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INTRODUCTION
The increase in diseases brought on by bacteria 

resistant to antibiotics (AMR) is a significant public health 

concern in many parts of the world. According to the World 

Health Organization (WHO), Pseudomonas, different 

Enterobacteriaceae (including Klebsiella and Escherichia coli), 
and Acinetobacter are the most dangerous carbapenem-resistant 

bacteria for human health and the healthcare system [1]. 

Several epidemiological maps for these bacteria are available. 

Examples include (vancomycin-resistant) Enterococcus 
faecium, which is a serious problem in Western and Northern 

Europe [2], and Acinetobacter baumannii, which is common in 

the Mediterranean region and the Arabian Peninsula [3]. AMR 

has a significant detrimental effect on development, animal 

welfare, and food security, resulting in 1.27 million illnesses 

and 929,000 fatalities annually worldwide [4].

There has been a notable increase in AMR observed in 

Jordan [5]. In the course of the year 2019, Jordan documented 

a cumulative count of 625 fatalities that were explicitly 

linked to AMR. Furthermore, an additional 2,400 deaths were 

identified as having a discernible association with AMR [6]. 

These figures position AMR as the fourth leading cause of 

death when compared to other causes in Jordan. Infections 

with methicillin-resistant Staphylococcus aureus (MRSA) 

and methicillin-resistant coagulase-negative staphylococci 

are widespread, while the resistance rates in Clostridioides 
difficile and enterococcal infections are moderate [7]. 

Moreover, S. pneumoniae and E. coli in medical isolates have 
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ABSTRACT
Antimicrobial resistance (AMR) is identified as the fourth leading cause of mortality in Jordan. However, there is a scarcity 

of data addressing the demographics and clinical characteristics associated with AMR against commonly used antibiotics 

in Western Jordan. To address this knowledge gap, a retrospective analysis was undertaken on the microbiology records 

of AMR at Al-Hussein/Salt Hospital in Jordan West from October 2020 to December 2022 and included 2893 reports. 

Two machine learning (ML) models, specifically categorization regression trees (CARTs) and random forests (RFs) were 

trained using microbiology reports and then utilized to forecast the AMR for different categories of antibiotics. The most 

commonly isolated microorganisms were Escherichia coli (53.3%), Klebsiella pneumoniae, and Staphylococcus aureus. 
Bacterial strains belonging to the Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
baumannii, Pseudomonas aeruginosa, and Enterobacter species category demonstrated elevated levels of resistance. 

The RF model demonstrated superior accuracy compared to the CART, exhibiting a range of 0.64–0.99. This finding 

suggests a significant level of dependability in the predictive capability of the RF models in forecasting AMR patterns. 

AMR is susceptible to the impact of demographic factors such as age, sex, and bacterial species. This study emphasized 

the significance of monitoring AMR to facilitate the administration of appropriate antibiotic therapy.
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shown high rates of antibiotic resistance [8]. In accordance 

with the global recommendations provided by the WHO and 

the United Nations (UN), a Jordanian initiative was developed 

to tackle the problem of AMR [5]. The program serves as a 

manifestation of the political dedication at the national level 

in Jordan to combat the issue of AMR, a decrease in the 

use of antimicrobials, and a concurrent enhancement in the 

general population’s awareness of appropriate antimicrobial 

consumption. In keeping with the pledge of this plan, effective 

surveillance to bolster information and proof is crucial.

The profusion of AMR data in medical health 

records has generated a significant resource that supports 

policies and research centered on the gathering, analysis, 

and dissemination of data pertinent to trends in resistance 

microorganisms. While most current research has focused 

on one or a small number of disease types or bacterial 

causative agents, it has also ignored a number of intricate 

details related to the AMR issue, such as the existence of 

multidrug resistant profiles (MDR) or factors that influence 

AMR more than others. This implies that a lack of interest or 

barriers exist for the analysis of patient records. Most likely, 

the first justification is false in that studying AMR-varied 

datasets is becoming more and more important to achieve the 

goals of AMR combating plans. Without a doubt, reviewing 

medical records is a laborious and time-consuming endeavor. 

However, there has been a growing emphasis on the potential 

to produce reliable forecasts regarding the various features of 

AMR by combining obtained data on patients with artificial 

intelligence aid tools like machine learning (ML) [9]. 

The main goal of ML is to develop algorithms that can 

build prediction models with little to no human involvement 

from a training dataset. According to recent research, a variety 

of bacterial strains can be predicted to exhibit AMR using ML 

approaches (reviewed in [10]). Furthermore, rather than using 

conventional research methods, ML might be used to identify 

the various mechanisms causing antibiotic resistance [11]. 

However, there are currently just a few studies looking into the 

use of ML to forecast AMR; in Jordan, for example, there have 

been no recent studies looking into the use of ML to combat 

AMR. 

It is possible to better understand the major factors 

that affect the spread of AMR by including socio-demographic 

factors, such as age and sex, in the ML models. Age and sex 

have various epidemiological and etiological effects that are 

equivalent to the selection pressure exerted by antibiotics on 

the most common clinical microorganisms. This is primarily 

because bacterial pathogens interact with hosts with varying 

degrees of resistance to infection. For example, natural immunity 

to infection decreases with age, and immunological phenotypes 

differ according to sex [12]. Theoretically, this variation affects 

the evolution of pathogenic bacteria [13]. The effects of age 

and sex on the prevalence and severity of AMR have not been 

thoroughly studied. Understanding the distribution of antibiotic 

susceptibility according to age and sex in specific populations 

could assist in the development of more effective treatment 

regimens.

AMR is  a prevalent issue in Jordan. There are 

still several  unexplored regions in the entire country. As 

no research has been done in Al-Salt (the center Western 

region) to date, the primary goal of this study is to determine 

the prevalence of antimicrobial resistance (AMR), the kind 

of bacteria that demonstrates profound resistance, and the 

common infection of a significant Jordanian population in Al-

Salt city. Second, our goal is to predict the AMR for various 

antibiotic categories by using two ML models, namely random 

forests (RFs) and categorization regression trees (CARTs), on 

microbiology reports. Our method is to assess the two models’ 

respective performances. Furthermore, we have examined 

the significance of patient age and sex as AMR risk factors. 

These variables function as surrogate markers of the selection 

pressure that antibiotics exert on the most common bacterial 

infections, which might result in a variety of diseases and 

epidemiological ramifications.

METHODS

Data collection and justification
In this study, we conducted a retrospective analysis 

of AMR data for the period (2020–2022) obtained from Al-

Hussein/Salt Hospital, the sole healthcare facility serving the 

Al-Salt region in Jordan. Hence, the statistics pertain to the total 

population of 180,090 individuals residing within the city, with 

51% being male and 49% being female. 

Antibiotic susceptibility data were obtained by 

cultivating the bacteria for identification in a clinical laboratory 

and testing them for commonly used antibiotics using the 

VITEK 2 system. This procedure can take up to 72 hours or 

more. This information is required to treat bacterial infections. 

The minimum inhibitory concentration of an antibiotic needed 

to halt growth or kill a pathogen in the laboratory is usually 

provided to doctors with cut-offs for medication susceptibility 

as resistant or susceptible. Data are currently allocated to the 

Jordanian electronic health record program (Hakeem) which 

manages and reports health data in Jordan. 

The data points obtained in this study (n = 2893) 

encompass positive bacterial culture results and antibiotic 

resistance profiles. These data points were collected in a 

manner that ensured the representation of all patients in a 

consecutive manner, without any specific group being targeted 

for sampling. The dataset comprised various attributes, 

including sex (categorized as female or male), age (measured 

in years), organism quantity (categorized in an ordered 

manner), diagnosis, Gram staining (classified as positive or 

negative), antimicrobial substances, date of sample collection, 

bacteria (identified by species), source of the clinical sample, 

and antibiotic susceptibility results (classified as sensitive or 

resistant). In the intermediate group, a total of 39 observations 

were recorded for the antibiotics utilized in the investigation. 

The hospital’s established guidelines consider these intermediate 

as susceptible. Nevertheless, the analysis employed resistant 

(positive) cases as a more prudent methodology. 

A total of 27 distinct sources were utilized to 

acquire the clinical samples in the original dataset. The 

aforementioned action resulted in a substantial proliferation of 

classes inside the analysis. The classes in question generated 

a larger number of cases and resulted in a greater degree of 
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data imbalance, as indicated by their sample size. To address 

the issue at hand, we have consolidated “similar sources” 

into a single class with the aim of minimizing the number of 

classes. As an illustration, the anatomical features of fingers, 

hands, and arms are categorized collectively as a single class, 

referred to as “arms.”

Prediction algorithms
Multiple experiments were conducted utilizing 

multi-label classification techniques to tackle the challenge of 

predicting AMR. The aim was to assess the susceptibility of an 

individual patient, who had acquired a specific bacterial strain, 

to the simultaneous administration of multiple antibiotics. 

Our decision has been made to implement a conservative 

approach. Initially, a resampling procedure was implemented 

on the original dataset to focus on investigating the frequently 

tested drugs. This was done while ensuring that no data points 

were missing, particularly those about patients’ reports with 

incomplete or unreported AMR results for the antibiotics 

under consideration. Following the procedure of resampling, 

the prediction algorithms applied on an array including 

489 observations provide a comprehensive analysis of the 

outcomes, disregarding any instances of missing data. By 

implementing this approach, we have effectively secured the 

reliability and accuracy of our predictions. Antibiotics that 

are under evaluation include trimethoprim/sulfamethoxazole 

(TMP/SMX), nitrofurantoin, fosfomycin, ciprofloxacin, 

gentamicin, amikacin, meropenem, and imipenem. 

Antibiotics were classified as target labels, also referred 

to as dependent variables, yet the remaining features in the 

dataset (as discussed in the previous section) were considered 

independent variables.

The dataset has been divided into two subsets, namely 

the training set and the testing set, with proportions of 80% 

and 20%, respectively. This approach allows for the training 

of models on a designated subset of the data, while evaluating 

their performance on separate and unseen samples.

To address our multi-label classification robustness, 

we have opted to employ two separate classifiers, namely RF 

[14] and decision trees (CARTs) [15]. This study focuses on the 

development of multi-output classifiers to effectively tackle the 

task of antibiotic labeling. The classification of each antibiotic 

label is approached as an independent binary problem. Both 

multi-output classifiers are trained using the available training 

data. The procedure involves gaining an understanding of 

specific models for each antibiotic label to predict either 

resistance (1) or susceptibility (0). Following this, the test data 

was employed to evaluate the efficacy of the trained models. 

RESULTS

Features of the patients and the isolated bacteria
There were 2,893 antimicrobial susceptibility tests 

reported. Table 1 describes the patient characteristics and 

microorganisms recovered and shows the data points from 

the various characteristics that were investigated. Of the 

cases reported, 2,091 (72.2%) were female. The patient’s 

ages ranged from less than one week to 102 years, with a 

median of 35 years (standard deviation: 31.2 years). The 

mean age in male and female groups is almost identical (mean 

age in males = 36.6 ± 25.4 and females = 36.3 ± 25.1). The 

calculated p-value for the observed difference between the 

two means was determined to be 0.94. This finding suggests 

a resemblance between the two cohorts. Figure 1a shows the 

AMR distribution according to patient age. Notably, patients 

with gram-negative infections caused by opportunistic 

pathogens, such as Enterococcus spp., A. baumannii, and 

Citrobacter freundii (often acquired in hospitals), had a higher 

mean age. Escherichia coli was the most prevalent bacterium 

found in clinical samples (n = 1,454, 50.3%), followed closely 

by Klebsiella pneumoniae (n = 362, 12.5%), S. aureus (n = 283, 

9.8%), and Streptococcus infections, including Streptococcus 
agalactiae, S. pneumoniae, and Streptococcus viridans, which 

together accounted for 6.0% of cases. S. agalactiae is the 

most common streptococcal species. Enterobacter species, 

including E. faecium, A. baumannii, and P. aeruginosa were 

frequently isolated pathogens and primary contributors to 

AMR. The infection rate of each bacterial species differed 

according to sex (Fig. 1b). 

Clinical diagnoses were heterogeneous. Urinary 

tract infections (UTIs) were present in 1,614 patients 

(50.8%), followed by gastro intestinal infections (17.9%) 

and respiratory infections (6.6%), including pneumonia, 

pharyngitis, and upper and lower respiratory infections. 

Sepsis and other bloodstream infections accounted for 7.8% 

of cases, while the “Other” categories included screening 

swabs of wounds, surgical site infections, otitis media, and 

otitis externa. Resistance to antibiotics was prevalent in 

Gram-negative bacteria (n = 2400, 83%). Antibiotics with 

high resistance rates are listed in Table 2. 

ML predictions of antibiotic resistance
The prediction testing outcomes for each drug derived 

using the CART and RF algorithms are displayed in Table 2. 

Based on the outcomes of the prediction testing, it is evident 

that the RF algorithm exhibited superior performance compared 

to the CART algorithm.

The study patients’ (n = 489) characteristics are 

shown in Table 3. The patients ranged in age from under a 

week to 106 years. A total of 260 patients had ages greater 

than the sample mean, which came out to be 35.99 years old. 

Seventy-seven percent (n = 381) of the individuals that were 

affected were female. UTI was the most frequently observed 

diagnosis among these individuals, accounting for 68.7% (n 

= 336) of the cases. The bacteria that have been tested are 

E. coli, K. pneumoniae, Proteus mirabilis, and other species 

of Enterobacter. Escherichia coli bacteria were detected in 

a total of 401 individuals, accounting for 82% of the patient 

group.

Figure 2 depicts the correlation between the AMR 

for antibiotics that underwent testing and the clinical data, 

encompassing diagnosis, bacterial species, quantity, and 

demographic data, notably sex and age. The type of bacteria 

and the patient’s age are significant variables in predicting an 

AMR. Sex has been found to be a notable determinant of AMR 

for ciprofloxacin, gentamicin, and carbapenem antibiotics. The 
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used model demonstrated a high level of efficacy in accurately 

forecasting the multidrug resistance (MDR) profile of the 

bacterial isolates that underwent testing, with a particular focus 

on E. coli and K. pneumoniae (Table 2).

Table 1. Summary statistics of the dataset.

Feature 

Age (years) Mean ± SD*
36.4 ± 25.2

Median ± MAD**
35 ± 31.2

Frequency (%)

Sex
Female

Male

Total

2091 (72.3)

802   (27.7)

2893 (100.0)

Bacteria Strain
E.coli
K. pneumoniae
S. aureus
Enterobacter species

Pseudomonas aeruginosa
S. agalactiae
Enterococcus
Acinetobacter baumanii
Proteus mirabilis and P.volgaris
Serratia marrescena
Morganella morganii
Candida
Shigella sonnei and Salmonella
Citrobacter freundii
Other   

Total

1453 (50.2)

360 (12.4)

282 (9.7)

127 (6.7)

129 (4.4)

157 (5.4)

128 (4.4)

69 (2.4)

71 (2.5)

21 (0.72)

19 (0.65)

16 (0.55)

  13 (0.44)

12 (0.41)

36  (1.2)

2893 (100.0)

Organism Quantity

<10,000

<50,000

<100,000

<1,000,000

No Records

Total

63 (1.1)

210 (7.5)

1281(33.7)

513 (21.2)

826 (36.5)

2893 (100.0)

Diagnosis

UTI

Gastro intestinal infections 

Sepsis

Respiratory

Screening swaps   

Total

1614  (55.8)

518    (17.9)

226    (7.8)

190    (6.6)

345    (11.9)

2893 (100.0)

Gram Stain

Positive

Negative

Total

493    (17)

2400  (83)

2893 (100.0)

Source of clinical samples

Arm

Blood

Ear

Leg

Urine

Sputum

Vagina

Pus and Wound

Stool

Total

29 (1)

226 (7.8)

100 (3.5)

65 (2.2)

1194 (41.3)

190 (6.6)

420 (14.5)

151 (5.2)

 518 (17.9)

2893 (100.0)

* SD: Standard Deviation

** MAD: Median Absolute Deviation

(a)

Figure 1. (a) Age distribution of study patients according to infecting bacterial 

species. (b) Distribution of bacterial species according to the patients’ sex (n 

= 2893).

(b)
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Table 2. The prediction results for each antibiotic are based on CART 

and RF algorithms.

Method Value Precision Recall f1-score Accuracy
  TMP/SMX

RF 0 0.59 0.57 0.58  

  1 0.68 0.70 0.69 0.64

 
weighted 

Avg.
0.64 0.64 0.64  

CART 0 0.55 0.57 0.56 0.61

  1 0.67 0.64 0.65  

 
weighted 

Avg.
0.61 0.61 0.61  

  Nitrofurantoin  

RF 0 0.92 0.93 0.92 0.87
  1 0.57 0.53 0.55  

 
weighted 

Avg.
0.86 0.87 0.87  

CART 0 0.9 0.93 0.91 0.85

  1 0.5 0.4 0.44  

 
weighted 

Avg.
0.83 0.85 0.84  

  Fosfomycin  

RF 0 0.92 1 0.96 0.92
  1 1 0.11 0.2  

 
weighted 

Avg.
0.93 0.92 0.89  

CART 0 0.91 0.93 0.92 0.86

  1 0.14 0.11 0.12  

 
weighted 

Avg.
0.84 0.86 0.85  

 
Ciprofloxacin

 
 

RF 0 0.55 0.52 0.53 0.79
  1 0.86 0.87 0.86  

 
weighted 

Avg.
0.78 0.79 0.78  

CART 0 0.41 0.48 0.44 0.71

  1 0.83 0.79 0.81  

 
weighted 

Avg.
0.73 0.71 0.72  

  Gentamicin  

RF 0 0.83 0.97 0.9 0.82
  1 0.5 0.11 0.18  

 
weighted 

Avg.
0.77 0.82 0.77  

CART 0 0.85 0.9 0.87 0.79

  1 0.38 0.28 0.32  

 
weighted 

Avg.
0.76 0.79 0.77  

  Amikacin  

RF 0 0.99 1 0.99 0.99
  1 0 0 0  

  weighted 

Avg.

0.98 0.99 0.98  

Method Value Precision Recall f1-score Accuracy
CART 0 0.99 0.98 0.98 0.97

  1 0 0 0  

 
weighted 

Avg.
0.98 0.97 0.97  

  Meropenem  

RF 0 1 1 1 1
  1 1 1 1  

 
weighted 

Avg.
1 1 1  

CART 0 1 0.99 0.99 0.99

  1 0.75 1 0.86  

 
weighted 

Avg.
0.99 0.99 0.99  

  Imipenem  

RF 0 1 0.99 0.99 0.99
  1 0.75 1 0.86  

 
weighted 

Avg.
0.99 0.99 0.99  

CART 0 0.99 0.99 0.99 0.98

  1 0.67 0.67 0.67  

  weighted 

Avg.

0.98 0.98 0.98  

(Continued)

Table 3. Summary statistics of the resampled dataset utilized in ML 

algorithms to predict AMR.

Feature Values n

Age (years) <mean(35.99)

Sex 1: Male 108

2: Female 381

Diagnosis

1: UTI 336

2: Respiratory infection 3

3: GE 68

4: GTI 6

5: Sepsis 19

6: Other 57

Bacteria

1: E.coli 401

2: K. pneumoniae 70

3: P. mirabilis 9

4: Enterobacter spp. 9

Organism quantity

1,000 1

10,000 12

50,000 48

100,000 299

500,000 1

1,000,000 128

TMP/SMX 0 213

1 270

(Continued)
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DISCUSSION 
The present study provides evidence that AMR is a 

prevalent issue in an important population in Jordan, hence 

highlighting it as a public health concern. The results enabled us 

to evaluate the usefulness of commonly given antibiotics for the 

treatment of infection as well as the occurrence of AMR bacteria 

among different age and sex groups. The aforementioned outcomes 

are of great significance in informing the public health initiative 

on the appropriate administration of antibiotic medication. 

Bacterial species were a major determinant of AMR 

patterns. Different antibiotic exposures and biological variables 

(such as the outer membrane of Gram-negative bacteria) may 

account for the variability in AMR frequencies of diverse 

bacterial species. The majority of Gram-negative bacteria that 

cause AMR infections, especially in female patients, are E. coli, 

followed by K. pneumoniae. In addition, women seemingly 

experienced infections at a younger age than men did, probably 

due to the frequent association between E. coli-K. pneumoniae 

and female genital infection [16]. The risk of UTIs significantly 

increases with age [17], which may explain why our analysis 

revealed age as a predictor of AMR development, particularly 

for antibiotics used to treat UTIs.

The majority of the identified bacteria were 

Enterobacteriaceae, which typically demonstrate intrinsic 

resistance to several classes of antibiotics, caused by 

the production of β-lactamases, and due to acquiring 

fluoroquinolone, carbapenems, and aminoglycoside 

antimicrobial-resistance genes [8]. These bacterial species are 

usually called “high-risk clones” owing to their multidrug-

resistant (MDR) characteristics. The misuse of antibiotics, 

including their use as preventive measures, may lead to a 

gradual increase in AMR rates in this category of bacteria [18].

Infections caused by S. aureus and Streptococcus, 

namely S. agalactiae, have been identified as significant 

contributors to AMR. These bacterial strains are particularly 

prevalent within the Enterococcus faecium, Staphylococcus 
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 
Pseudomonas aeruginosa, and Enterobacter species group 

reported in this study, which encompasses Enterobacter 

species, E. faecium, A. baumannii, and P. aeruginosa, making 

them the most often seen bacteria in this group. In addition, 

both pathogens are a major cause of nosocomial infections. 

The findings of our study are consistent with previous research 

conducted in Jordan, which has identified elevated rates of 

antibiotic resistance in Gram-positive bacterial infections, 

particularly MRSA and Coagulase-negative Staphylococci 
[7]. Factors that contribute to the escalation of these infections 

include advancing age, prolonged hospital stays, excessive or 

inappropriate administration of broad-spectrum antibiotics, 

and an increased prevalence of invasive medical devices and 

procedures [19].

The results of this study demonstrated that the 

prediction of AMR can be effectively achieved using medical 

records, even when the available patient data is restricted. 

Other studies lacked varied datasets that included patients of 

both sexes of different ages with different illnesses, bacterial 

species, and antibiotic treatments. These variables greatly 

hinder the development of predictive models. We developed 

a prediction system that produced accurate outcomes despite 

the heterogeneity of the data. However, a larger sample size 

would have provided greater statistical power for the prediction 

analysis. We choose to utilize two distinct classifiers: The 

RF and CART. This choice was primarily motivated by their 

demonstrated efficacy in classifying medical data, as evidenced 

by previous studies [20]. Because the dataset was imbalanced, 

we have resampled the data while focusing on the antibiotics, 

which are frequently tested and encompassing different classes. 

Figure 2. A heatmap representation as determined by RF illustrates clinical and 

demographic features associated with AMR to various classes of antibiotics. 

The dataset used in this analysis was obtained from Al-Hussein/Salt Hospital 

and comprised 489 observations. 

Feature Values n

Nitrofurantoin
0 412

1 77

Fosfomycin
0 455

1 34

Ciprofloxacin
0 138

1 315

Gentamicin
0 408

1 81

Amikacin
0 486

1 3

Meropenem
0 413

1 13

Imipenem
0 467

1 22

Cefepime 0 342

1 143
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In the resampled dataset, the key exploratory variable used 

to predict AMR in our models was E coli bacterial species. 

However, this allowed the prediction model to have better 

statistical power. 

As can be seen from the prediction results, the RF 

performed better than the CART. This is expected because RF 

is an ensemble method that combines multiple decision trees 

to improve predictive accuracy and reduce overfitting, and 

here we used the default 100 trees for the ensembles, while 

CART represents a single decision tree classifier. It is worth 

noting that some of the antibiotic classes, such as amikacin, 

meropenem, and imipenem, are extremely class-imbalanced. 

However, solving such a problem as recommended by [21,22] 

is out of the scope of this paper. In general, the results indicate a 

strong capability for ML methods to predict AMR for multiple 

antibiotics simultaneously.

Our study revealed accuracy values of 0.64–0.99 based 

on the application of the RF classifier, which is even higher than 

values reported in studies focused on single bacterial species, 

such as MRSA [23], vancomycin-resistant Enterococcus, 

fluoroquinolone-resistant Gram-negative bacteria [24], and 

carbapenem-resistant Enterobacteriaceae [25]. However, the 

results of previous studies involving heterogeneous data and 

several types of bacteria were comparable with our findings 

[26]. The applied model simultaneously evaluated MDR in 

relation to several drugs in the bacterial isolates that underwent 

testing. In comparison to conventional statistical calculation 

methods such as the MDR index proposed by Krumperman 

(1983) [27], our approach provides a comprehensive depiction 

of the MDR profile without the need for significant human 

intervention.

In the present study, the degree of resistance to TMP/

SMX is substantial. The prevalence of TMP/SMX resistance 

has been observed in medical isolates originating from Jordan 

[28]. Mainly, it has been observed that the prevalence of E. 
coli resistance to TMP/SMX in Jordan exceeds the stated rates 

observed internationally. Furthermore, our analysis revealed a 

significant association between sex and a heightened likelihood 

of resistance to TMP/SMX, which aligns with previous research 

findings [29].

The creation of carbapenem resistance is influenced by 

a range of characteristics, as indicated by the prediction analysis. 

These aspects encompass age, gender, and the utilization of diverse 

classes of antibiotics. The regions of the Arabian Peninsula and 

Jordan have been recognized as areas that possess a potential 

susceptibility to the genesis and dissemination of carbapenem 

resistance [30]. The high incidence of MDR strains, specifically 

in E. coli, imposes substantial limitations on the therapeutic 

options that are now accessible. The findings of this study are 

consistent with other studies, suggesting that Gram-negative 

bacteria that produce carbapenemase demonstrate resistance 

to a wide range of beta-lactam antibiotics, including cefepime 

[31]. Furthermore, it is common for these bacteria to possess 

genetic elements that provide resistance to fluoroquinolones 

and/or aminoglycosides, including amikacin [25]. Therefore, 

it is possible that well-established medications like fosfomycin 

could be considered as last-resort options, despite concerns over 

their effectiveness. The observed negative correlation between 

resistance to fosfomycin and the other antibiotics examined is of 

particular significance. However, the Jordanian Food and Drug 

Administration (JFDA) recommends the use of fosfomycin 

as part of an oral regimen for acute uncomplicated cystitis 

only. E. coli and K. pneumoniae had the highest prevalence of 

resistance in our dataset, supporting these recommendations. 

Numerous empirical trials have shown that fosfomycin exhibits 

favorable action against enteric gram-negative bacteria such 

as Enterobacter and K. pneumoniae [32]. However, the JFDA 

has not approved fosfomycin for the treatment of Klebsiella 

infections, adhering to European and US recommendations. The 

findings of this study align with previous research indicating a 

role for gender in carbapenems resistance [33].

The growing resistance exhibited by bacterial isolates 

towards gentamicin, cefepime, and ciprofloxacin in this cohort 

is a subject of apprehension due to its potential ramifications 

in restricting the array of available treatment choices like 

the treatment of infections caused by ESBL-producing 

bacteria. Moreover, these antibiotics have been identified as 

significant indicators of MDR profile in the utilized models. 

The prevalence of gentamicin resistance has been observed in 

medical isolates originating from Jordan [7]. The model predicts 

an increased likelihood of acquiring MDR to gentamicin, in 

conjunction with at least six other antibiotics. Gentamicin is 

commonly employed as a primary antibacterial agent in the 

treatment of UTIs. Ciprofloxacin is a commonly employed 

antibacterial drug that exhibits a wide range of action against 

many bacterial pathogens, making it a valuable therapeutic 

option for the treatment of numerous bacterial infections. 

However, ciprofloxacin among other fluoroquinolones has been 

documented as the most antibiotic commonly utilized for the 

treatment of UTIs without a prescription in Jordan [34]. The 

over utilization of antibiotics may result in an escalation of 

antibiotic resistance.

Patient age was a significant predictor of AMR in 

the model. Increased resistance to all antibiotics tested in our 

cohort may be anticipated with age, the importance of age may 

indicate that resistant microorganisms continue to affect those 

who are already vulnerable, such as older adults with various 

health issues, particularly those with poor physical and mental 

health who are vulnerable to AMR infections. However, the 

association between age and AMR remains poorly understood. 

Studies of the Jordanian population suggest that age plays 

a variable role in antibiotic use [35]. In addition, the AMR 

bacteria isolated in this study displayed notable variations 

with age. Some researchers have attributed this pattern to the 

mode of action of antibiotics [36]. Understanding the antibiotic 

susceptibility patterns according to age in a region or country 

can contribute to higher cure rates. 

In this cohort, the sex variable significantly predicted 

resistance to TMP/SMX, ciprofloxacin, and carbapenems. The 

issue of sexual dimorphism in AMR has received little attention, and 

previous studies have not adequately demonstrated the direct effects 

of sex on antibiotic resistance in infectious settings. To explain this 

pattern, we first considered antibiotics for treating infections in 

men. We hypothesized that the extensive use of ciprofloxacin for 

the treatment of UTIs and chronic bacterial prostatitis in men would 

result in a greater rate of male resistance, which requires attention. 
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statistical power of the models as much as possible. These 

results provide a foundation for further research on the roles of 

age and sex in bacterial resistance. In general, the findings of 

our study indicate that antibiotic resistance poses a considerable 

challenge in the context of Jordan, with a particular emphasis 

on Gram-negative bacterial infections. Furthermore, our results 

imply that the success rate of specific medicines in treating 

infections may vary depending on the patient’s sex or age. This 

study emphasizes the significance of surveillance of antibiotic 

resistance patterns and the formulation of novel approaches 

to address the rise and dissemination of antibiotic-resistant 

microorganisms.
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UTIs were the main cause of infection in our study. According 

to previous studies, men with UTIs are more likely to develop 

ciprofloxacin resistance [37]. P. aeruginosa and S. aureus were 

the two ciprofloxacin-resistant bacteria found in this cohort. These 

species were responsible for most of the disparities in the frequency 

of AMR UTIs in males and females [16] because in older men, 

AMR- UTIs are associated with urinary tract catheters, resulting 

in more complicated UTIs [17,38]. Therefore, the prevalence of 

specific causative agents, choice of antibiotics, and AMR rates in 

pathogens that frequently cause UTIs among Jordanians require 

further research. Several triggers in women’s and men’s health 

should be considered because they might otherwise help increase 

the rates of bacterial resistance. Psychological and physiological 

factors are involved in this process. The strong evidence of sex bias 

in infectious disease severity is primarily caused by differences in 

immune responses according to sex, associated with several male-

predominant infections [39]. Men possess immunological traits 

such as sex chromosomal complements, immune cell receptors, 

and sex steroids that make them more prone to severe infections 

[12]. From a social perspective, lifestyle habits such as smoking 

and drinking, which are more prevalent in men than in women, 

make men more susceptible to severe bacterial illnesses that are 

generally caused by higher AMR strains. According to the WHO, 

men in developing countries are less likely than women to use the 

healthcare system [40]. Traditionally, men must exhibit traits such 

as power and strength and conceal their illnesses to avoid being 

stigmatized by weakness. Therefore, men are more likely to self-

medicate and disregard treatment guidelines than women are.

To the best of our knowledge, this is the first study to 

assess sex and age as a predictor of AMR in Jordan. However, 

most patients were female. Therefore, the differences in 

infectious complications between male and female patients 

must be considered under the same conditions, such as UTI. 

One significant drawback of this comparison is the lack of 

comprehensive surveillance to track the infection dynamics 

in Jordan. Most studies have focused only on a few types of 

infections. The absence of several diseases, bacterial species, 

and antibiotic types in most investigations in the field supports 

the validity of our model. These results highlight the need 

for surveillance to reverse the increased risk of AMR in male 

patients.

One limitation of our study was its observational nature, 

which prevented further causal inferences. The limited number 

of covariates in the model might have confounded the results. 

However, the adjusted models provided consistent results with 

good predictive ability. Including additional covariates such 

as illness type, site of infection, bacterial species, age, and sex 

can enhance our understanding of the pathways of bacterial 

resistance and potential interactions.

CONCLUSION
We attempted to answer the question of AMR by using 

two distinct ML classifiers: RF and CART with observational 

data. The advantage of our approach is that it employs cross-

validation using an ML method to confirm our predictive 

models. Moreover, we implemented a reverse association using 

antibiotics as the dependent variable to overcome the challenge 

of data imbalance when resampling the data, to maintain the 
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