INTRODUCTION

Tuberous sclerosis complex (TSC), also known as Bourneville disease, is a rare multi-system hereditary illness characterized by the presence of hamartomas in the brain, kidney, heart, liver, skin, heart, and lung at various stages of life [1]. Renal angiomyolipoma is the most prevalent manifestation (80%) associated with TSC after neurological (90%) and cutaneous (90%). It increases the risk of severe life-threatening hemorrhage and impairs the renal parenchyma, leading to chronic kidney disease (CKD) and, eventually, end-stage renal disease in TSC patients [2].

Even in asymptomatic cases, TSC-associated renal angiomyolipomas larger than 3 cm warrant intervention, leading to the widespread use of mammalian target of rapamycin (mTOR) inhibitors [3–5] to safeguard renal function and mitigate the dangers of rupture and growth [6]. Among these inhibitors, everolimus, a
drug licensed by the US Food and Drug Administration for the treatment of TSC-associated renal angiomyolipoma that does not require immediate surgery, plays a pivotal role. Notably, everolimus exerts a cytostatic effect on renal angiomyolipoma cell growth, preventing its progression [7].

Nevertheless, the administration of everolimus is not without consequences, as it is associated with several side effects, encompassing pneumonia, nasopharyngitis, sinusitis, amenorrhea, stomatitis, upper respiratory tract infections, acne, and laboratory abnormalities such as hypercholesterolemia, hypertriglyceridemia and neutropenia [8,9]. Chronic use of everolimus further elevates the risk of gonadal dysfunction, immunosuppression-related complications, and interstitial lung disease [10–12].

Given the substantial side effects associated with everolimus, there is a growing impetus to explore alternative mTOR inhibitors derived from natural sources. Notably, asiaticoside and asiatic acid, compounds sourced from Centella asiatica, have recently emerged as promising candidates in the TSC disease model [13], showing potential as mTOR inhibitors. In the pursuit of novel therapeutic strategies, this study sought to investigate the differentially expressed genes (DEGs) in the UMB1949 cell line following exposure to everolimus, asiaticoside, and asiatic acid. Through a rigorous analysis of the significantly upregulated and downregulated DEGs, we aimed to elucidate their biological functions and systematically characterize their role, employing gene ontology (GO) term and Kyoto encyclopedia of genes and genomes (KEGGs) pathway enrichment analyses. This research endeavor to strengthen the knowledge base and offer potential alternatives for mTOR inhibition in the context of TSC-associated renal angiomyolipoma.

MATERIALS AND METHODS

Sample collection

A 12-well plate (Eppendorf, Germany) was each filled with 1 mL of cell suspension containing 8.0 × 10^5 UMB1949 cell line (ATCC® CRL-4004™; Manassas, VA, USA) and incubated overnight. On the following day, the cells were washed three times with 1 mL of phosphate buffer saline before 1 mL of fresh medium containing dimethyl sulfoxide was added to each well and incubated overnight. The same procedures were performed with 100 µL of each of the following concentrations: 29.5 µM of everolimus, 300 µM of asiaticoside, and 60 µM of asiatic acid added into each well, respectively. The concentration of each compound was based on the IC$_{50}$ identified in our previous study [13]. All the procedures were repeated three times on different days before RNA extraction.

Total RNA extraction and cDNA synthesis

Total RNA was extracted from untreated (control) and treated (everolimus, asiaticoside, and asiatic acid) groups by using the RNeasy Mini Kit (Qiagen, Germany). According to the manufacturer’s instructions, the RNeasy-free DNase kit (Qiagen, Germany) was applied to remove any sign of genomic DNA contamination from the total RNA of the UMB1949 cell line. The integrity of the ribonucleic acid (RNA) samples was evaluated by 1.0% (w/v) agarose gel electrophoresis, and the A260/230 and A260/280 nm absorption ratios were determined using the Infinite 200 NanoQuant machine (TECAN, Magellan, Austria, GmBh) supplemented with I-control™ software to estimate RNA purity and concentration. The concentration range of extracted total RNA used in this study was 44.85 to 310.3 ng/µl. The intact and good quality of the RNA was identified by the presence of sharp 28S and 18S ribosomal RNA bands without a smearing effect (Fig. 1). The intensity of the 28S rRNA band is approximately two times that of the 18S rRNA band (2:1 ratio).

The total RNA was converted to complementary deoxyribonucleic acid (cDNA) by using the RT² First Strand Kit (Qiagen, Germany), following the manufacturer’s procedure. The reaction conditions were as follows: an initial denaturation step of genomic DNA elimination for 5 minutes at 42˚C, followed by placing immediately on the ice for at least 1 minute, followed by a reverse transcription procedure for 15 minutes at 42˚C and 95˚C for 5 minutes.

RT² profiler PCR array

The qPCR was implemented using the Stratagene Mx3000P qPCR System (Agilent Technologies, USA) with RT² SYBR® Green ROX™ qPCR Mastermix (Qiagen, Germany), following the manufacturer’s procedure. The profiling of the mTOR pathway was performed using the RT² Profiler PCR array panel (RT² Profiler™ PCR Array Human mTOR Signalling, Qiagen, Germany, Cod. PAHS-098Z), which consists of 84 pathway-focused genes, 5 RGs, one genomic DNA control, three replicates of reverse transcription controls, and three replicates of positive PCR controls. The thermal profile setup was divided into three segments. Segment 1 (initial heat activation) was run for 1 cycle for 10 minutes at 95˚C, followed by segment 2, which ran for 40 cycles for 15 seconds at 95˚C for denaturation and 60 seconds at 60˚C for annealing. Finally, segment 3 (default melt curve) was run for 1 cycle of 60 seconds at 95˚C, 30 seconds at 55˚C, and 30 seconds at 95˚C. A melting curve analysis was carried out to assess primer specificity. The presence of a single peak in RT-qPCR melting curve products confirmed the specificity of the amplification product for each primer pair (Supplementary Materials Fig. S1). Each sample was run in triplicate, and the data are expressed as mean ± SD.

RT² profiler PCR array to determine the reference genes (RGs)

Three biological replicates of each treated (everolimus, asiaticoside, and asiatic acid) and control group was used in

![Figure 1](image-url)
this study. The results of mTOR profiling for each of the five proposed RGs are shown in Table S1 (Supplementary Materials). The mRNA level was quantified using RT-qPCR to determine the stability of gene expression. We calculated the cycle threshold (Ct) value for each gene, which represents the cycle at which the PCR product increases significantly. It was determined that three of the five proposed RGs in the RT² Profiler PCR array panel (PAHS-098Z) met the selection criteria for RGs, beta-actin (ACTB), beta-2-microglobulin (B2M) and ribosomal protein large P0 (RPLP0) which were then selected as RGs for normalization purposes (Supplementary Material Table S2). The ΔΔCt method’s normalization was calculated using the average geometric mean value from Table S2.

RT² profiler PCR array to determine the DEGs

The mTOR profiling was used to identify DEGs among 84 mTOR pathway-associated genes by examining their relative changes in mRNA expression levels following everolimus, asiaticoside, and asiatic acid treatment compared to the control group. The expression profiles of the 84 genes were analyzed using the ΔΔCt method, in which each gene was first normalized using ACTB, B2M, and RPLP0. The relative mRNA expression of the genes was expressed in terms of log₂ fold change. All samples passed three data quality control tests, including PCR array reproducibility, reverse transcription efficiency, and genomic DNA contamination. The ΔΔCt method was used to determine the mRNA relative expression level of each gene in each treated and control group. The cut-off values for the selected DEGs were set to a fold change of >1 for upregulated genes and a fold change of 1 or less for downregulated genes, respectively, and a p-value < 0.05 was considered to indicate a statistically significant difference.

Bioinformatics analysis

The DEGs of each treated group were uploaded to the database for annotation, visualization, and integrated discovery (DAVID) (version 6.8) for functional and pathway enrichment analysis [14]. The official gene symbol was used as the identifier. The reference set “Homo sapiens” was used to calculate the p-value (Fisher’s exact test). The DEGs were mapped to data from the GO terms and the KEGG databases [15]. Only GO terms or pathways enriched with more than two DEGs, an EASE score of greater than 0.1, and a p-value < 0.05 were considered significant [16–19].

Validation of RGs and DEGs by RT-qPCR

The validation of RGs and DEGs was performed using the Stratagene Mx3000P qPCR System (Agilent Technologies, USA) with RT² SYBR® Green ROX™ qPCR Mastermix (Qiagen, Germany) and RT² qPCR Primer Assays (Qiagen, Germany), following manufacturer’s procedures. The thermal profile setup used in this stage was analogous to that used in profiling the mTOR pathway. In addition, in this step, no-template control for each primer pair was used to detect the presence of possible reagent contamination and unintended amplification products, such as primer dimers, and to rule out the possibility of genomic DNA contamination. Each sample was run in triplicate, and the data are reported as mean ± SD.

Statistical analysis

Statistical analyses were performed on the mTOR profiling and gene expression validation using the GeneGlobe Data Analysis Center software (Qiagen, Germany) based on the comparative Ct (ΔΔCt) method. The data were presented as mean ± SD. The p-values were calculated based on the Student’s t-test of the replicated 2⁻ΔΔCt values for each gene in the control and treated groups. The value of p < 0.05 was considered statistically significant.

RESULTS

Identification of DEGs

In this study, we analyzed the mRNA expression levels of DEGs in UMB1949 cells treated with everolimus, asiaticoside, and asiatic acid. Figure 2 presents a heat map diagram that displays the relative mRNA expression levels of the DEGs. We identified 22 DEGs (20 upregulated and two downregulated), 25 DEGs (23 upregulated and two downregulated), and nine DEGs

Figure 2. The heat map diagram illustrates the relative mRNA expression levels of DEGs following (A) everolimus, (B) asiaticoside, and (C) asiatic acid treatment according to the RT² profiler PCR array format of the mTOR pathway. The brown color showed a higher expression value, and the blue color showed a lower expression value.
(seven upregulated and two downregulated) out of 84 genes that showed significant differences in gene expression for everolimus, asiaticoside, and asiatic acid groups, respectively, when compared to control levels. Figure 3 shows the mRNA expression levels of selected genes that met the cut-off criteria. These results suggest that all treated groups had a significant effect on gene expression, which could have implications for the mTOR signaling pathway and TSC-associated renal angiomyolipoma.

GO terms and KEGG pathway enrichment analysis

To further analyze and systematically characterize the significant DEGs identified in this study using DAVID, we performed functional annotation and pathway enrichment analyses using GO terms and the KEGGs. The DEGs were categorized into biological processes (BPs), molecular functions (MFs), and cellular components (CCs) based on GO classification. These analyses provide additional insights into the potential roles and functions of the DEGs in the mTOR signaling pathway and TSC-associated renal angiomyolipoma.

Using Venn diagram analysis, 16 DEGs (15 upregulated: PRKCE, RRAGC, RPS6KA5, CAB39, DDIT4L, RRAGD, CAB39L, PRKAB1, ULK2, PIK3CB, PRKAA2, RRAGB, PRKAB2, PDPK1, and TSC1, and one downregulated: DEPTOR) in the intersection of the two datasets (Fig. 3). The DEGs of everolimus and asiaticoside shared 15 similar GO terms and KEGG pathways, including macroautophagy, protein phosphorylation, cell cycle arrest, protein binding, ATP-binding, AMP-activated protein kinase activity, protein serine/threonine kinase activity, cytoplasm, EGO complex, cytosol, FoxO signaling pathway, insulin signaling pathway, AMPK signaling pathway, mTOR pathway signaling, and PI3K-
and asiatic acid shared eight similar GO terms and KEGG pathways, which include protein phosphorylation, intracellular signal transduction, protein binding, protein serine/threonine kinase activity, cytoplasm, cytosol, mTOR signaling pathway, and PI3K-Akt signaling pathway (Table 1).

In Figure 5, a Venn diagram illustrates the overlap of five DEGs (four upregulated: CAB39, PRKCE, RRAGC, and

Table 1. Summary of functional analyses and KEGG pathway of DEGs treated everolimus, asiaticoside, and asiatic acid.

<table>
<thead>
<tr>
<th>GO Terms</th>
<th>Everolimus</th>
<th>Asiaticoside</th>
<th>Asiatic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological process</td>
<td>Intracellular signal transduction</td>
<td>Negative regulator of mTOR signaling</td>
<td>Apoptotic process</td>
</tr>
<tr>
<td></td>
<td>Platelet activation</td>
<td>Signal transduction</td>
<td>Protein phosphorylation</td>
</tr>
<tr>
<td></td>
<td>Macroautophagy</td>
<td>Protein phosphorylation</td>
<td>Intracellular signal transduction</td>
</tr>
<tr>
<td></td>
<td>Protein phosphorylation</td>
<td>Macroautophagy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cell cycle arrest</td>
<td>Cell cycle arrest</td>
<td></td>
</tr>
<tr>
<td>Molecular function</td>
<td>Protein serine/threonine kinase activity</td>
<td>Protein serine/threonine kinase activity</td>
<td>Protein serine/threonine kinase activity</td>
</tr>
<tr>
<td></td>
<td>Protein binding</td>
<td>AMP-activated protein kinase activity</td>
<td>Protein binding</td>
</tr>
<tr>
<td></td>
<td>AMP-activated protein kinase activity</td>
<td>ATP binding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATP binding</td>
<td>Protein binding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTPase activity</td>
<td>GTP binding</td>
<td></td>
</tr>
<tr>
<td>Cell component</td>
<td>Cytosol</td>
<td>Cytosol</td>
<td>Cytoplasm</td>
</tr>
<tr>
<td></td>
<td>Gtr1-Gtr2 GTPase complex</td>
<td>EGO complex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGO complex</td>
<td>Cytoplasm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phosphatidylinositol 3-kinase complex</td>
<td>Intracellular</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cytoplasm</td>
<td>Nucleoplasm</td>
<td></td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>mTOR signaling pathway</td>
<td>mTOR signaling pathway</td>
<td>mTOR signaling pathway</td>
</tr>
<tr>
<td></td>
<td>AMPK signaling pathway</td>
<td>AMPK signaling pathway</td>
<td>MicroRNAs in cancer</td>
</tr>
<tr>
<td></td>
<td>Insulin signaling pathway</td>
<td>FoxO signaling pathway</td>
<td>PI3K-Akt signaling pathway</td>
</tr>
<tr>
<td></td>
<td>FoxO signaling pathway</td>
<td>Insulin signaling pathway</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P13K-Akt signaling pathway</td>
<td>P13K-Akt signaling pathway</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Ct values for three RGs were obtained from validation experiments in both the treated and control groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>ACTB</th>
<th>B2M</th>
<th>RPLP0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>14.51</td>
<td>18.86</td>
<td>16.76</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>15.08 ± 0.5132</td>
<td>17.90 ± 0.8521</td>
<td>16.43 ± 0.3108</td>
</tr>
<tr>
<td>Everolimus</td>
<td>17.24</td>
<td>19.86</td>
<td>17.05</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>17.52 ± 0.2387</td>
<td>19.65 ± 0.2133</td>
<td>17.01 ± 0.1021</td>
</tr>
<tr>
<td>Asiaticoside</td>
<td>16.73</td>
<td>18.56</td>
<td>17.84</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>15.94 ± 0.9053</td>
<td>18.21 ± 0.3986</td>
<td>17.24 ± 0.5228</td>
</tr>
<tr>
<td>Asiatic acid</td>
<td>16.43</td>
<td>18.45</td>
<td>17.85</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>15.81 ± 0.6183</td>
<td>18.35 ± 0.1335</td>
<td>17.15 ± 0.6034</td>
</tr>
</tbody>
</table>

Akt signaling pathway, according to functional and pathway enrichment analysis of DEGs (Table 1).

Compared to asiaticoside, seven DEGs (five upregulated: PRKCE, RRAGC, RPS6KA5, CAB39, and VEGFA, and two downregulated: DEPTOR and IGFBP3) following asiatic acid treatment as shown by the intersection of the two datasets in the Venn diagram (Fig. 4). The DEGs of everolimus and asiatic acid shared eight similar GO terms and KEGG pathways, which include protein phosphorylation, intracellular signal transduction, protein binding, protein serine/threonine kinase activity, cytoplasm, cytosol, mTOR signaling pathway, and PI3K-Akt signaling pathway (Table 1).
In (A) everolimus, (B) asiaticoside, and (C) asiatic acid group, seven common DEGs out of 84 genes showed upregulation of relative mRNA expression levels while DEPTOR and IGFBP3 showed downregulation of relative mRNA expression levels. The experiments were repeated three times. The error bars represent the standard deviation.

RPS6KA5, and one downregulated: DEPTOR) in the three datasets, which were validated by RT-qPCR. Further analysis using GO terms and KEGG pathways revealed that everolimus, asiaticoside, and asiatic acid shared seven similar pathways, including protein phosphorylation, protein binding, protein serine/threonine kinase activity, cytoplasm, cytosol, mTOR signaling pathway, and PI3K-Akt signaling pathway (Table 1). Based on these results, it can be hypothesized that both asiaticoside and asiatic acid have functions similar to everolimus, with asiaticoside being more closely related to everolimus than asiatic acid.

Our findings indicate that asiaticoside shares a mechanism of action toward the mTOR pathway that is 60.7% similar to everolimus, as evidenced by 16 common DEGs out of 84 genes. Both asiaticoside and everolimus upregulated 15 genes out of the 28 upregulated genes, and only one gene was downregulated by both substances out of the two that were downregulated. In addition, everolimus and asiatic acid have a mechanism of action toward the mTOR pathway that is 63.1% similar, as indicated by seven common DEGs out of 84 genes.

These two substances upregulated five of the ten upregulated genes and two of the two downregulated genes.

Validation of RGs and DEGs by RT-qPCR

The validation of gene expression for chosen RGs and DEGs confirmed the consistency of their relative mRNA expression levels observed in the mTOR profiling. Table 2 presents the Ct values obtained from the validation experiments of ACTB, B2M, and RPLP0 for every control and treated group. Figure 6 depicts that the relative mRNA expression levels of all DEGs were consistent with the mTOR profiling findings.

DISCUSSION

In the present study, we identified significant DEGs between treated and untreated samples and conducted a series of bioinformatics analyses to screen key genes and pathways closely related to everolimus. By analysis of significant DEGs on mTOR profiling data, we identified five DEGs with a fold change of more than one for upregulated genes and a fold change of one or less for downregulated genes, respectively, including four upregulated DEGs and one down-regulated DEGs across all treated groups. These five shared significant DEGs show that these genes are engaged in a range of TSC-mTOR pathway-related biological processes.

CAB39, PRKCE, RRAGC, and RPS6KA5 were all highly elevated in all treated groups, according to bioinformatics analysis of DEGs, which included GO terms and KEGG pathway enrichment analysis. Across the treated groups, only DEPTOR was shown to be significantly downregulated. Furthermore, the validation analysis confirmed that the pattern of relative mRNA expression levels for all DEGs across groups was similar to the mTOR profiling procedure’s results of relative mRNA expression levels.

CAB39 encodes calcium-binding protein 39, a scaffold protein for LKB1 (liver kinase B1) and a master regulator factor upstream of the AMPK/mTOR pathway. CAB39 is part of the heterotrimeric LKB1-STRADα-CAB39 complex. It helps STRADα stay attached to LKB1 and moves the complex from the nucleus to the cytoplasm as well. Most importantly, this trimeric complex blocked mTOR signaling by phosphorylating AMPK and the trimeric complex of TSC1-TSC2-TBC1D7. As a result, mTOR was unable to promote protein synthesis pathways via S6 kinase (S6K) and translation initiation factor 4E binding protein one activation (4EBP1). This led to a block of the mTOR oncogenic signaling, which mostly relied on S6K and active protein synthesis.

Protein kinase C epsilon type (PKCe) is encoded by PRKCE. It is overexpressed in a variety of cancer types, including non-small cell lung cancer cell lines (NSCLC), a prostate cancer animal model, renal carcinoma cells, and bladder cancer. In addition, PKCe is associated with several processes involved in cancer formation, including cell survival, proliferation, transformation, cytoskeletal reorganization, epithelial to mesenchymal transition (EMT), extracellular matrix (ECM) rearrangement, cell motility, stem cell properties, and treatment resistance. According to this study, everolimus, asiaticoside, and asiatic acid treatments of the UMB1949 cell line resulted in the overexpression of PRKCE and PKCe.
Regrettably, no study has demonstrated how overexpression of PRKCE inhibits mTOR. In 2006, Liu and colleagues published the first study demonstrating that overexpression of PKCε acts as a negative regulator of Akt activation stimulated by granulocyte colony-stimulating factor (G-CSF) and that PKCε has a detrimental effect on cell proliferation and survival in response to G-CSF. However, the mechanism by which PKC inhibits Akt activation is unknown [30].

RRAGC encodes ras-related GTP binding C protein (RagC). RagC is a member of the Rag guanosine triphosphatases (GTPases) in addition to RagA, RagB, and RagD. Rag GTpases act as a mediator of amino acid-induced mTORC1 activation in the mTORC1 pathway [31]. Despite its four possible nucleotide-binding states, the Rag heterodimer is active for mTORC1 binding only when RagA or RagB is GTP-bound and RagC or RagD is GDP-bound [32]. This functional Rag heterodimer recruits mTORC1 to the lysosome, which contains Rheb. TSC complexes interact with Rag heterodimers and translocate to the lysosome, where they inhibit Rheb activity, thereby inhibiting mTORC3 [33].

RPS6KA5 encodes ribosomal protein S6K polypeptide 5 (RPS6KA5). RPS6KA5 is required for the integration of multiple extracellular signals necessary for the regulation of cell growth and death in response to cellular stress stimuli and growth factors [34–37]. RPS6KA5 has also been linked to cell proliferation and neoplasia in breast cancer, nasopharyngeal carcinoma, and skin cancer [34,36,37]. However, the role of RPS6KA5 in inhibiting the PI3K/mTOR pathway remains unknown and requires further investigation [38].

DEPTOR encodes DEP-domain containing mTOR-interacting protein (DEPTOR). The protein is a member of the mTORC1 and mTORC2 complexes as well as a naturally occurring mTOR inhibitor [39]. It binds to mTORC1 and mTORC2 via the PDZ domain, and several studies have shown that mTOR-DEPTOR interaction results in potent inhibition of both mTOR complexes’ activity. As a result, abnormal DEPTOR expression has been found in a variety of cancers, and an intriguing study discovered that DEPTOR is involved in human cancer cell proliferation, apoptosis, autophagy, and drug resistance [40]. DEPTOR’s biological role in tumorigenesis is still unknown because it can act as an oncogene or oncosuppressor depending on the type of tumor cell and the surrounding environment [41]. The DEPTOR was found to be overexpressed in the control group in this study, implying that the DEPTOR has oncogenic properties in the UMB1949 cell line. This finding was consistent with DEPTOR expression in multiple myeloma, chronic myeloid leukemia, liver cancer, and osteosarcoma [42–46]. Surprisingly, the results of this study also revealed that DEPTOR expression was downregulated following mTOR inhibitor treatment (everolimus, asiaticoside, and asiatic acid). As revealed by [47], the depletion of DEPTOR mRNA expression in cervical squamous cell carcinoma has contributed to the apoptotic decision, and we hypothesized that downregulation of DEPTOR expression in the UMB1949 cell line might contribute to the inhibition of TSC cell line growth via apoptosis. However, the role of DEPTOR in tumorigenesis and the progression of TSC is still unclear.

The study has several limitations: (i) it primarily relies on the UMB1949 cell line as a model, and its findings may not generalize to other cell lines or in vivo conditions; (ii) the functional roles and interactions of the identified DEGs remain incomplete, requiring further investigation; (iii) the study focuses on a limited set of DEGs, overlooking potential contributions from a broader genetic landscape in TSC-associated renal angiomyolipoma; (iv) the roles of PRKCE and RPS6KA5 in mTOR pathways are not fully elucidated, and the dual role of DEPTOR in tumorigenesis is poorly understood; (v) the clinical applicability and safety of asiaticoside and asiatic acid as mTOR inhibitors need validation through clinical studies; and (vi) long-term effects and potential side effects of the treatments are not addressed, necessitating further research to ensure the safety and efficacy of mTOR inhibitors in a clinical context.

CONCLUSION

Our study has identified CAB39, PRKCE, RRAGC, RPS6KA5, and DEPTOR as significant DEGs with roles in mTOR pathway-mediated cell inhibition and highlighted the mTOR inhibitory potential of asiaticoside and asiatic acid in the context of TSC-associated renal angiomyolipoma. These findings provide a crucial foundation for future research, with a promising outlook. The next steps should involve in-depth investigations into the precise functions and interactions of these DEGs, shedding more light on their contributions to TSC pathophysiology and mTOR inhibition. In addition, the exploration of RGs for RT-qPCR normalization enhances research methodology. Clinical trials and translational studies are needed to validate the efficacy and safety of asiaticoside and asiatic acid, potentially expanding treatment options for TSC patients. Furthermore, long-term and side-effect assessments are vital, considering patient quality of life. This holistic approach aims to advance the field and improve the care of those with TSC in the future.

AUTHOR CONTRIBUTIONS

N.N.Z. contributed to laboratory experiments; N.N.Z., R.Z., T.H.S., and N.A.A contributed to preparing the manuscript; R.Z., I.L., T.H.S., and H.A.W. supervised the laboratory work and reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

FINANCIAL SUPPORT

This research is funded by the Universiti Sains Malaysia Research University Grant (Grant Numbers 1001/PPSP/812137).

CONFLICTS OF INTEREST

The authors report no financial or any other conflicts of interest in this work.

ETHICAL APPROVALS

This study does not involve experiments on animals or human subjects.

DATA AVAILABILITY

All the data is available with the authors and shall be provided upon request.
PUBLISHER'S NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

APPENDIX A. SUPPLEMENTARY DATA

Table S1: The Ct values of each proposed RGs for specific groups, Table S2: The average value of geometric mean for each group based on the Ct values of three RGs and Figure S1: The melting curves of RGs and DEGs, respectively, and their specific melting temperatures.

REFERENCES

SUPPLEMENTARY MATERIAL

Supplementary data can be downloaded from the link [https://japsonline.com/admin/php/uploadss/4229_pdf.pdf]