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INTRODUCTION 

Drug development studies consist of processes, 
that take a long time, and cost, furthermore, are not always 
successful in vivo trials [1,2]. The process of drug development 
timeline takes about 7–15 years for drug molecules to pass 
through various stages and become usable as drugs [3–5]. 
Moreover, drug development processes are complex stages that 
can be achieved as a result of cooperative studies in sciences 
such as chemistry, biology, and pharmacology [6]. To solve the 
problems that may be encountered, mathematical models have 
been developed that include in vivo and in vitro approaches and 
can evaluate physiological and pharmacological information 
together [7]. By using the developed in silico models, it is 
possible to reduce the time of drug development studies and 
costs [8–12]. 

In the pharmacy field, in silico tools have emerged 
as vital resources. One of the primary benefits of employing 

in silico approaches is their ability to predict drug properties 
according to the molecular structure [13]. In addition, they can 
predict absorption, distribution, metabolism, and excretion 
(ADME) properties [13,14], thereby reducing the need for 
extensive in vivo studies and leading to significant time and 
cost savings, ultimately accelerating drug production [15,16] 
by identifying and predicting the impact of drugs on biological 
systems, clinical use can be improved, side effects can be 
avoided, and treatments can be better selected and developed 
[17]. Several official authorities have recommended and even 
provided in silico tools for assessing chemicals in terms of 
hazard identification, risk assessment, and human health safety 
evaluation. Workflows have been established to guide the 
application of these in silico tools for chemicals risk assessment 
and computational toxicology [10].

When it comes to disadvantages, accurately predicting 
oral absorption and bioavailability using in silico methods 
can still pose challenges [18,19]. Some in silico software lack 
transparency in disclosing the underlying algorithms used for 
predictions. Despite recent advancements, there is still a gap in 
correlating in vivo, in vitro, and in silico ADME parameters [14]. 

In silico methods are applications based on calculating 
the properties of drugs (such as solubility and partition 
coefficients) and other chemical substances and their effects 
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ABSTRACT
This mini-review theoretically illustrates the in silico methods used in the pharmacy field to enhance drug discovery 
and development and reduce preclinical studies. It is shown that in silico methods are computational-based approaches 
that study the structure, properties, and activities of molecules using computer simulations and mathematical 
algorithms. These results highlight the importance of obtaining data that can affect the prediction of in vivo results. 
Artificial intelligence and machine learning development enhance in silico methods such as quantitative structure-
activity relationship, molecular placement, and physiological-based pharmacokinetics, which are usually used. This 
approach not only saves time and costs but also offers ease of application. Studies conducted to evaluate the use of 
in silico methods in areas such as pharmacology, toxicology, and pharmaceuticals are provided as examples. It was 
concluded that over time, in silico methods usage and development increased due to their ability to predict the in vivo 
performance of the drug.
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DATA SECURITY AND VALIDATION IN IN SILICO 
APPROACHES

External validation data sets and the diversity of the 
size and structure of the training data sets partially impact 
the estimated performance of in silico models [32,33]. In 
silico models and simulations are based on data obtained as a 
result of in vitro and in vivo experimental studies. Compliance 
and accuracy of these studies with scientific methodology 
are significant for the reliability of in silico methods [15]. 
According to the European Chemicals Agency (ECHA), 
the necessary steps for the reliability and acceptance of the 
data to be obtained by in silico methods should be carried 
out systematically and regularly. The procedures have been 
classified for in silico methods according to the Regulation 
of Registration, Evaluation, Authorization, and Restriction of 
Chemical Substances [34]. Details of this classification process 
are shown in Table 1.Applicability is an important factor in 
the validation of in silico methods. In other words, accurate 
predictions about physicochemical and structural properties 
and activity should be made by using a model or simulation. 
While determining this, an accuracy level is determined for the 
in silico method beforehand and when the method is applied 
to a chemical substance, it is analyzed mathematically and 
statistically whether it gives results at this accuracy level. In 
addition, parameters such as sensitivity and selectivity required 
for validation are also determined. While evaluating validation 
parameters in in silico methods, limiting factors such as data 
reliability, limited chemical substance groups, and applicability 
areas, in addition, the possibility that pharmacological and 
toxicological results may vary by different mechanisms should 
be considered in data analysis and evaluation studies [32].

IN SILICO METHODS
This section focuses on the most common in silico 

methods.

Structure activity relationship (SAR)
In 1868, Crum-Brown and Fraser suspected the 

quaternary ammonium character of curare [35]. Curare is a 
poison that causes muscle paralysis and blocks the action of the 
excitatory neurotransmitter acetylcholine on the muscle receptor. 
Analysis of its neuromuscular blocking effects in animals 
concluded that this physiological effect was the function of 
tubocurarine [36]. A little later, Richardson studied the increased 
hypnotic activity of aliphatic alcohols in relation to their molecular 
weight (MW). These studies formed the basis for the SAR model 
[37]. Currently, in silico modeling is employed for SAR analysis 
of pharmacological and toxicological activities. This modeling 
application involves a qualitative analysis of the chemical 
properties, as well as the biological and pharmacological effects 
of molecules. Functional groups, stereochemical structure, size 
and shape, chemical reactivity, resonance, and inductive effects 
are taken into account [38,39].

Quantitative SAR
In 1893, Richet noted the effect of physicochemical 

properties on pharmacological activity [40,41]. In the 1960s, 

on the body with computer models [20–22]. These are applied 
using computer software at different stages in drug discovery 
and development. In silico methods include quantitative 
structure activity relationship (QSAR) methods which assess 
to evaluate the data arising from pharmacology laboratories. 
Molecular docking methods depend on drug and macromolecule 
interaction to provide atomic-level data. Quantum medicinal 
chemistry methods facilitate the assessment of the electronic 
structure and provide valuable insights into the chemical and 
biochemical processes related to drugs. Molecular dynamic 
methods are particularly helpful in modeling, exactly in fit 
effect of drug-macromolecule complexes. In addition, virtual 
screening efforts aid as a complementary technique to preclinical 
screening implementing on lead compounds. In the field of drug 
discovery, artificial intelligence methods are making significant 
progress and providing a significant number of innovative tools. 
Furthermore, the application of pharmacoinformatic techniques 
is highly demanded at each stage of the drug discovery and 
development process, including target identification, validation, 
3-D structure prediction, medicinal and product chemistry, 
pharmacology (both in vitro and in vivo), pharmaceutics, 
formulation, drug delivery and disposition (pharmacodynamic 
and pharmacokinetic), preclinical and clinical trials, and 
postrelease study of drug-patient response. In the last years, these 
methods have gained increasing significance in certain fields, 
for instance, pharmacology, toxicology, and biotechnology 
[23]. This review aims to highlight the most common in silico 
method used in drug discovery and development. 

IN SILICO CONCEPT 
The term in silico, meaning “performed on computer 

or via computer simulation,” is derived from the concepts of in 
vivo and in vitro. The United States Environmental Protection 
Agency (EPA) defines the term in silico as the “integration of 
modern computing and information technology with molecular 
biology to improve agency prioritization of data requirements 
and risk assessment of chemicals” [24,25]. The European Union 
defines it as data models obtained without testing and uses them 
in the risk assessment of chemical substances [26]. Computer-
aided methods have many advantages such as predicting the 
biological activity of the drug based on its structural features, 
determining its efficacy and side effects before clinical studies, 
limiting the use of animal experiments, helping the rational 
design of safe drug candidates, repositioning marketed drugs, 
and facilitating the drug development process [27–30].

Identification and analysis of a new drug’s efficacy, 
safety, toxicity, and drug specifications are very important in 
the drug discovery or formulation development stage. For this 
purpose, in vitro and in vivo experiments have been implemented 
for a long time. Due to the high use of experimental animals 
in in vivo studies, the high cost of these studies, and the long-
time consumption. Scientists have sought alternative methods, 
leading to the widespread adoption of in vitro experiments 
utilizing invertebrates, cell cultures, and tissue-organ baths. 
Nevertheless, the demand for more efficient and ethical 
approaches continues to grow, prompting the development of 
in silico methods [31]. 
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Corwin Hansch showed the importance of the change in 
physicochemical properties that could lead to variation in 
biological activity (the structure-activity pattern) by examining 
certain structure modifications of the compounds [41,42]. 

The basis of the QSAR method is based on the 
tendency of structurally similar molecules to show similar 
biological activity. These models mathematically describe 
how the activity response of a target molecule that binds a 
ligand varies according to the structural properties of the 
ligand. QSAR is obtained by calculating the correlation 
between experimentally determined biological activity and 
various properties of ligand binders and is used to predict the 
activity of new drug molecule analogs. The success of a QSAR 
model depends on the molecular descriptors chosen and their 
ability to predict biological activity. The steps that take place 
in the QSAR model are as follows: active molecules that bind 
to the desired target molecule and their activities; database 
search or high throughput scanning result is defined. The 
number of bonds, atoms, functional groups, and surface area, 
that affect biological activity. After defining the structural 
or physicochemical molecular properties, a QSAR model 
is created between the biological activity and the defined 
properties of the drug molecules, and this model is used to 
optimize known active compounds to increase biological 
activity. Then, new optimized drug molecule activities are 
experimentally tested [43]. 

Machine learning approaches such as neural networks 
and support vector machine methods are used to construct 
QSAR models. Table 2 presents some of the machine learning 
algorithms used in some QSAR models [44].

QSAR models summarize the relationship between 
chemical structure and biological activity and predict the activities 
of new chemical molecules. Quantitative structure-property 

relationship (QSPR), in which a chemical property is defined 
as a variable, is a reliable statistical model for estimating the 
properties of new chemicals and analytical systems. Quantitative 
structure reactivity relationship, quantitative structure 
chromatography relationship, quantitative structure toxicity 

Table 1. Process steps determined by ECHA for the reliability of in silico method (according to [34]).

In silico evaluation steps Actions to be taken

Step 0: Collection of information Verification of parent compound structure, collection of information

Scanning databases and identifying missing information

Step 1: Preliminary analysis Examination of the reactivity of the parent compound

Making the first evaluation after ingestion

Step 2: Using the classification schemes Obtaining detailed information about the activity using classification schemes for the targeted impact

Step 3: Scanning specific points Determination of specific structures and groups in the structure of the compound, if any, for the targeted effect

Step 4: Preassessment Making a preliminary expert assessment of the expected reactivity and toxicity of the parent compound with the 
information obtained

Step 5: Screening for similar compounds Selection of the compound responsible for the effect of the substance

Determining whether the selected compound falls into the existing categories

Evaluation of similarity with similar substances of the compound that does not fall into the existing categories

Gathering information about identified similar substances

Identification of similarities between the compound responsible for the selected effect and similar substances, if these 
similarities are limited, screening for new similar substances and updating the study matrix

Step 6: QSAR estimates Estimating the effects of the compound with the QSAR, if no results are obtained, determining, and applying different 
QSAR models

Step 7: Final assessment Making the final expert decision on both the parent compound and the other compounds responsible for the effect, 
using all the information obtained

Table 2. Machine learning algorithms are used in some QSAR 
models (according to [44]).

Name of software Algorithms

R Random forest, support vector machines, naive 
Bayesian, and artificial neural networks

libSVM Support vector machines

Orange Random forest, support vector machines, and naive 
Bayesian

RapidMiner Support vector machines, random forest, naive 
Bayesian, decision tree, artificial neural networks, and 
k-nearest neighbors

Weka Random forest, support vector machines, and naive 
Bayesian

Knime Decision trees, naive Bayesian, and support vector 
machines

AZOrange Random Trees, Support vector machines, artificial 
neural networks, and random forest

Tanagra Support vector machines, random forest, naive 
Bayesian, and decision tree

Elki k-nearest neighbors

Matlab Support vector machines, artificial neural networks, 
naive Bayesian, decision tree, and k-nearest neighbors

TreeNet Random forest

SciTegic Pipeline 
Pilot

Support vector machines, naive Bayesian, and 
decision tree
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relationship, quantitative structure electrochemistry relationship, 
and quantitative structure bioavailability relationship are other 
approaches that can be given as examples [45–47].

Previous studies have reported that QSAR models are 
divided into six categories of QSAR dimensions based on their 
molecular descriptor [48–51]. Table 3 provides a brief overview 
of these categories. Among these dimensions, the 3D-QSAR 
approach, a ligand-based drug design method, has proven to be 
instrumental in designing novel compounds. Chavda and Bhatt 
[52] conducted a study using four different 3D-QSAR techniques, 
including comparative molecular field analysis (CoMFA), 
comparative molecular similarity indices analysis (CoMSIA), 
molecular hologram QSAR (HQSAR), and topomer CoMFA, to 
design new B-Raf inhibitors using 28 synthetic B-Raf inhibitors. 
CoMFA correlated biological activity with steric and electrostatic 
parameters, while CoMSIA associated biological activity with 
hydrophobic, hydrogen bond donor, hydrogen bond acceptor, 
steric field, and electrostatic parameters. HQSAR correlated 
biological activity with the structural part of each group and atom 
of the molecules, providing essential insights into the impact of 
atoms, stereochemistry, and fragments on biological activity. 
The topomer CoMFA, aimed at overcoming CoMFA limitations, 
divided molecules into fragments, generating a model directly 
correlated with the molecule’s fragments. N-fold statistical 
validation yielded q2, r2, and r2

pred values of 0.638, 0.969, and 
0.848 in CoMFA, 0.796, 0.978, and 0.891 in CoMSIA, and 
0.761, 0.973, and 0.852 in CoMSIA. For HQSAR analysis, 
statistical values were q2 = 0.984, r2 = 0.999, and r2

pred = 0.634, 
with a best hologram length of 97. Topomer CoMFA showed a 
q2 value of 0.663 and an r2 value of 0.967. Contour map analysis 
of these 3D-QSAR techniques helped identify crucial features 
of purinylpyridine, facilitating the design of novel molecules as 
B-Raf inhibitors for melanoma cancer treatment [52].

Molecular dynamics (MD) simulation
MD simulation is a computational technique that 

calculates the forces between molecules and computes their 
motion through numerical integration. Starting with the 
positions of atoms from an identified crystal structure and 
randomly generated velocities, Newton’s equations are used to 
calculate the positions and velocities of the atoms at small time 
intervals. Through iterative steps, the forces are recalculated, 
and the simulation progresses. After an equilibration period 
(thousands of steps), during which the system (install) reaches 
the desired temperature and pressure, a production period 
begins, storing the molecular history for later analysis [53,54]. 

MD simulations have three essential applications in 
biomolecular dynamics. First, they bring biomolecular structures 
to life, providing insights into their natural dynamics in solution 
over different timescales. Second, MD simulations yield thermal 
averages of molecular properties, allowing the calculation 
of bulk properties of fluids and free energy differences for 
chemical processes, such as ligand binding, using time-averaged 
molecular properties that approach experimentally measurable 
ensemble averages, based on the ergodic hypothesis. Third, MD 
simulations explore the thermally accessible conformations of 
a molecule or complex [55]. MD simulations are commonly 
combined with various experimental structural biology methods, 

such as X-ray crystallography, cryoelectron microscopy, nuclear 
magnetic resonance, electron paramagnetic resonance, and 
Forster resonance energy transfer [54].

Molecular docking
Molecular docking is a powerful technique that 

investigates how small molecules behave within the binding area 
of a target protein. As more protein structures are determined 
through X-ray crystallography or nuclear magnetic resonance, 
molecular docking has gained prominence as a valuable tool in 
drug discovery. It is now possible to perform docking against 
homology-modeled targets for proteins with unknown structures. 
Through docking approaches, the druggability of compounds 
as well as their specification against definite targets can be 
computed, aiding in lead optimization processes. Molecular 
docking programs use a search algorithm to iteratively evaluate 
the ligand’s conformation until it converges to the lowest energy 
state. Subsequently, an affinity scoring function (ΔG [U total in 
kcal/mol]) is applied to order the candidate poses by summing the 
electrostatic along with van der Waals energies. In addition, the 
driving forces behind these interactions in biological systems strive 
for complementarity between both the shape and electrostatics of 
the binding area surfaces and the ligand or substrate [56]. This 
comprehensive approach facilitates the identification of potential 
drug candidates and their interactions with the target protein, thus 
supporting the drug discovery process. Until 2016, no molecular 
modeling study has been conducted on ionone-based chalcones 
for anti-prostate cancer activity. Popular QSAR methods such 
as CoMFA and CoMSIA use 3D information to identify sites on 
molecules that can be modified to create more specific ligands, 
while HQSAR uses fingerprints to highlight sub-structural features 
significant for biological activity. In addition, molecular docking 
analysis provides insights into ligand-receptor interactions. By 
combining 3D-QSAR and docking, a more comprehensive 
understanding of the structural features at the protein’s binding 
area and protein-ligand interactions can be obtained to aid in 
the design of new potential molecules. The generated models 
in this study exhibited statistical precision with higher q2 and r2 
values. The presence of bulky, negatively charged substituents 
with H-bond acceptors at specific positions increased the activity. 
Moreover, the hydrophobic property of the phenyl ring played a 
crucial role in the anti-cancer activities of ionone-based chalcones. 

Table 3. Groups of QSAR models according to their analysis 
capabilities (according to [48–51]).

QSAR techniques Parameters used

1D-QSAR Physicochemical parameters such as pKa, log P

2D-QSAR 1D-QSAR + structural, geometric, electrostatic, and 
thermodynamic parameters

3D-QSAR 2D-QSAR + electrostatic, steric, hydrophobic 
parameters, and hydrogen bonding properties

4D-QSAR 3D-QSAR + parameters related to conformations, 
protonation, and stereoisomers

5D-QSAR Parameters related to conformational changes in 
4D-QSAR + ligand-protein binding

6D-QSAR Parameters related to 5D-QSAR + solvation models 
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Table 4. In silico tools are used for drug discovery and development. 

Tool Name Type Website License Web services/
Software

AutoDock Vina Molecular docking https://vina.scripps.edu/ Open-source (free) Software

AutoDock CrankPep Molecular docking https://ccsb.scripps.edu/adcp/ Commercial-source (paid) Software

LeDock Molecular docking http://www.lephar.com/software.htm Open-source (free) Software

Glide Molecular docking https://www.schrodinger.com/products/glide Commercial-source (paid) Software

FlexAID Molecular docking https://nrglab.github.io/ Open-source (free) Software

MedChem Studio™ Screening/ligand 
design

https://www.simulations-plus.com/software/admetpredictor/
medchem-studio/

Commercial-source (paid) Software

MolScore-Antibiotics Target prediction http://www.pharmainformatic.com/html/molscore-antivirals.html Open-source (free) Software

PatchSearch Target prediction https://github.com/UCDvision/PatchSearch Open-source (free) Software

SwissTargetPrediction Target prediction http://www.swisstargetprediction.ch/ Open-source (free) Web services

SEA Target prediction https://sea.bkslab.org/ Open-source (free) Web services

CSNAP Target prediction https://services.mbi.ucla.edu/CSNAP/ Open-source (free) Web services

The ChemProt 2.0 Target prediction http://www.cbs.dtu.dk/services/ Open-source (free) Web services

PASS Online Target prediction https://www.way2drug.com/PassOnline/pe.php Open-source (free) Web services

QSAR TOOKBOX QSAR https://qsartoolbox.org/ Open-source (free) Software

Lazer QSAR https://lazar.in-silico.ch/predict Open-source (free) Software

Toxtree QSAR https://apps.ideaconsult.net/data/ui/toxtree Open-source (free) Software

VEGA QSAR https://www.vegahub.eu/portfolio-types/in-silico-models/ Open-source (free) Software

EPI Suite™ QSAR https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-
program-interface

Open-source (free) Software

OncoLogic™ QSAR https://www.epa.gov/tsca-screening-tools/oncologictm-expert-
system-evaluate-carcinogenic-potential-chemicals

Open-source (free) Software

Derek Nexus QSAR https://www.lhasalimited.org/solutions/ Commercial-source (paid) Software

HazardExpert QSAR https://compudrug.com/hazardexpertpro Commercial-source (paid) Software

The BfR DSS QSAR https://www.tandfonline.com/doi/pdf/10.1080/10629360701304014 Commercial-source (paid) Software

TOPKAT QSAR https://www.sciencedirect.com/science/article/abs/
pii/0027510794901252

Commercial-source (paid) Software

MCASE and CASE 
Ultra

QSAR https://multicase.com/ Commercial-source (paid) Software

Leadscope QSAR https://www.instem.com/solutions/insilico/computational-
toxicology.php

Commercial-source (paid) Software

TerraQSAR™ QSAR https://www.terrabase-inc.com/ Commercial-source (paid) Software

ACD/Percepta QSAR https://www.acdlabs.com/products/percepta-platform/physchem-
suite/

Commercial-source (paid) Software

MolCode Toolbox QSAR https://genecode.com/ Commercial-source (paid) Software

TIMES QSAR http://oasis-lmc.org/products/software/times.aspx Commercial-source (paid) Software

CQSAR QSAR http://www.biobyte.com/bb/prod/cqsar.html Open-source (free) Software

SeeSAR QSAR https://www.biosolveit.de/SeeSAR/ Open-source (free) Software

RPBS Web Portal QSAR https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.
py?form=PASS#welcome

Open-source (free) Web services

GastroPlus® PBBM 
/ PBPK

ADME toxicity https://www.simulations-plus.com/software/gastroplus/ Commercial-source (paid) Software

ADMET Predictor® ADME toxicity https://www.simulations-plus.com/software/admetpredictor/ Commercial-source (paid) Software

MolScore-Drugs ADME toxicity https://www.fqs.pl/en/products Open-source (free) Software

PK-SIM® ADME toxicity https://www.open-systems-pharmacology.org/ Open-source (free) Software

Simcyp™ PBPK ADME toxicity https://www.certara.com/software/simcyp-pbpk/ Open-source (free) Software

Cyprotex ADME toxicity https://www.cyprotex.com/insilico/ Commercial-source (paid) Software

ADMET Modeler™ ADME toxicity https://www.simulations-plus.com/software/admetpredictor/admet-
modeler/

Commercial-source (paid) Software

 IMPACT-F ADME toxicity http://www.pharmainformatic.com/html/impact-f.html Open-source (free) Web services
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These findings led to the design of twelve new anti-prostate cancer 
compounds (predicted high activity) [57]. In another investigation, 
Shahzadi et al. [58] synthesized MgO-doped cellulose nanocrystal 
grafted poly acrylic acid (CNC -g-PAA) hydrogel for antibacterial 
and anti-cancer activities. The hydrogel demonstrated improved 
bactericidal tendencies against both Gram-negative and Gram-
positive bacteria, and molecular docking analyses were performed 
to evaluate the interactions between the nanocomposite hydrogel 
and biomolecules. The hydrogel also exhibited reactive oxygen 
species production by photocatalysis and showed promising 
potential for controlled drug delivery, with successful loading 
of the model anticancer drug Doxorubicin. In vitro cytotoxicity 
analysis further confirmed the enhanced antitumor efficiency of the 
nanocomposite hydrogels, suggesting their potential as carriers for 
innovative biomedical applications [58]. Furthermore, Shahzadi 
et al. [59] investigated the antibacterial and anti-arthritic effects 
of CNC-g-PAA and CNC-g-PAA doped with CaO. Molecular 
docking analysis was also conducted to evaluate the binding 
interaction between the targeted proteins and the synthesized 
nano-biomaterials. The results demonstrated improved antitumor 
effectiveness of CNC-g-PAA and CNC-g-PAA/CaO, suggesting 
their potential as delivery vehicles for multifunctional biomedical 
applications. These findings highlight the promising prospects of 
hydrogels in the field of biomedical research [59].

EXPERT SYSTEMS 
Most in silico methods are based on the knowledge 

of pharmacology and toxicology specialists. Information about 
the molecular structures of substances is often incomplete, or 
complex. For this reason, expert systems have been developed 
based on the explanation of different expert knowledge with 
various data processing methods and algorithms, as seen 
in Table 4. One such software is SAR which was created by 
combining QSAR and data banks and mathematically expresses 
the rules for a chemical molecule. The most important advantage 
of the QSAR method is that it can be evaluated with a specific 
mechanism when needed [39].

Sample applications of in silico methods
Computer-aided tools have proven to be greatly 

effective within the healthcare industry. They have been used in 
the development of distinctive molecules that have successfully 
demonstrated their therapeutic potential in clinical trials for 
various disorders. Some remarkable examples of the uses of 
computer-aided tools in the development of approved drugs 
include an angiotensin-converting enzyme (ACE, captopril) 
inhibitor used in cardiovascular diseases treatment and 
prevention, which was approved in 1981 as well as carbonic 
anhydrase inhibitor (dorzolamide) used for treating glaucoma 
and approved in 1995. In addition, saquinavir (approved in 1995), 
ritonavir, and indinavir (both approved in 1996) were approved 
as medications for the treatment of human immunodeficiency 
virus (HIV) in accordance with safety regulations [60]. Other 
examples can be found in Table 5.

AutoDock Vina
AutoDock Vina is a freely available software used 

for conducting molecular docking. The program was initially 

developed and implemented by Dr. Oleg Trott at The Scripps 
Research Institute’s Molecular Graphics Lab, which is now 
known as CCSB [61]. 

AutoDock CrankPep or ADCP 
ADCP (AutoDock for peptides) is a specialized 

docking engine based on AutoDock, specifically designed for 
docking peptides. It combines techniques from the protein 
folding area with an effective representation of a rigid receptor 
using affinity grids. The process involves folding the peptide 
within the energy landscape obtained by the receptor, optimizing 
the interaction between the peptide and the receptor through a 
Monte–Carlo search, as a result, docked peptides are obtained. 
The program can handle peptides (3-D structures) within 
Protein Data Bank  files or in the form of a sequence string [62].

LeDock
LeDock is a specialized software designed for fast, 

precise, and flexible docking of molecules into a protein. It 
has been shown to achieve a pose-prediction precision of over 
90% on the Astex diversity group. For drug-like molecules, it 
typically takes about 3 seconds per run, making it a time-efficient 
tool. LeDock has been successfully utilized in high-throughput 
virtual screening campaigns, leading to the discovery of novel 
kinase inhibitors and bromodomain antagonists. One of its key 
features is its ability to directly use the SYBYL Mol2 format as 
input for small molecules [63].

FlexAID
FlexAID is an advanced docking algorithm capable 

of handling both small-molecules and peptides as ligands, with 
proteins/nucleic acids serving as targets. Its notable features include 
accommodating full ligand and target side-chain flexibility, adding 
versatility to the docking simulations. The scoring function employed 
by FlexAID is unique in its soft nature, reducing reliance on specific 
geometric criteria and instead focusing on surface complementarity. 
To fine-tune the scoring function’s energy parameters, a substantial 
dataset containing native and near-native conformations (less than 
2Å root mean square deviation) of almost 1,500 complexes from the 
PDBbind database was used as true positive examples. Remarkably, 
it has demonstrated superior predictive capabilities compared to 
well-established software such as AutoDock Vina and FlexX when 
predicting binding poses. This superiority is especially evident in 
cases where target flexibility is essential, as often encountered when 
applying homology models [64].

MedChem Studio™ 
MedChem Studio™ represents a comprehensive 

cheminformatics software bundle, encompassing a wide range 
of tools for essential drug discovery and development tasks, 
including high throughput screening analysis, prioritization, 
lead identification, de novo design, lead optimization, and 
scaffold hopping. An attractive feature is the “VIEWER” mode, 
which does not require a license and facilitates collaboration 
among scientists with different expertise. In addition, the 
software offers MedChem Designer™, a valuable molecular 
drawing tool, freely accessible from MedChem Studio. It 
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system assigns a probability value between 0 and 1 to a compound, 
indicating the likelihood of possessing antibiotic activity. With its 
capability to assess compounds’ potential antibiotic properties, 
MolScore-Antibiotics proves beneficial in guiding the process of 
selecting compounds for focused biological screening, particularly 
in prioritizing compounds from extensive collections. Our expert 
system’s analysis demonstrated that many compound databases 

grants users the ability to input or modify structures, visualize 
metabolites, define structure queries, and offer other valuable 
functionalities to enhance the software’s versatility [65].

MolScore-Antibiotics
MolScore-Antibiotics serves as a valuable tool for 

distinguishing between antibiotics and nonantibiotics. This scoring 

Table 5. Drugs developed by computer-aided approaches (according to [96]).

Drug Target Therapeutic use Year of FDA 
approval Reference

Erdafitinib Fibroblast growth factor receptors Urothelial carcinoma 2019 [97]

Dacomitinib Multi-kinase Nonsmall-cell lung cancer (NSCLC) 2018 [98]

Vaborbactam Beta-lactamase Bacterial infections 2017 [99]

Grazoprevir NS3/4 serine protease Chronic hepatitis C (HCV) 2016  [100]

Lifitegrast LFA-1/ICAM-1 (leukocyte function-associated 
antigen-1/intercellular adhesion molecule1)

Dry eye disease 2016  [101]

Rucaprib Poly (ADP-ribose) polymerase Prostate cancer 2016  [102]

Saroglitazar Peroxisome proliferator activated receptor Diabetic dyslipidemia 2013  [103]

Telaprevir NS3/4A protease Chronic hepatitis C 2011  [104]

Rivaroxaban Clotting factor Xa Deep venous thrombosis 2011  [105]

Crizotinib Anaplastic lymphoma kinase and ROS proto-
oncogene 1

NSCLC 2011  [106]

Boceprvir Hepatitis C virus (HCV) Chronic hepatitis C 2011  [107]

Tomudex Thymidylate synthase Colorectal cancer 2009  [108]

Maraviroc C-C chemokine receptor type 5/envelope 
glycoprotein GP120 (CCR5/gp120)

HIV 2007  [109]

Ambrisentan Endothelin-A Pulmonary arterial hypertension 2007  [110]

Aliskiren Angiotensinogen Blood pressure 2007  [111]

Sunitinib VEGF-R2 kinase Kidney cancer 2006  [112]

Darunavir Nonpeptidic HIV-1 protease HIV infection 2006  [113]

Getifinib GFRv tyrosine kinase NSCLC 2003  [114]

Zolmitriptan 5-hydroxytryptamine (5HT)1B/1D/(1F) receptor Migraine 2003  [115]

Valsartan Angiotensin II receptor Hypertension 2002  [116]

Imatinib Abl tyrosine kinase Acute lymphoblastic leukemia 2001  [117]

Eptifiatide Glycoprotein IIb/IIIa protein Myocardial infarction 2001  [118]

Oseltamivir Influenza A and B neuraminidase In the treatment of the infection caused by 
the flu virus (influenza A and influenza B)

1999  [119]

Amprenavir HIV protease HIV infection 1999  [120]

Tirofiban Integrin (GP) IIb/IIIa and Fibrinogen receptor Heart attack 1999  [121]

Efavirenz Non-nucleoside reverse transcriptase protein HIV infection 1998  [122]

Delavirdine HIV reverse transcriptase protein HIV infection 1997  [123]

Nelfinavir HIV-1 protease protein HIV infection 1997  [124]

Ritonavir HIV-1 protease inhibitor To treat HIV infection 1996  [125]

Indinavir HIV-1 protease HIV infection 1996  [126]

Saquinavir HIV-1 protease HIV infection 1995  [127]

Dorzolamide Carbonic anhydrase Glaucoma and cystoid macular edema 1994  [128]

Cladribine Adenosine deaminase Hairy cell leukemia 1993  129]

Epalrestat Aldose reductase Diabetic neuropathy 1992  [130]

Flurbiprofen Cyclooxygenase-2 Nonsteroidal anti-inflammatory agent 1988  [131]

Norfloxacin Topoisomerase II and IV Urinary tract infections 1986  [132]

Captopril ACE Hypertension 1981  [133]
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QSAR toolbox
The toolbox is a user-friendly and free software 

application designed to facilitate reproducible plus transparent 
chemical hazard evaluation. It provides various functionalities, 
including the retrieval of experimental data, simulation of 
metabolism, and profiling of chemical properties. This valuable 
information and tools enable users to identify structurally and 
mechanistically known analogs and chemical classifications, 
which can be utilized for read-across and trend analysis, 
effectively filling data gaps in hazard evaluation [72].

Lazar
Lazar is a valuable tool utilized for predicting the toxic 

properties of chemical structures. In addition, it employs the 
QSAR statistical approach to generate predictions for a query 
structure by utilizing a database of experimentally determined 
toxicity data. The Lazar software model has demonstrated 
impressive performance in external validation datasets, 
achieving an accuracy (86%) along with a sensitivity (78%) in 
the carcinogenicity test, while attaining a remarkable accuracy 
(95%) for the mutagenicity test [73].

Toxtree
Toxtree is a valuable and freely available QSAR tool 

designed to assess the Cramer class of a chemical compound 
and evaluate its relative toxic hazard. Toxtree is a collaborative 
effort between Ideaconsult Ltd. and the Joint Research Centre 
of the European Commission [74].

VEGA
VEGA places a strong emphasis on generating 

transparent, reasonable, reproducible, and verifiable data in its 
models. To achieve this, they have optimized a series of tools that 
establish connections between the outcomes obtained for the target 
chemical and those obtained for structurally related compounds. 
These tools facilitate a reproducible read-across procedure, which 
involves extracting required values for the target compound 
depending on identified values for similar substances. This read-
across strategy is made possible through the implementation of 
independent algorithms that go beyond QSAR models. These 
algorithms take advantage of identifying similar compounds as 
well as analyze the importance of descriptors and fragments for the 
chemical of interest plus the associated compounds [75].

EPI Suite™ 
The QSPR models available in EPI Suite™ have 

found extensive application in predicting physicochemical 
characteristics and half-lives of chemicals, particularly for 
screening-level hazard evaluation. These models were developed 
based on property data obtained from training sets, primarily 
comprising anthropogenic chemicals, including persistent 
organic pollutants, organochlorine pesticides, personal care 
products, modern pesticides, and industrial chemicals [76].

OncoLogic™
OncoLogic™, developed in collaboration with the 

EPA’s structure-activity team (SAT), is a unique knowledge-

from external suppliers have a limited number of compounds 
with antibiotic activity. As a result, MolScore-Antibiotics enables 
efficient cherry-picking of interesting antibiotic compounds, 
as exemplified in the selection of antibiotics from a database 
consisting of 195.064 compounds [66].

PatchSearch
PatchSearch is an innovative tool designed to facilitate 

the identification of potential off-target proteins by searching 
for structurally conserved binding sites across the entire surface 
of a protein. This powerful method employs a quasi-clique 
approach, allowing for a flexible consideration of binding area 
atoms without imposing overly strict distance conservation 
constraints. In essence, PatchSearch identifies dense subgraphs, 
or quasi-cliques, on the protein surface [67].

SwissTargetPrediction 
SwissTargetPrediction offers a range of unique 

capabilities. First, it allows users to integrate 2-D and 3-D 
similarity values with known ligands. Second, the tool delivers 
results for five distinct species, enabling researchers to explore 
drug-target interactions across different organisms. Finally, 
SwissTargetPrediction permits users to map predictions based 
on target homology, facilitating the transfer of target predictions 
within and between organisms. These exceptional features 
make SwissTargetPrediction a valuable asset in drug discovery 
and target identification research [68].

Similarity ensemble approach (SEA)
The SEA employs ligand-based chemical similarity 

to establish relationships among proteins. This method enables 
quick searching of extensive compound databases and the 
creation of cross-target similarity maps [69].

Chemical similarity network analysis pull-down (CSNAP) web
CSNAP is a computational technique used to identify 

compound targets through network similarity graphs. By placing 
query and reference compounds on the network connectivity map, 
a graph-based neighbor counting method ranks the consensus 
targets within the neighborhood of every query ligand. CSNAP 
proves valuable in high-throughput target drug discovery as well 
as off-target prediction for compound sets obtained from either 
phenotype-based or cell-based chemical screens [70].

ChemProt-2.0 
ChemProt-2.0 is a publicly accessible compilation of 

several chemical-protein annotation resources, enriched with 
diseases and clinical result information. This updated database 
now includes over 1.15 million compounds plus 5.32 million 
bioactivity measurements of all these for 15,290 proteins. 
Each protein is associated with quality-scored human protein–
protein interaction information, comprising more than half 
a million interactions, which facilitates the study of diseases 
and biological outcomes through protein complexes. Notably, 
ChemProt-2.0 integrates therapeutic effects and adverse drug 
reactions, offering insights into proteins linked to clinical 
results. To enhance its functionality, the database employs new 
chemical structure fingerprints computed using the SEA [71].
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models for various toxicological endpoints, including bacterial 
mutagenicity/ICH M7, genotoxicity, carcinogenicity, skin 
sensitization, acute toxicity, endocrine disruption, reproductive 
toxicity, developmental toxicity, cardiotoxicity, hepatotoxicity, 
renal toxicity, ADME, and ecotoxicity [81].

LeadScope 
LeadScope is an innovative computer software that 

seamlessly connects chemical and biological data, providing 
medicinal chemists with a powerful platform to visualize and 
interactively investigate extensive collections of chemicals, 
their properties, and biological activities. Within the software, 
chemical structures are intelligently categorized into a vast 
taxonomy of recognizable structural features, encompassing 
functional groups, aromatic rings, and heterocycles. All of 
these structural elements are further combined with general 
substituents, representing the fundamental construction blocks 
of medicinal chemistry [82].

TerraQSAR™
TerraQSAR™ computer programs have been 

meticulously crafted to offer rapid and dependable assessments 
of both the biological effects and physicochemical properties 
of organic compounds. The program provides valuable output 
data, including computed effect or property values represented 
in pT (log1/C) and mg/l (for rat and mouse intravenous: mg/
kg b.w.), as well as the MW of the compounds [83]. For those 
seeking accurate and efficient estimations, TerraQSAR™ 
proves to be a valuable tool in the field.

ACD/Percepta
ACD/PhysChem Suite comprises multiple prediction 

modules that deliver accurate assessments of physicochemical 
properties based on molecular structure. It enables the 
estimation of essential properties, such as aqueous solubility, 
logD, logP, pKa, boiling point, Sigma, and other molecular 
specifications, specifically for organic compounds. Users can 
examine the calculated outcomes using sorting and plotting 
tools, ensuring the reliability of predicted physicochemical 
values. Moreover, the suite facilitates investigations into QSPR, 
structural modifications, and lead optimization to achieve 
desired target profiles. To enhance the applicability to novel 
chemical space, predictors can be trained with experimental 
data. ACD/PhysChem Suite also accommodates custom models 
and in-house prediction algorithms, offering flexibility for 
diverse scientific applications [84]. 

MolCode toolbox
The Molcode toolbox is an exceptional computational 

expert system developed for rapid and reliable prediction of 
crucial biomedical and environmental properties of chemicals 
and materials. It relies on proprietary techniques that map 
compound properties onto extensive sets of molecular 
descriptors, which include thousands of descriptors derived 
from quantum chemical theory, meticulously considering the 
intricate spatial and electronic structures of molecules. Ahead of 
this computation, molecular mechanics is employed to perform a 
comprehensive conformational search of extensive compounds. 

based software. The SAT consists of globally recognized experts 
responsible for assessing the carcinogenic potential of newly 
developed chemicals within the United States or those imported for 
marketing purposes. The objectives behind creating OncoLogic™ 
encompass several key aspects: Offering industry-specific guidance 
on crucial elements for developing safer chemicals. Providing 
a comprehensive source of information for all stakeholders, 
explaining the rationale behind identifying potential cancer hazards 
associated with chemicals. Promoting research initiatives to bridge 
existing knowledge gaps in this field [77].

HazardExpert
CompuDrug’s HazardExpert stands as a crucial 

software tool, enabling the initial estimation of toxic symptoms 
caused by organic compounds in both humans and animals. 
Notably, HazardExpert incorporates a robust model that considers 
the bioavailability of the compounds. Its predictive capabilities 
surpass human experts, delivering toxic effect estimations with 
remarkable precision. HazardExpert offers toxicity prediction 
for organic compounds on the basis of toxic fragments, with 
results provided for seven distinct toxicity classes, including 
oncogenicity, mutagenicity, teratogenicity, membrane irritation, 
sensitivity, immunotoxicity, and neurotoxicity. In addition, the 
software calculates bioavailability built on pKa and logP, as 
well as bioaccumulation. Users can further predict toxicity for 
metabolites [78].

The BfR decision support system (DSS)
The DSS developed by the German Federal Institute 

for Risk Assessment (BfR) aims to evaluate specific hazardous 
properties of pure chemical substances, which include skin and 
eye irritation and/or corrosion. Serving as a rule-based system, 
the BfR-DSS has significant applicability in the regulatory 
framework classification of chemical substances within the 
European Union [79].

TOPKAT
TOPKAT aims to predict chemical carcinogens, 

focused on its capability to foresee the carcinogenicity of 
chemicals examined by the National Toxicology Program. 
However, TOPKAT’s performance proved to be inadequate 
when attempting to distinguish potential rodent carcinogens 
and noncarcinogens within the studied dataset. The TOPKAT 
database consists of identified carcinogens and noncarcinogens, 
and the software attempts to identify chemicals that are most 
“similar” to unidentified compounds. Nonetheless, when 
observing six examples, the chemicals deemed “similar” 
by the software exhibited no apparent connection to the 
chemical of interest concerning metabolism or mechanism of 
carcinogenicity [80].

MCASE and CASE Ultra
CASE Ultra is a computer-based toxicology software 

designed to detect structural alerts associated with toxicity 
through (QSAR) analysis. The (QSAR) models in CASE Ultra 
undergo validation following Organization for Economic Co-
Operation and Development guidelines and are accompanied by 
QSAR model reporting format reports. The software provides 
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properties. It provides estimations for more than 140 ADMET 
properties, offering a comprehensive analysis of drug properties. 
The software allows users to build QSAR and QSPR models 
by applying both in-house and publicly available data sources 
through a proprietary software program. Its user-friendly 
interface facilitates easy manipulation and visualization of 
data [89].

MolScore-Drugs
Amidst the diverse array of structures found in 

marketed drugs, molecules exhibiting biological activity share 
frequent characteristics. Through a thorough analysis of these 
intricate drug patterns, they have developed an expert system 
capable of distinguishing between drugs and nondrugs. For 
instance, MolScore-Drugs near 0 signifies the lowest predicted 
probability, while MolScore-Drugs near 1 indicates the highest 
predicted probability with an interesting ADME-profile. This 
expert system is founded on a collection of robust models. 
Leveraging SARs, we can estimate the drug-like chemical 
space effectively. In addition, structure-property relationships 
derived from their in-house ADME/Tox-database enable the 
prediction of ADMET properties and identification of potential 
risks, ultimately reducing clinical failures [90].

PK-Sim®
PK-Sim® is an extensive software tool designed 

for all body physiologically based pharmacokinetic (PBPK) 
modeling. It offers quick access to all pertinent anatomical 
and physiological parameters for humans and animal models 
(the most common preclinical), including mouse, rat, minipig, 
dog, and monkey, from its integrated database. The software 
also provides access to various PBPK calculation methods, 
streamlining model building and parameterization processes. 
PK-Sim® automatically considers relevant generic passive 
processes. For example, distribution through blood flow 
and specific active processes, like metabolization by specific 
enzymes. While PK-Sim® is user-friendly and suitable 
for nonmodeling experts, it allows slight structural model 
adjustments. Unlike many other PBPK modeling tools, PK-
Sim® provides varied model structures to cater to critical 
distinctions between small and large drug molecules. Most 
notably, PK-Sim® seamlessly integrates with the expert 
modeling software tool MoBi®, granting full access to all model 
details, extensive modifications, and extensions. This capability 
facilitates the creation of custom systems pharmacology models 
tailored to the challenges of innovative drug research and 
development [91].

Simcyp™ PBPK 
The Simcyp Simulator stands as the pharmaceutical 

industry’s most complicated PBPK platform. Its capabilities 
encompass diverse applications, such as determining initial 
dosing for human trials, optimizing clinical study designs, 
assessing novel drug formulations, setting dosages for unstudied 
populations, and conducting simulated bioequivalence analyses 
besides foreseeing drug–drug interactions. Simcyp’s versatility 
extends across small molecules, biological compounds, 
ADCs, generic drugs, and emerging modality drugs. By 

Using the Molcode toolbox, users have the flexibility to 
load their own compound structures, make adjustments to 
encoded compounds, or even create and optimize entirely new 
ones [85].

CQSAR 
David Elkins initially developed the first program 

for data searching in 1970, but its usage was cumbersome due 
to the encoding of structures in the Wisswesser line notation 
and the requirement to use IBM cards, resulting in slow and 
inconvenient operations. Consequently, the current C-QSAR 
program is the result of over 35 years of continuous research and 
development. The program was expertly designed and authored 
by David Hoekman, incorporating the widely adopted simplified 
molecular input line entry system notation (originated by David 
Weininger) for entering chemical structures. In addition, it 
effectively employs the Merlin searching program [86].

Ressource Parisienne en Bioinformatique Structurale (RPBS) 
web portal 

RPBS is a collaborative effort involving multiple 
teams, with the goal of providing exclusive services in 
the domain of structural bioinformatics through a single-
entry point. The expertise offered spans from sequence and 
structure analysis to modeling of protein as well as the design 
of drugs. However, not all aspects are currently addressed on 
the RPBS server. The server itself encompasses a wide range 
of tools, meticulously designed to holistically cover diverse 
areas of structural bioinformatics. As of now, the P-server 
section is only partially functional. In addition, RPBS offers 
access to proprietary software developed by their teams. 
Among other RPBS tools, some are specialized in handling 
3-D structures, namely SA-Search, employed for discovering 
structural similarities and relying on a structural alphabet 
plus Scit, used for comparison side-chain conformations. 
Furthermore, RPBS maintains different compilations of 
commercially achievable organic compounds that prove 
useful for conducting structure-based in silico testing 
experiments [87].

GastroPlus®
GastroPlus® is an advanced software designed for 

modeling and conducting simulations of various properties of 
drugs or chemicals. These encompass release rate, absorption, 
bioavailability, pharmacodynamics, and pharmacokinetics. 
The software is equipped to predict drug-to-drug interactions, 
effects on animals, and virtual patient populations. It also 
facilitates researchers in modifying pharmacodynamic models 
based on observed data and employing the fitted models to 
forecast pharmacodynamic changes resulting from alterations 
in drug or chemical dosage, dosage form, and dosing regimen. 
Moreover, GastroPlus® enables the creation of in vitro–in 
vivo correlations and predictions of absorption and systemic 
distribution/elimination for large molecules [88].

ADMET Predictor®
ADMET Predictor® is advanced computer software 

designed specifically for QSAR modeling of ADMET 
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and prioritizing drug candidates, optimizing prodrugs, and 
evaluating oral bioavailability before proceeding to clinical 
trials in humans. IMPACT-F stands out for its user-friendly 
interface, eliminating the need for chemical synthesis or 
animal experiments, and its superior reliability compared 
to animal trials, yielding immediate and crucial insights for 
future drug discovery and development. Ultimately, it plays 
a vital role in enhancing the efficiency and safety of human 
clinical trials [95].

DISCUSSION AND CONCLUSION
Drug discovery, development, and analysis studies 

involve a long and laborious process that requires time and 
high cost. The discovery of new drug molecules in the past; was 
done by examining the effects of molecules on known diseases 
through clinical observations, screening tests, and metabolism 
studies. Although this method was long and inefficient, it led 
to the discovery of many molecules until the 1980s. Studies 
for the development of new methods in order to increase the 
efficiency of the drug discovery, development, and analysis 
process and to achieve success in a short time with lower costs 
have yielded results. One of the alternative methods developed 
is in silico testing approaches based on computer simulations 
and mathematical algorithms.

In silico testing approaches, are approaches that limit 
the use of experimental animals used in in vivo experiments and 
reduce the time and cost required for the drug molecule to be 
marketed. Today, studies such as the discovery of the precursor 
compound and the optimization of the precursor compound 
are carried out through computer-assisted drug discovery and 
design. As a result of the rapid development of computational 
chemistry and biological sciences, computer-aided drug design 
methods continue to be successfully applied to accelerate the 
research and development process of drug molecules. With the 
development of artificial intelligence technology and machine 
learning, which are powerful data mining (DM) tools, the use 
of in silico methods such as QSAR, DM, molecular docking, 
molecular placement, and PBPK has increased. Due to in silico 
methods, which can be used in a wide variety of fields such 
as pharmacology, toxicology, cosmetology, and physiology, 
the discovery, preclinical analysis, and clinical studies of a 
drug molecule can be done easily. With these methods, the 
3-D structures of drug molecules are examined, and their 
activities are estimated. The binding states of the ligand and 
the receptor are analyzed. Gastric and intestinal simulations are 
created with physiology-based pharmacokinetic models, and it 
is possible to examine the solubility, bioavailability, ADME, 
and toxicity properties of the drug. In silico testing approaches, 
there are disadvantages such as not always paying attention 
to pharmacokinetic properties and the possibility of obtaining 
erroneous results, but these methods have an important place in 
drug discovery, development, and analysis studies and are used 
progressively.

From the aforementioned introduction, it is easy 
to see that using in silico methods can be recommended 
for the prediction of a drug’s in vivo performance through 
drug discovery or preformulation study, however, the used 
algorithms and data sets should be considered. Recently, 

linking in vitro to in vivo (ADME), as well as pharmacokinetic 
plus pharmacodynamic outcomes, Simcyp empowers the 
exploration of clinical scenarios and informed decision-making 
throughout drug development. Hence, Simcyp PBPK models 
offer comprehensive descriptions of drug behavior in tissues 
and organs. Every single organ can be represented by one or 
multiple physiological compartments. The drug concentration 
in each compartment is calculated through the integration 
of systems information, drug information, and trial design 
information [92].

Cyprotex
Cyprotex specializes in in vitro–in silico ADME-Tox 

services, covering a wide range of offerings. This encompasses 
in vitro ADME screening that aids discovery projects, as 
well as regulatory in vitro ADME and drug-drug interaction 
studies in the course of preclinical and clinical study and 
development. The company also provides specialized 
mechanistic in vitro human and animal toxicity models, 
such as 3-D models and MEA electrophysiology, along with 
PBPK and QSAR modeling expertise. Their comprehensive 
in vitro ADME and DMPK services contain metabolism 
studies, permeability and transporter assessments, solubility 
and physicochemical attribute evaluations, protein binding 
analysis, and pharmacokinetic and bioanalysis services. 
Cyprotex’s data has been highly validated and trusted by 
over 1,700 clients across pharmaceutical, biotechnology, 
cosmetics, healthcare companies, academic, and government 
associations [93].

ADMET modeler
ADMET modeler serves as a valuable QSAR/QSPR 

model building within ADMET Predictor®. This module 
efficiently automates the challenging and time-consuming 
task of constructing high-quality predictions of QSAR 
and QSPR models using experimental data. Seamlessly 
integrating with ADMET Predictor, it takes advantage of the 
platform’s descriptors as data and incorporates the chosen 
final model back into ADMET Predictor as an extra predicted 
property [94].

IMPACT-F
The assessment of oral bioavailability relies on 

robust computational models derived from the extensive 
PACT-F knowledge base, the largest repository of 
bioavailability data worldwide. Predicting human oral 
bioavailability early has numerous advantages, such as 
aiding in the selection of bioavailable drug candidates, and 
significantly reducing the risk of clinical failures compared 
to animal trials. The results are promptly available, ensuring 
confidentiality and reliability as no data or information leaves 
the company. Moreover, this approach enhances the potential 
of novel drugs by enabling a more precise determination of 
the optimal oral drug dose for first-in-human clinical trials. 
IMPACT-F, the novel expert system, is widely adopted by 
pharmaceutical companies across various therapeutic areas, 
including diabetes, inflammation, antivirals, autoimmune 
diseases, and cancer. It serves as a valuable tool for selecting 
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it was observed that the in silico research studies have 
increased, which contributed to the development of in silico 
modeling.
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