concentration of flavonoid as quercetin 
equivalent

C: Concentration determined from standard curve  
(µg/ml)

V: Volume used in the assay (ml)
M: Mass of the sample which used in the assay (g)
F: Dilution factor

Antioxidant activity
The measurement of free radical scavenging activity 

was conducted using the DPPH technique. A 0.2 mM solution 
of DPPH in methanol was produced. Subsequently, 100 µl of 
this solution was added to a solution containing extracts at a 
concentration of 100 µg/ml. After 60 minutes, the measurement 
of absorbance was conducted at a wavelength of 516 nm. The 
calculation of the percentage of inhibition was performed by 
comparing the absorbance values obtained from the control 
group with those obtained from the samples, as illustrated 
below (Eq. 2) [35].

Absorbance control x Absorbance sample% Inhibition   x1 00%
Absorbance control



Antibacterial activity
To determine the antibacterial activity of extracts, 

a standard disc diffusion method was performed. Briefly, the 
100 mg/ml of each extract was used as a sample test against S. 
aureus. Sterile discs with a diameter of 6 mm were saturated 
with 25 µl of extract solution. Following a 15-minutes 
incubation period for optimal extract diffusion, the discs were 
placed onto a NA surface coated with 0.1 ml of a bacterial 
culture. The bacterial culture had been standardized to a 
concentration of 0.5 McFarland standards (106 CFU/ml). 
The plates were subjected to incubation at a temperature of 
37ºC for 12–14 hours. The outcomes were documented by 
measuring the area of growth inhibition surrounding the discs 
[34].

Statistical analysis and experimental planning
The RSM was employed to investigate the extraction 

parameters’ effects and optimize the conditions for different 
responses. The response pattern was established first using 
a Box–Behnken design (BBD) with three variables. The 
design, which had 17 combinations and five replicates at the 
central point, was carried out randomly. Ethanol concentration 
(X1, 50%–100%), microwave power (X2, 180–450 W), 
and extraction duration (X3, 3–14 minutes) were the three 
independent variables employed in this investigation. Each 
coded variable was made to have a range from –1 to 1 to equalize 
the parameters. This made the answer more evenly affected, 
and the units of the parameters were, therefore, unimportant. 
The following second-order polynomial model, which can 
typically explain the relationship between the responses and 
the independent factors, was fitted to the response variables 
(Eq. 3) [36]:

where Y represents the response variable; Xi and Xj 
are the independent variables affecting the response; and A0, Ai, 

concentrations (X1), microwave power (X2), and extraction 
time (X3), were performed according to the results of Design-
expert v.13. In every iteration of the experiment, a mass of 10 
g of the sample was combined with a volume of 100 ml of the 
extraction solvent. The flasks were subsequently positioned 
within the MAE device, and extractions were conducted at a 
predetermined frequency. Following the extraction process, the 
crude extracts were promptly subjected to filtration using filter 
paper with a pore size ranging from 4 to 12 µm, employing a 
vacuum system. The collected samples were placed into glass 
flasks and thereafter stored at a temperature of 4ºC until they 
were ready for additional examination [31].

Selection of factors
A significant number of characteristics may influence 

the researched extraction system. Consequently, it is crucial to 
choose the carefully most substantial impact elements. Several 
factors can potentially affect a given study’s MAE. These 
factors include the nature of the solvent used, the ratio of 
solvent to solid material, the duration of the extraction process, 
the power level of the microwave used, the temperature 
at which the extraction is conducted, the properties of the 
sample being analyzed, and the number of extraction cycles 
performed [32]. Understanding the effects and combinations 
of these elements on the MAE process holds significant 
importance. The initial phase was the selection of the most 
appropriate solvent. Numerous findings indicate that ethanol is 
suitable for extracting diverse polyphenolic components from 
plant sources [33]. The selection of condition ranges for the 
MAE was informed by existing literature. The X2 exhibited 
an influence ranging from 180 to 400 W, while the X3 ranged 
from 3 to 14 minutes. The analytical findings are provided in 
Table 1.

Total flavonoids content
The TFC of extracts was obtained using 

spectrophotometry methods. Briefly, 2 ml of extracts in 
methanol was mixed with 0.10 ml of 10% AlCl3, 0.10 ml 
of NaC2H3O2·3H2O (1 M), and 2.80 ml of distilled water. 
The samples were incubated for 40 minutes, and after that, 
the absorbance of samples was measured at 432 nm. To 
determine the TFC of the samples, a calibration curve was built 
utilizing quercetin as the standard compound. The flavonoid 
concentration is expressed as mg QE/g sample. The equation to 
determine TFC as can see below (Eq. 1) [34]

   x  QE   x 
C VC F

M

Table 1. The experimental domain used in BBD.

Variables Symbol
Levels

−1 0 +1

Ethanol concentration (%) X1 50 75 100

Microwave power (W) X2 180 300 450

Extraction time (min) X3 3 8.5 14
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Aii, and Aij are the regression coefficients for intercept, linear, 
quadratic, and interaction terms, respectively.

Optimal extraction parameters were discovered for 
three separate responses: TFC, antioxidant, and antibacterial 
activity. Various responses were handled based on the 
desirability function, and the best conditions were chosen. 
Using Design-Expert v.13 (Stat-Ease, Minneapolis, MN, 
USA), multiple linear regression analysis and the experimental 
design were carried out. ANOVA was used to assess the results 
statistically, using 0.05 as the significance level. The coefficient 
of determination (R2), coefficient of variance (CV), and p-values 
for the model and lack of fit testing were used to assess the 
models’ suitability [36].

3 3 32
0

1  1 1
 

   
    i ii i ij i j

i i j i
Y A A A X A X X

RESULTS AND DISCUSSION

Model fitting analysis
The response surface approach was used to 

successfully optimize the MAE of flavonoid content from the 
P. crocatum leaf. Seventeen runs of the experimental design 
comprised streamlined experimental sets with five independent 
variable central values. Table 2 lists the BBD configuration 
and the observed responses for TFC, DPPH scavenging, and 
antibacterial activity. Using the second-order equation (Eq. 3), 
the R2 of the model’s intercept, linear, quadratic, and interaction 
terms were determined. ANOVA was used to determine the 
significance of the influence of the linear, quadratic, or interaction 

coefficients on the answer (Table 3). Each component’s p-value 
indicates its significance (Table 3). The fitted model accurately 
represents the experimental data, which has high correlation 
values (R2) ranging from 0.9339 to 0.9976 (Table 3). Table 
3’s ANOVA demonstrates that the regression models for TFC, 
DPPH scavenging activity, and antibacterial activity were 
statistically significant, with significance levels ranging from p 
= 0.0001, p = 0.0023, and p = 0.0002, respectively. The models 
also showed no statistically significant lack of fit with p > 0.05. 
This led to the establishment of successful well-fitting models 
for TFC, DPPH scavenging activity, and antibacterial activity 
[29].

The effect of independent variables on TFC
The TFC of P. crocatum leaf extracts varied from 

152.94 to 231.57 mg QE/g DW, depending on different 
investigated parameter levels. The lowest yield of TFC was 
obtained on the lower concentration of ethanol (X1, 50%), 
higher level of microwave power (X2, 450 W), and middle 
level of extraction time (X3, 8.5 minutes), while the higher 
TFC was obtained on the middle of X1, X2, and X3 (75%, 300 
W, and 8.5 minutes, respectively). According to p values 
of regression coefficients (Table 3), the TFC was the most 
significantly influenced by X1 and quadratic of independent 
variables (X1

2, X2
2, and X3

2) (p < 0.0001, Table 3). In addition, 
the other variables namely X3 (p < 0.0038), interaction of 
ethanol concentration and microwave power (X1X2, p < 0.0023), 
interaction of ethanol concentration and extraction time (X1X3, 
p < 0.0067), and interaction of microwave power and extraction 
time (X2X3, p < 0.0375) statistically significantly affect the total 

Table 2. BBD with natural and coded MAE conditions and experimentally obtained values of TPC (mg QE/g), antioxidant activity (% 
Scavenging activity), and antibacterial activity (mm).

Run
Independent variables Responses

Ethanol concentration (%) Microwave 
power (W)

Extraction 
time (min) TFC (mg QE/g) Antioxidant activity 

(%Scavenging) Antibacterial activity (mm)

1. 50 300 14 157.21 60.09 13.00

2. 100 300 14 184.32 67.33 15.23

3. 75 450 3 205.63 70.51 16.20

4. 50 450 8.5 152.94 67.94 12.90

5. 100 450 8.5 182.33 65.92 15.90

6. 75 300 8.5 231.57 75.22 18.50

7. 75 300 8.5 226.21 73.93 17.43

8. 100 180 8.5 174.03 65.36 14.90

9. 75 450 14 192.45 69.3 15.90

10. 75 180 3 203.39 68.09 16.05

11. 50 180 8.5 163.56 58.93 12.50

12. 75 180 14 200.09 70.65 16.20

13. 100 300 3 180.03 64.66 14.50

14. 75 300 8.5 230.95 70.56 18.98

15. 75 300 8.5 228.35 74.01 19.05

16. 75 300 8.5 229.14 73.94 18.40

17. 50 300 3 168.32 59.43 12.15
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flavonoids content. Linear term of X1 and interaction terms of 
X1X2 and X1X3 exhibited positive influence. The positive effects 
of independent variables demonstrated that a rise in the response 
value can result from their positive modifications [37]. The 
following graph illustrates the second-order polynomial model 
that was used to represent the TFC as a function of independent 
variables:

Total flavonoids content (mg QE/g) = 229.34 + 10.10 
X1 – 0.9650 X2 – 3.06 X3 + 4.72 X1X2 + 3.85 X1X3 – 2.59 X2X3 – 
44.47 X1

2 – 16.65 X2
2 – 12.30 X3

2

Response surface plots (Fig. 1a and b) show the 
relation of X1X2 and X1X3 on the TFC of extracts. The TFC of 
extracts reached the maximum when the X1 was around 75% 
with X2 of 300 W. The TFC will decrease after the X1 and X2 
increase. The interaction of X1X3 was described as a significant 
effect of X1, the graphs in Figure 1b, also show that the TFC 

slightly increased with an increase of X1 from 50% to 80%, and 
decreased after 80% although the X3 in the lowest or highest 
conditions. 

That was described as the effect of X1 is significant 
on TFC [38]. In addition, the interaction of X1X2 and X1X3 was 
significantly proven through total flavonoid extraction (p < 
0.0023 and p < 0.0067, respectively). In this research, ethanol 
was used as the solvent due to its high extraction efficacy, 
compatibility with human consumption, and environmental 
safety considerations [39]. The efficacy of flavonoid extraction 
is enhanced when alcohol is combined with water, as compared 
to using alcohol as a solvent alone [40]. This is attributed to 

Table 3. Corresponding p-values of linear, interaction, quadratic, and ANOVA of the fitted second-
order polynomial model for TFC, antioxidant, and antibacterial activities.

Source
TFC (mg QE/g) Antioxidant activity 

(%Scavenging) Antibacterial activity (mm)

Coefficient p-value Coefficient p-value Coefficient p-value

Model <0.0001 0.0023 0.0002

Constant (A0) 229.34 73.70 18.50

X1  10.10 <0.0001 1.99 0.0262 1.26 0.0005

X2 −0.9650 0.2202 1.33 0.1014 0.1563 0.4755

X3 −3.06 0.0038 0.5314 0.4771 0.1712 0.4373

X1X2 4.72 0.0023 −2.21 0.0616 0.1604 0.6001

X1X3 3.85 0.0067 +0.5025 0.6299 −0.0300 0.9213

X2X3 −2.59 0.0375 −0.9640 0.3647 −0.1357 0.6565

X1
2 −44.47 <0.0001 −7.88 <0.0001 −3.39 <0.0001

X2
2 −16.65 <0.0001 −1.28 0.2358 −1.06 0.0082

X3
2 −12.30 <0.0001 −2.78 0.0245 −1.36 0.0021

R2 0.9976 0.9339 0.9703

Adjusted R2 0.9945 0.8489 0.9322

Lack of fit 0.5728 0.3032 0.6632

CV (%) 1.04 2.93 3.72

Table 4. Pearson’s correlation coefficient (R) and p-values for TFC, 
antioxidant and antibacterial activities.

Investigated 
response TFC Antioxidant 

activity
Antibacterial 

activity

TFC
0.863a 0.957a

0.000b 0.000b

Antioxidant activity
0.863a 0.892a

0.000b 0.000b

Antibacterial activity
0.957a 0.892a

0.000b 0.000b

aPearson’s correlation coefficient (R).

bp-value (p < 0.05 significant).

Figure 1. 3D plots of total flavonoids content (1a: interaction of X1X2, 1b: 
interaction of X1X3, 1c: interaction of X2X3.
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the fact that the extraction and separation of flavonoids are 
heavily influenced by the polarity of solvents and the chemical 
properties of the molecules involved [41]. The presence of a 
specific quantity of water is likely to induce the expansion of 
plant material, leading to an augmentation in the surface area of 
contact between the solvent and the plant matrix. This, in turn, 
directly influences the effectiveness of the extraction process 
[42]. Furthermore, to achieve optimal extraction of target 
compounds, it is advisable to conduct the extraction using a 
solvent mixture with a ratio determined based on the chemical 
composition and polarity of the target compound(s) [43]. The 
selection of a suitable solvent for MAE is contingent upon its 
capacity to absorb microwave energy and then convert it into 
heat. The dielectric characteristics of the solvent influence this 
conversion process [44].

Furthermore, Figure 1c, shows the significant 
interaction of X2X3 (p < 0.0375). This interaction has not 
depended on one factor. The X2 and X3 affect TFC and will 
increase if the X2 and X3 increase to 330 W and 10 minutes. 
The TFC has slightly decreased after the maximum point of X2 
and X3. This phenomenon can be elucidated by the following 
observation: an elevation in microwave power resulted in a rise 
in system temperature, facilitating the extraction of nonflavonoid 
components [45]. Consequently, there was a proportional 
reduction in the overall concentration of flavonoids in the 
extracted samples. One notable advantage of utilizing MAE 
compared to traditional extraction methods is the reduction in the 
time necessary for extracting phytochemicals from plant sources 
[46]. The concentration of flavonoids in the extracts exhibited 
a decline when the duration of the extraction process exceeded 
10 minutes, as depicted in Figure 1c. The extended duration of 
the sample’s exposure to microwave irradiation and the solvent 
likely resulted in the extraction of chemical compounds from the 
extract, besides from flavonoids. These chemicals may include 
minerals and carbohydrates. Our findings were consistent with 
the outcomes reported in other studies [47].

The effect of independent variables on DPPH scavenging 
activity

This work aimed to assess the antioxidant activity of the 
leaf extracts of P. crocatum by in vitro experiments, specifically 
the DPPH radical scavenging assay. The DPPH radical 
scavenging assay involves the radicals’ quenching by hydrogen 
atom transfer by antioxidants [48]. The DPPH scavenging activity 
of the extracts is quantified as the percentage of scavenging. 
The percentage of DPPH scavenging exhibited by the extracts 
obtained using MAE fell within a specific range from 58.93% 
to 75.22% (Table 2). The lowest % activity was observed on the 
lower level of X1 (50%) and X2 (180 W), but the middle level of 
X3 (8.5 min). These results more highest than those reported by 
Alfarabi et al. [49] of 59.34% in 100 µg/ml conventional extract 
of P. crocatum leaf and ethanolic extract of P. crocatum leaf 
(33.00%) in 100 µg/ml reported by Fatmawaty et al. [17]. On 
the other hand, the antioxidant activity of this work is higher than 
that reported by Rahardjo et al. [50], and hot water extract of P. 
crocatum leaf reported by Kamaruzaman et al. [51] of 74.90% 
in 20 mg/ml. The antioxidant activity of the extract has a strong 
correlation with TFC which is R = 0.863 (Table 4). The increase 

in the total content of flavonoid extract has a significant impact on 
increasing its antioxidant activity. This result is similar to other 
studies that were reported by Do et al. [32] and Alide et al. [52].

Response surface plots (Fig. 2a) show the interaction 
of X1 and X2 is not significantly affected by % DPPH scavenging 
activity, but X1 has significantly (p < 0.0262) affected the 
% DPPH scavenging activity. The increasing X1 up to 85% 
was identified, leading to the % DPPH scavenging activity 
increase, and above 85%, the % DPPH scavenging activity 
will decrease. This phenomenon was identified in a range X2 
of 180–450 W. Similar to the previous factor, the interaction of 
X1 X3 and X2 X3 was described not significantly. The response 
of % DPPH scavenging activity with these factors’ interaction 
can be seen in Figure 2b and c. The second-order polynomial 

Figure 2. 3D plots of antioxidant activity (2a: interaction of X1X2, 2b: interaction 
of X1X3, 2c: interaction of X2X3.

Figure 3. 3D plots of antibacterial activity (3a: interaction of X1X2, 3b: 
interaction of X1X3, 3c: interaction of X2X3.
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model used to express the % DPPH scavenging activity as a 
function of independent variables (in terms of coded values) 
is shown below: 

% DPPH scavenging activity = 73.70 + 1.99 X1 + 1.33 
X2 + 0.5314 X3 – 2.21 X1X2 + 0.5025 X1X3 – 0.9640 X2X3 – 7.88 
X1

2 – 1.28 X2
2 – 2.78 X3

2

The X1 has a factor with a significant impact against 
% DPPH scavenging activity with a positive coefficient. Many 
studies have reported the impact of changing X1 led % DPPH 
scavenging activity. Kaneria et al. [53] reported that the 75% 
methanolic extract is the best solvent for the highest % DPPH 
scavenging activity from A. indica and M. zapota. Mannoubi et 
al. [54] reported that 80% ethanol is the best solvent compared to 
80% methanol and acetone to get the highest antioxidant activity 
using the DPPH method. In addition, Gonfa et al. [55] showed that 
the 80% ethanolic extract has a better DPPH scavenging activity 
than absolute ethanol and absolute methanol, although 80% 
methanol is the best solvent. Furthermore, ethanol is a solvent 
with a low toxicity risk, so it is better used in the extraction [56]. 
These reports described the significant impact of X1 through % 
DPPH scavenging activity and all results are similar to this study.

The effect of independent variables on antibacterial activity
The antibacterial effect of the extract was carried out 

using the diffusion disc method against Staphylococcus aureus 
(ATCC 29737). The 100 µg/ml extracts were used to observe 
antibacterial activity through the inhibition zone (mm). The 
inhibition zone after the extracts treated can be seen in Table 2. 
The inhibition zone after treated extracts varies from 12.15 to 
19.05 mm. The lowest inhibition zone was obtained from lower 
X1 (50%), middle X2 (300 W), and lower X3 (3 minutes), while 
the highest inhibition zone from middle X1, X2, and X3

 of 75%, 
300 W, and 8.5 minutes, respectively. This result shows better 
antibacterial activity against S. aureus than previous reports 
by Kusuma et al. [57]. Based on our observation, only X1 has 
significantly affected the antibacterial effect from three linear 
variables with a positive coefficient (p < 0.0005). In addition, the 
quadratic variables X1

2, X2
2, and X3

2 have significantly impacted 
the antibacterial activity with p < 0.0001, p < 0.0082, and p < 
0.0021, respectively. In more detail, the second-order polynomial 
model to express the antibacterial activity as a function of 
independent variables (in terms of coded values) is shown below: 

Antibacterial activity (mm) = 18.50 + 1.26 X1 + 0.1563 
X2 + 0.1712 X3 + 0.1604 X1X2 – 0.0300 X1X3 – 0.1357 X2X3 – 
3.39 X1

2 – 1.06 X2
2 – 1.36 X3

2      
Response surface plots (Fig. 3a and b) show the 

effect of X1 against antibacterial activity in interaction with 
X2 and X3. The graphs describe the X1 significantly impacts 
the antibacterial activity of extracts. The superior effect was 
identified in specific conditions of X1, which is 75% to 85%, 
with increasing or decreasing X2 and X3. These are correct with 
the ANOVA analysis that is shown in Table 3. Figure 2c gives 
a different impact on antibacterial activity. It is not identified 
which one is more affected by the interaction between X2 and 
X3. The maximum antibacterial activity is described at a certain 
point from X2 and X3 of 300 W to 380 W and 7 to 10 minutes, 
respectively. This study shows that antibacterial activity has 
a strong correlation with TFC which is R = 0.957 (Table 4) 

and it is similar to previous studies by Yuan et al. [58] who 
mention that flavonoid compounds have antibacterial activity 
with correlation coefficients above 0.93. As reported by Jawhari 
et al. [59], the Anacyclus pyrethrum capitula extract has the 
highest flavonoid content than seeds extract and the strongest 
antibacterial activity against S. Aureus. Similar to reports by 
Bouchelaghem et al. [60], about the antibacterial activity of 
Hungarian propolis ethanol extract lead increase and with the 
TFC increase and Sartini et al. [61] described the phenolic 
content as correlated with antibacterial activity. Furthermore, 
the activity of flavonoid compounds as antibacterial was 
identified in many reports. Various processes explain flavones’ 
antibacterial properties. Chen’s study found that baicalein at 32 
and 64 μg/ml reduced quorum-sensing system regulators agrA, 
RNAIII, and sarA and gene expression of intercellular adhesin 
(ica) in S. aureus biofilm producer cells [62]. The most effective 
antibacterial flavonoids are quercetin, myricetin, morin, 
galangin, entadanin, rutin, piliostigmol, and their derivatives. 
For instance, quercetin and its derivatives inhibited S. aureus 
and other germs [63]. Morin is reported to be efficient against 
Gram-positive bacteria [64]. Combining plant-derived flavonol 
with β-lactam antibiotics significantly increased MRSA 
sensitivity to oxacillin [58]. Conversely, flavonoid-rich plants 
can affect bacterial surface and cellular leakages [65].

Optimization of MAE and validation of the models
The primary aim of this study was to determine the 

optimal conditions for generating extracts with elevated levels 
of flavonoids, as well as enhanced antioxidant and antibacterial 
properties. Based on the analysis of the maximum content of 
extracted total flavonoids, the percentage of DPPH scavenging, 
and the inhibitory zone, it can be concluded that the ideal 
conditions for all three examined responses were as follows: X1 
at a level of 78.48%, X2 at a level of 327.96 W, and X3 at a level 
of 8.60 minutes. The TFC, % DPPH scavenging activity, and 
antibacterial activity are displayed in Table 5. The determination 
of optimal conditions, predicted value, and observed value are 
achieved by the utilization of a desirability function, which 
yielded a value of 0.944 for multiresponse optimization [66]. 
To validate the predictive mathematical model of the researched 
process, MAE was conducted on the estimated ideal conditions 
for all three examined responses. 

This experiment showed the observed results in 
optimum conditions which are mentioned in Table 5 are not 
significantly different from the predicted results by RSM. 
The observed values of TFC, % DPPH scavenging activity, 
and antibacterial activity were 232.532 ± 1.05 mg GAE/g, 
75.352% ± 0.85%, and 17.863 ± 0.92 mm, respectively. While, 
the predicted values of 229.647 mg GAE/g, 73.915%, and 
18.621 mm, respectively. If we compared between observed 
and predicted values, the entire results were not significantly 
different even though the observed values of TFC and % DPPH 
scavenging activity showed a slight rise and the antibacterial 
activity showed a slight decrease than predicted values. The 
comparison between the observed experimental findings and 
the expected values revealed that all response variables fell 
within the 95% confidence interval of the predicted model. The 
strong connection seen in the results provides evidence for the 
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appropriateness of the employed model and the effectiveness 
of RSM in optimizing the studied conditions for minimizing 
MAE.

CONCLUSION
RSM was used to find the best options for MAE of 

TFC, percentage of DPPH scavenging, and antibacterial activity 
of the extracts. The ANOVA showed that the second-order 
polynomial model was a good mathematical representation of 
the MAE linked with flavonoids with strong antioxidant and 
antibacterial properties. Taking into account all of the factors, it 
is clear that X1 had a big effect on the MAE. In the end, the best 
settings for the three factors that were looked at were for X1 to 
be 78.48%, X2 to be 327.96 W, and X3 to be 8.60 minutes. The 
results of this study show that a very effective natural extract 
can be made when all of the factors are met. Furthermore, the 
utilization of MAE as an environmentally friendly way to make 
flavonoid-rich extracts from P. crocatum has provided better 
antioxidant and antibacterial properties.
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