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INTRODUCTION
Bacterial resistance has become a worldwide 

problem that endangers the efficacy of existing antibiotics to 
treat infections, especially with the emergence of multidrug-
resistant (MDR) strains of bacteria such as methicillin-
resistant Staphylococcus aureus (MRSA) and MDR strains of 
Escherichia coli. Antimicrobial resistance may be attributed to 
several factors, including the formation of biofilms. Biofilms 
are complex communities of microorganisms that produce a 

polymeric extracellular matrix on the surfaces that can inhibit 
the penetration of antibiotics, making them more resistant 
than planktonic cells [1–3]. In addition to modifying existing 
drugs, researchers are looking for new antibiotics by exploring 
marine organisms. Since the ocean covers about 70% of the 
earth, it is undeniable that marine environments have more 
enormous biodiversity compared to terrestrial creatures and 
contain very promising bioactive compounds to explore. The 
life of marine organisms varies depending on their surrounding 
environmental conditions, such as temperature, light, salinity, 
pressure, and depth of their habitat. They have different 
evolutionary systems, metabolic pathways, and ecology from 
terrestrial creatures [4,5], which leads to distinctive chemical 
composition, complexity, and biological efficacy [6,7]. 

Marine sponges are known to serve as a source of food 
and are commonly found throughout the world’s oceans. Sponges 
are soft, sessile, and able to survive in water with strong currents, 
since the current provides food and oxygen for its life. They can 
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ABSTRACT
Marine organisms, especially sponges, provide many sources of metabolites with various biological activities. Most 
sponges associate with microbes such as fungi. To solve the problem of sponge availability, it is necessary to isolate 
compounds from marine-derived fungi due to their feasibility and advantages. This study, thus, highlights that the 
most prominent genera to produce metabolites active as antibacterials and antibiofilm were Aspergillus, Penicillium, 
Neosartorya, and Trichoderma. The summarized data of isolated compounds related to antibacterial and antibiofilm 
activities until 2022 included anthraquinones, sterigmatocystin analogs, hydroxy pyrrolidine alkaloids, helvolic 
acid derivatives, lactones, prenylated phenylbutyrolactones, citrinin and derivatives, bisthiodiketopiperazine, 
cyclotetrapeptides, dihydrochromone dimers, amino lipopeptides, furan derivatives, aspiron-derivatives, halogenated 
metabolites, and alkaloids. Since the biofilm mechanism is very complex, some antibacterial compounds do not 
necessarily work as antibiofilms. Nevertheless, it can be concluded that compounds produced from sponge-associated 
fungi have the potential to be developed as new antibacterial and antibiofilm agents although still require further 
investigation related to the mechanism of actions of the compounds.
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compounds from fungi associated with sponges is likely to be 
developed as new drugs. Until 2022, there had been 55 articles 
related to fungi associated with sponges with antibacterial and 
antibiofilm activity. During these two decades (2002–2022), there 
was a notable increase in the number of publications (Fig. 1). 

The highest publication was found in the 2017–2021 
period with 27 articles, which constantly escalated in terms of 
quantity. Countless scientists were found to show a growing 
interested in studying sponges associated with microbes, thus 
indicating a trend considering the need to maintain the existence 
of sponges. We identified that the most frequently studied families 
were Trichocomaceae, Hypocreaceae, Herpotrichiellaceae, and 
Pleosporaceae (Fig. 2), and the genus most commonly studied 
were Aspergillus, Penicillium, Trichoderma, and Neosartorya 
(Fig. 3A and B). Some genus were the most prolific sources of 
antibiotics [31,32].

live in various marine habitats, from shallow to deep seas [8,9]. 
Sponges are immobile and vulnerable to predators, producing 
metabolite compounds in self-defense [10]. Many studies report 
that metabolite compounds contained in sponges have therapeutic 
activities, including cytotoxic activity [11,12], antimicrobial 
activity [13,14], antiplasmodial activity [15], and other activities. 
Given the large potential of sponges as food and medical resources, 
especially by way of isolating their active compounds, which 
makes it is necessary to pay attention to the survival of organisms 
and their environment. Interestingly, sponges can associate with 
various microbes, both fungi and bacteria. These associated 
microbes produce metabolites similar to their host but may also 
create novel active metabolites [16–18]. Some metabolites of 
sponge-associated microbes have chemical structures similar 
to terrestrial species, making them a great resource for further 
exploration, especially as antibacterial agents [19–21]. 

This review aims to examine isolated metabolite 
compounds from sponge-associated fungi with antibacterial 
and biofilm inhibitor activity, including the genus that produces 
the most active compounds, their antibacterial and antibiofilm 
potential, and to find out the relationship between antibacterial 
and biofilm inhibitor activity. The original article used various 
potential values as a way to compare their antibacterial potential 
by way of changing its μg/ml units based on the molecular 
weight. However, the difficult conversion forces it to preserve 
its original value. This review is expected to assist many 
researchers in exploring compounds with potential development 
as new antibacterial and antibiofilm to that “supply issues” to 
avoid sponge exploitation.

MATERIAL AND METHODS
This review highlights metabolite compounds from 

fungi associated with sponges exhibiting antibacterial and 
antibiofilm activity. The data presented were derived from 
primary articles in English related to keywords “marine” OR 
“sea” AND “sponge-associated fungi” OR “marine-derive 
fungi” AND “antibacterial” AND “antibiofilm,” which was 
discovered in 2002–2022 from Scopus and Pubmed. Variables 
discussed include genus/species of fungi associated with 
sponges, species of sponges, metabolite compounds, their 
potential value, and the type of bacteria being inhibited. The 
minimum inhibitory concentration (MIC) (units μg/ml or μM) 
or the diameter of inhibition/DOI (unit mm) of metabolites 
indicates their ability to inhibit bacterial growth. The potential 
of antibiofilms is shown by their ability to inhibit the formation 
of biofilms (% inhibition of biofilms).

Sponge-associated fungi as a source of antibacterial 
Many studies reported the activity of sponges, including 

antimicrobial, cytotoxic, anti-inflammatory, antidiabetic, and 
antimalarial [22–26]. Microorganisms are closely related to sponge 
life because of the nature of sea sponges as feeder fillers; their 
body tissues are related to these microorganisms. These associated 
microorganisms provide host advantages regarding nutrient supply, 
skeletal stabilization, regulating waste, and secondary metabolite 
production [27–30]. Fungi associated with sponges have shown 
the ability to produce unique and biologically active structures. On 
this basis, utilizing appropriate biotechnology to isolate metabolite 

Figure 1. An overview of research related to sponge-associated fungi with 
antibacterial and anti-biofilm activity. January 2023*.

Figure 2. The distribution of the family of sponge-associated fungi with 
antibacterial and biofilm inhibitors activity (N = 55).

Figure 3. The distribution of the genus sponge-associated fungi with 
antibacterial and antibiofilm activity. (A) Family Trichocomaceae (B) Other 
than Trichocomaceae.
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Genus Aspergillus 
Aspergillus contains various chemical metabolites 

likely to be developed into new drugs, including antimicrobial 
properties. Marine life contains abundant resources, which thus 
caught the attention of many researchers. Studies on antibacterial 
chemicals generated by Aspergillus fungi associated with sponges 

are presented in Table 1. The compounds of averantine (1) 
and nidurufin (2) are anthraquinones isolated from the fungus 
Aspergillus versicolor associated with the sponge Petrosia 
sp. in the Jeju Sea, Korea. Both of them showed antibacterial 
activity against gram-positive clinical isolate bacteria, including 
Staphylococcus aureus SG511, S. aureus 285, S. aureus 503, 

Table 1. Collected data from sponge-associated fungi with antibacterial activity. 

Fungi species Sponge source Compound Against bacteria Potency Refs

Aspergillus

Aspergillus versicolor Petrosia sp. Averantin Staphylococcus aureus SG511 (MIC) 3.13 µg/ml [33]

Nidurufin Staphylococcus aureus SG511 (MIC) 6.25 µg/ml

Averantin Staphylococcus aureus 285 (MIC) 3.13 µg/ml

Nidurufin Staphylococcus aureus 285 (MIC) 3.13 µg/ml

Averantin Staphylococcus aureus 503 (MIC) 1.56 µg/ml

Nidurufin Staphylococcus aureus 503 (MIC) 3.13 µg/ml

Averantin Streptococcus pyogenes 308A (MIC) 0.78 µg/ml

Nidurufin Streptococcus pyogenes 308A (MIC) 3.13 µg/ml

Aspergilus flavus 
GU815344

Callyspongia spp. Desmethylnomifensine Staphyloccocus aureus DOI (27.0 mm) [35]

Unidentified Escherichia coli DOI (42.9 mm)

Aspergillus clavatus 
MFD15

Unidentified 1H-1,2,4 Triazole 3- 
carboxaldehyde 5- methyl

Escherichia coli (MIC) 800 ± 10 µg/ml [47]

Staphyloccocus epidermidis (MIC) 1,600 ± 6 µg/ml

Aspergillus sp. Xestospongia 
testudinaria

Aspergiterpenoid A Staphylococcus albus (MIC) 1.24 µg/ml [45]

(Z)-5-(Hydroxymethyl)-2-
(6′-methylhept-2′-en-2′-yl)-
phenol

Bacillus cereus (MIC) 2.33 µg/ml

(−)-Sydonic acid (MIC) 0.66 µg/ml

(−)-5-(Hydroxymethyl)-2-
(2′,6′,6′-trimethyltetrahydro-
2H-pyran-2-yl)-phenol

(MIC) 0.62 µg/ml

(−)-Sydonic acid Escherichia coli (MIC) 1.33 µg/ml

(Z)-5-(Hydroxymethyl)-2-
(6′-methylhept-2′-en-2′-yl)-
phenol

(MIC) 2.33 µg/ml

Aspergiterpenoid A (MIC) 4.72 µg/ml

(−)-Sydonol (MIC) 5.04 µg/ml

(−)-Sydonic acid Micrococcus tetragenus (MIC) 5.33 µg/ml

(Z)-5-(Hydroxymethyl)-2-
(6′-methylhept-2′-en-2′-yl)-
phenol

(MIC) 2.33 µg/ml

Aspergiterpenoid A (MIC) 2.36 µg/ml

(−)-Sydonol (MIC) 0.32 µg/ml

(−)-Sydonic acid Vibrio parahaemolyticus (MIC) 2.66 µg/ml

(−)-Sydonic acid Vibrio anguillarum (MIC) 1.33 µg/ml

Aspergillus versicolor 
MF359

Hymeniacidon perleve 5-methoxydihydro

sterigmatocystin

Staphylococcus aureus  
(ATCC 6538)

(MIC) 12.6 µg/ml [34]

Bacillus subtilis 
(ATCC 6633)

(MIC) 3.125 µg/ml

(Continued)
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Fungi species Sponge source Compound Against bacteria Potency Refs

Aspergillus sydowii 
ZSDS1-F6

Unidentified Aspergillusene A Klebsiella pneumonia (MIC) 21.4 µM [44]

Z)-5-(Hydroxymenthyl)-2-
(6′-methylhept-2′-en-2′-yl)-
phenol

(MIC) 10.7 µM

diorcinol (MIC) 21.7 µM

Aspergillusene A Aeromonas hydrophila (MIC) 4.3 µM

sydonic acid Enterococcus faecalis (MIC) 18.8 µM

Aspergillus 
sp. SCSIO 
XWS03F03

Unidentified Secalonic acid D Staphyloccocus aureus ATCC 
29213

(MIC) 7.19 μM [122]

Mycobacterium tuberculosis (MIC) 1.26 μM

Aspergillus flavus Acanthostrongylophora 
ingens

Unidentified Bacillus subtilis (DOI) 14.4 mm [37]

Staphylococcus epidemidis (DOI) 11.5 mm

Salmonella typosa (DOI) 10.23 mm

Escherichia coli (DOI) 14.75 mm

Aspergillus candidus 
KUFA0062

Epipolasis sp. Preussin Staphylococcus aureus ATCC 
29213

(MIC) 32.0 µg/ml [39]

Enterococcus faecalis ATCC29212 (MIC) 32.0 µg/ml

MRSA (MIC) 32.0 µg/ml

vancomycin-resistant enterococci 
(VRE) strains

(MIC) 32.0 µg/ml

Aspergillus fumigatus 
HNMF0047

Unidentified 16-O-propionyl-16-O-
deacetylhelvolicaci

Streptococcus agalactiae (MIC) 16.0 µg/ml [43]

6-O-propionyl-6-O-
deacetylhelvolic acid

(MIC) 2.0 µg/ml

helvolic acid (MIC) 8.0 µg/ml

Aspergillus oryzae Chelonaplysilla sp Unidentified Staphylococcus aureus (DOI) 8.83 ± 1.01 mm [46]

Escherichia coli (DOI) 8.54 ± 1.00 mm

Aspergillus mellinus Unidentified Staphylococcus aureus (DOI) 16.69 ± 0.51 mm [46]

Escherichia coli (DOI) 16.88 ± 0.57 mm

Aspergillus candidus 
OUCMDZ-1051

Unidentified marine 
sponge (XS-3)

4-O-methylcandidusin A Escherichia coli ATCC 11775 (MIC) 10.0 µg/ml [40]

Enterobacter aerogenes ATCC 
13408

(MIC) 73.28 µg/ml

Pseudomonas aeruginosa ATCC 
10145

(MIC) 73.28 µg/ml

Staphylococcus aureus (MIC) 73.28 µg/ml

Aspergillus flavus 
strain MC-10-L

Stylissa flabelliformis Unidentified Staphylococcus aureus ATCC 
25923

(MIC) 942.0.0 µg/ml [38]

Escherichia coli ATCC 25922 (MIC) 557.0 µg/ml

Enterococcus faecalis ATCC 
29212

(MIC) 363.0 µg/ml

Bacillus subtilis ATCC 6633 (MIC) 1,169.0 µg/ml

Aspergillus fumigatus Stylissa flabelliformis Unidentified Staphylococcus aureus ATCC 
25923

(MIC) 856.0 µg/ml [38]

Escherichia coli ATCC 25922 (MIC) 1,203.0 µg/ml

Enterococcus faecalis ATCC 
29212

(MIC) 339.0 µg/ml

Bacillus subtilis ATCC 6633 (MIC) 1,137.0 µg/ml

(Continued)
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Fungi species Sponge source Compound Against bacteria Potency Refs

Aspergillus flavipes 
KUFA1152

Mycale sp Aspulvinones B’ Enterococcus faecalis ATCC 
29212

(MIC) 16.0–32.0 µg/ml [48]

Staphylococcus aureus ATCC 
29213

(MIC) 16.0 µg/ml

Aspulvinones H Enterococcus faecalis ATCC 
29212

(MIC) 32.0 µg/ml

Staphylococcus aureus ATCC 
29213

(MIC) 16.0 µg/ml

Aspulvinones R Enterococcus faecalis ATCC 
29212

(MIC) 8.0 µg/ml

Staphylococcus aureus ATCC 
29213

(MIC) 8.0 µg/ml

Aspulvinones S Enterococcus faecalis ATCC 
29212

(MIC) 8.0 µg/ml

Staphylococcus aureus ATCC 
29213

(MIC) 4.0 µg/ml

Aspulvinones T Enterococcus faecalis ATCC 
29212

(MIC) >64.0 µg/ml

Staphylococcus aureus ATCC 
29213

(MIC) >64.0 µg/ml

Aspergillus nomius Unidentified Unidentified Staphylococcus aureus (MIC) 6.25 µg/ml [123]

Aspergillus stellatus 
KUFA 2017

Mycale sp. 5[(3E,5E)-nona-3,5-dien-1-
yl]-benzene

Staphylococcus aureus ATCC 
29213

(MIC) 32.0 µg/ml [49]

Enterococcus faecalisB3/101 
(VRE)

(MIC) 16.0 µg/ml

Staphylococcus aureus 74/24 
(MRSA)

(MIC) 16.0 µg/ml

Enterococcus faecalis ATCC 
29212

(MIC) 16.0 µg/ml

Penicillium

Eupenicillium sp. Axinella sp. Alphabeta-
dehydrocurvularin

Staphyloccocus aureus (MIC) 375.0 µg/ml [124]

Penicillium sp. FF001 Melophus sp. citrinin MRSA ATCC10537 (MIC) 1.95 µg/ml [52]

rifampicin-resistant 

Staphylococcus aureus

(MIC) 0.97 µg/ml

Vancomycin-resistant 
Enterococcus faecium

(MIC) 1.95 µg/ml

Penicillium 
adametzioides AS-53

Unidentified Lapatins B Vibrio harveyi (MIC) 16.0 µg/ml [56]

Glyantrypine (MIC) 32.0 µg/ml

verruculogen (MIC) 32.0 µg/ml

Penicillium. 
adametzioides AS-53

Unidentified Adametizines A Staphyloccocus aureus (MIC) 8.0 µg/ml [55]

Aeromonas hydrophilia (MIC) 8.0 µg/ml

Vibrio harveyi (MIC) 32.0 µg/ml

Vibrio parahaemolyticus (MIC) 8.0 µg/ml

Gaeumannomyces graminis (MIC) 16.0 µg/ml

adametizines B Staphyloccocus aureus (MIC) 64.0 µg/ml

Penicillium 
erubescens 
KUFA0220.

Neopetrosia sp. GKK1032B Enterococcus faecalis 
ATCC29212

(MIC) 8.0 µg/ml [58,59]

(Continued)
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Fungi species Sponge source Compound Against bacteria Potency Refs

Enterococcus faecium 
ATCC19434

(MIC) 16.0 µg/ml

Staphylococcus aureus 
ATCC29213

(MIC) 32.0 µg/ml

vancomycin-resistant 
Enterococcus faecalis (VRE) 
B3/101

(MIC) 8.0 µg/ml

Enterococcus faecium 1/6/63 
(VRE)

(MIC) 32.0 µg/ml

MRSA 66/1 (MIC) >64.0 µg/ml

Erubescensoic acid Gram-negative NA

Gram-positive NA

MDR strains NA

Penicillium 
simplicissimum

Chelonaplysilla sp. Unidentified Staphylococus aureus (DOI) 11.96 ± 0.79 mm [46]

Escherichia coli (DOI) 12.29 ± 0.72 mm

Penicillium citrinum 
MN859968

Dactylospongia sp. Unidentified Escherichia coli (DOI) 15.50 ± 0.30 mm [125]

Staphylococcus aureus (DOI) 16.14 ± 0.75 mm

Penicillium 
citrinumstrain WK-P9

Suberea sp. Penicitrinone A Mycobacterium smegmatis 
ATCC607

(MIC) 32.0 µg/ml [57]

Penicitrinol J Bacillus subtilis JH642, (MIC) 16.0 µg/ml

Bacillus megaterium DSM32, (MIC) 16.0 µg/ml

Mycobacterium smegmatis 
ATCC607

(MIC) 32.0 µg/ml

Penicillium sp. Stylissa flabelliformis Unidentified Staphylococcus aureus ATCC 
25923

(MIC) 1,343.0 µg/ml [38]

Escherichia coli ATCC 25922 (MIC) 719.0 µg/ml

Enterococcus faecalis ATCC 
29212

(MIC) 800.0 µg/ml

Bacillus subtilis ATCC 6633 (MIC) 1,333.0 µg/ml

Penicillium 
chrysogenum

Cliona sp. Unidentified Staphyloccocus aureus ATCC 
5368

(MIC) 250.0 ± 0.82 µg/
ml

[126]

Escherichia coli ATCC 10536 NA

Neosartorya

Neosartorya 
paulistensis (KUFC 
7897)

Chondrilla australiensis Sartorypyrone C Staphylococcus aureus ATCC 
25923

(MIC) 128.0 µg/ml [127]

Bacillus subtilis ATCC 6633 (MIC) 128.0 µg/ml

Pseudomonas aeruginosa ATCC 
27853

(MIC) 128.0 µg/ml

Escherichia coli ATCC 25922 (MIC) 128.0 µg/ml

Tryptoquivalines L Staphylococcus aureus ATCC 
25923

(MIC) 128.0 µg/ml

Bacillus subtilis ATCC 6633 (MIC) 128.0 µg/ml

Pseudomonas aeruginosa ATCC 
27853

(MIC) 128.0 µg/ml

Escherichia coli ATCC 25922 (MIC) 128.0 µg/ml

Tryptoquivalines H Staphylococcus aureus ATCC 
25923

(MIC) 128.0 µg/ml

Bacillus subtilis ATCC 6633 (MIC) 128.0 µg/ml

(Continued)
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Fungi species Sponge source Compound Against bacteria Potency Refs

Pseudomonas aeruginosa ATCC 
27853

(MIC) 128.0 µg/ml

Escherichia coli ATCC 25922 (MIC) 128.0 µg/ml

Tryptoquivalines F Staphylococcus aureus ATCC 
25923

(MIC) 128.0 µg/ml

Bacillus subtilis ATCC 6633 (MIC) 128.0 µg/ml

Pseudomonas aeruginosa ATCC 
27853

(MIC) 128.0 µg/ml

Escherichia coli ATCC 25922 (MIC) 128.0 µg/ml

Neosartorya glabra 
KUFA 0702

Mycale sp. Sartoryglabramide A Escherichia coli ATCC 25922 (MIC) >256.0 µg/ml [63]

Sartoryglabramide B Escherichia coli ATCC 25922 (MIC) >256.0 µg/ml

fellutanine A Escherichia coli ATCC 25922 (MIC) >256.0 µg/ml 

sartoryglabramide A Staphylococcus aureus ATCC 
25923

(MIC) >256.0 µg/ml

Sartoryglabramide B Staphylococcus aureus ATCC 
25923

(MIC) >256.0 µg/ml 

Fellutanine A Staphylococcus aureus ATCC 
25923

(MIC) >256.0 µg/ml 

Neosartorya 
quadricincta KUFA 
0081

Clathria reinwardti Polyketide derivates

Benzoic acid derivates

Gram positive and negative 
bacteria

(MIC) >256.0 µg/ml [128]

Neosartorya 
fennelliae KUFA 0811

Clathria reinwardtii paecilin E Staphylococcus aureus ATCC 
29213

(MIC) 32.0 µg/ml [65]

Dankasterone A Enterococcus faecalis ATCC 
29212

(MIC) 16.0 µg/ml

Dankasterone A Staphylococcus aureus ATCC 
29213

(MIC) >64.0 µg/ml

Dankasterone A Enterococcus faecalis ATCC 
29212

(MIC) 32.0 µg/ml

Neosartorya spinosa 
KUFA 1047 

Mycale sp. Penipurdin A Enterococcus faecalis ATCC 
29212

(MIC) >64.0 µg/ml [65]

Tenellic acid C (MIC) >64.0 µg/ml

neospinosic acid (MIC) >64.0 µg/ml

spinolactone (MIC) >64.0 µg/ml

vermixocin A (MIC) >64.0 µg/ml

Penipurdin A Enterococcus faecalis B3/101 
(VRE)

(MIC) >64.0 µg/ml

Tenellic acid C (MIC) >64.0 µg/ml

neospinosic acid (MIC) >64.0 µg/ml

Spinolactone (MIC) >64.0 µg/ml

vermixocin A (MIC) >64.0 µg/ml

Penipurdin A Staphylococcus aureus ATCC 
29213

(MIC) >64.0 µg/ml

Tenellic acid C (MIC) >64.0 µg/ml

neospinosic acid (MIC) >64.0 µg/ml

spinolactone (MIC) >64.0 µg/ml

vermixocin A (MIC) >64.0 µg/ml

Penipurdin A Staphylococcus aureus 66/1 
(MRSA)

(MIC) >64.0 µg/ml

Tenellic acid C (MIC) >64.0 µg/ml

neospinosic acid (MIC) >64.0 µg/ml

(Continued)
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spinolactone (MIC) >64.0 µg/ml

vermixocin A (MIC) >64.0 µg/ml

Trichoderma

Trichoderma sp 
05FI48

Unidentified Trichoderins A Mycobacterium smegmatis (MIC) 0.1 µg/ml [70]

Trichoderins A1 Mycobacterium smegmatis (MIC) 1.56 µg/ml

Trichoderins B Mycobacterium smegmatis (MIC) 0.63 µg/ml

Trichoderins A Mycobacterium bovis BCG (MIC) 0.02 µg/ml

Trichoderins A1 Mycobacterium bovis BCG (MIC) 0.16 µg/ml

Trichoderins B Mycobacterium bovis BCG (MIC) 0.02 µg/ml

Trichoderins A Mycobacterium tuberculosis 
H37Rv

(MIC) 0.12 µg/ml

Trichoderins A1 Mycobacterium tuberculosis 
H37Rv

(MIC) 2.0 µg/ml

Trichoderins B Mycobacterium tuberculosis 
H37Rv

(MIC) 0.13 µg/ml

Trichoderma 
atroviride NF16

Axinella sp. Trichorzianines (1-12) Staphylococcus albus 
Bacillus subtilis

(MIC) 50.0–200.0 

µg/ml

[73]

Trichoderma 
koningii PF04

Phakellia fusca Hypofurans A Staphylococcus aureus  
ATCC25923

(MIC) 32.0 µg/ml [76]

N-isobutyl-2 
phenylacetamide

(MIC) 32.0 µg/ml

Citrantifidiol (MIC) 32.0 µg/ml

Trichoderma 
asperellum BK261A

Cinachyrella sp. Unidentified MDR Escherichia coli NA [78]

Trichoderma reesei 
MG547722.1

Cinachyrella sp. Unidentified Extended-spectrum β-lactamase 
(ESBL) Escherichia coli

(DOI) 9.09 ± 0.14 mm [78]

Salmonella enterica ser. Typhi (DOI) 14.78 ± 0.0 mm

MRSA (DOI) 7.40 ± 0.14 mm

Staphylococcus haemolyticus (DOI) 6.81 ± 0.11 mm

Trichoderma 
reesei (HN-2016-018)

Unidentified Gliocladinin D Staphylococcus aureus ATCC 
25922

NA [129]

Escherichia coli  
ATCC 25923 

NA

Pseudomonas aeruginosa  
ATCC 27853

NA

2-(2′-hydroxypropyl)-5-
methyl-7 hydroxychromone

Staphylococcus aureus ATCC 
25922

NA

Escherichia coli 

ATCC 25923 

NA

Pseudomonas aeruginosa  
ATCC 27853

NA

Pachybasin Staphylococcus aureus ATCC 
25922

NA

Escherichia coli  
ATCC 25923 

NA

Pseudomonas aeruginosa ATCC 
27853

NA

(Continued)
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Emodin Staphylococcus aureus 
ATCC 25922

NA

Escherichia coli  
ATCC 25923 

NA

Pseudomonas aeruginosa  
ATCC 27853

NA

Vertinolide Staphylococcus aureus ATCC 
25922

NA

Escherichia coli  
ATCC 25923 

NA

Pseudomonas aeruginosa  
ATCC 27853

NA

Trichoderma reesei 
TV221

Stylissa flabelliformis Unidentified Escherichia coli  
ATCC 25922

(DOI) 14.37 mm [79]

Staphylococcus aureus  
ATCC 25923

(DOI) 17.67 mm

Trichoderma reesei 
JCM 2267

Stylissa flabelliformis Unidentified Staphylococcus aureus 
ATCC 25923

(MIC) 344.0 µg/ml [38]

Escherichia coli  
ATCC 25922

(MIC) 144.0 µg/ml

Enterococcus faecalis  
ATCC 29212

(MIC) 63.0 µg/ml

Bacillus subtilis  
ATCC 6633

(MIC) 516.0 µg/ml

Other genus

Curvularia lunata Niphates olemda 1,3,8-Trihydroxy-6-
methoxyanthraquinone 
(lunatin)

Escherichia coli (DOI) 11.0 mm [80]

Escherichia coli  
HBI-101

(DOI) 10.5 mm

Bisanthraquinone  
cytoskyrin A

Escherichia coli (DOI) 11.0 mm

Escherichia coli  
HBI-101

(DOI) 9.0 mm

Exophiala sp. Halichondria panicea Chlorohydroaspyrones A Staphyloccocus aureus (MIC) 62.5 µg/ml [81]

Chlorohydroaspyrones B Staphyloccocus aureus (MIC) 62.5 µg/ml

Chlorohydroaspyrones A MRSA (MIC) 125.0 µg/ml

Chlorohydroaspyrones B MRSA (MIC) 125.0 µg/ml

Paecilomyces sp. Unidentified cholesteryl linoleate 
stigmasterol 
2,5-furandimethanol

MRSA (DOI) 18 ±0.2 mm [130]

Engyodontium album 
(IVB1b)

Ircinia variabilis 1-(4-hydroxybenzoyl)
indole-3-carbaldehyde (6)

Vibrio parahaemolyticus NA [84]

Rhinocladiella sp. 
(IO2)

Ircinia oros 2-hydroxymethyl-3-methyl-
7-methoxychromone (1)

Escherichia coli NA [84]

2-hydroxymethyl-3-tert-
butyl-7-methoxychromone 
(2)

Staphylococcus aureus NA

2,3-dimethyl-7-
methoxychromone (3)

Vibrio alginolyticus NA

3-(3-chloro-2-
hydroxypropyl)-8-hydroxy-
6-methoxy-isochromen-1-
one (4) 

Vibrio. anguillarum NA

(Continued)
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>100 μg/ml. This study also has been able to isolate hemiacetal 
sterigmatocystin, acyl-hemiacetal sterigmatocystin, and aversin 
[34]. The fungus Aspergilus flavus GU815344 derived from 
the sponge Callyspongia spp. in the sea of Kovalam, India, 
generates desmethylnomifensine (GC-MS verified) to serve as 
an antibacterial against S. aureus and E. coli. The inhibitory 
power of extracts derived from biomass is smaller than extracts 
from supernatants based on the diameter clear zone against 
E. coli and S. aureus bacteria [35]. Similar to the research by 
Samirana et al. [36], the supernatant extract from Trichoderma 
reesei TV 221 associated sponge Stylissa flabelliformis showed 
antibacterial activity better than the biomass extract. Aspergillus 
flavus IBI 141 and Aspergillus sp IBI 151 associated with the 
sponge Acanthostrongylophora ingens from Mendeh Island, 
south coast of West Sumatra, Indonesia, showed antibacterial 

and most sensitive to Streptococcus pyogenes 308A. Other 
compounds, including sterigmatocystin, which is a xantone, and 
methyl-averantin showed potential as potent antitumors against 
human tumor cells A-549, SK-OV-3, SK-MEL-2, XF-498, HCT-
15 indicated by IC50 values ranging from 0.41 to 4.61 μg/ml [33]. 
The cytotoxic activity of the averantin compound is likely due to 
the presence of free hydroxyl derivatives, which affect its polarity. 

Another strain from A. versicolor is MF359, derived 
from the sponge Hymeniacidon perleve in the Bohai Sea, China, 
isolated 5-methoxydihydrosterigmatocystin (3) and showed 
antibacterial activity against S. aureus ATCC 6538 and Bacillus 
subtilis ATCC 6633, which are better than the extract by the 
Minimum Inhibitory Concentration (MIC) values. In terms of 
its ability as an antibacterial against MRSA (clinical isolate) 
and Pseudomonas aeruginosa ATCC 15692, the MIC value was 

Fungi species Sponge source Compound Against bacteria Potency Refs

Pestalotiopsis 
heterocornis

Phakellia fusca pestaloisocoumarins A Bacillus subtilis (MIC) 50.0 µg/ml [16]

Pestaloisocoumarins B (MIC) 25.0 µg/ml

gamahorin (MIC) 100.0 µg/ml

Pestalachloride B (MIC) 3.0 µg/ml

pestalachloride E (MIC) 50.0 µg/ml

pestalalactone atropisomers (MIC) 50.0 µg/ml

pestaloisocoumarins A Staphylococcus aureus (MIC) 25.0 µg/ml

pestaloisocoumarins B (MIC) 25.0 µg/ml

gamahorin (MIC) 100.0 µg/ml

Pestalachloride B (MIC) 3.0 µg/ml

pestalachloride E (MIC) 25.0 µg/ml

pestalalactone atropisomers (MIC) 50.0 µg/ml

Fungal strain L14J Reniera japonica MNP-
2016

Unidentified Staphyloccocus aureus (DOI) 18–28 mm [131]

Phoma sp.135 Ectiplasia perox Cryptophomic acid Escherichia coli (MIC) 28 ± 0.4 µg/ml [83]

Bacillus subtilis (MIC) 32 ± 0.2 µg/ml

Staphylococcus aureus (MIC) 30 ± 0.4 µg/ml

Cryptotriol Escherichia coli (MIC) 17 ± 0.3 µg/ml

Bacillus subtilis (MIC) 20 ± 0.2 µg/ml

Staphylococcus aureus (MIC) 27 ± 0.2 µg/ml

Cryptodiol Escherichia coli (MIC) 20 ± 0.3 µg/ml

Bacillus subtilis (MIC) 30 ± 0.2 µg/ml

Staphylococcus aureus (MIC) 35 ± 0.3 µg/ml

Cladosporium 
halotolerans 
MN859971

Dactylospongia sp Unidentified Escherichia coli (DOI) 12.74 ± 0.45 mm [125]

Phomapsis sp. Chelonaplysilla sp. Unidentified Staphylococcus aureus (DOI) 15.92 ± 0.52 mm [46]

Pestaloisocoumarins B Escherichia coli (DOI) 16.33 ± 0.51 mm

Fusarium sp. LY019 Suberea mollis Fusaripyridines A Escherichia coli (MIC) 13. 61 µg/ml [82]

Staphylococcus aureus (MIC) 13. 61 µg/ml

Fusaripyridines B Escherichia coli (MIC) 14.73 µg/ml

Staphylococcus aureus (MIC) 14.73 µg/ml

This table organized in order of the most reported genus with antibacterial activity. MIC = Minimum Inhibitory Concentration. DOI = Diameter of Inhibition.  
NA = no activity.
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medium reported contain sesquiterpenes of bisabolen groups 
including aspergillusene A, (Z)-5-(Hydroxymenthyl)-2-(6′)-
methylhept-2′-en-2′-yl)-phenol, diorcinol, and sydonic acid [44]. 
Aspergillusene A, (Z)-5-(Hydroxymenthyl)-2-(6′-methylhept-
2′-en-2′-yl)-phenol, and diorcinol inhibit the bacterial growth 
of Klebsiella pneumonia and Aeromonas hydrophila. Except for 
aspergillusene, both compounds were against H3N2 with IC50 
of 57.4 and 66.5 μM. Compounds (Z)-5-(Hydroxymethyl)-2-(6′-
methylhept-2′-en-2′-yl)-phenol and (+)-sydonic acid were also 
found in the fungus Aspergillus sp. associated with the sponge 
Xestospongia testudinaria in the South China Sea [45]. Based 
on the identification and elucidation structure, the fungus also 
contains (−)5-(hydroxymethyl)-2-(2′,6′,6′-trimethyltetrahydro-
2H-pyran-2-yl)-phenol, Aspergiterpenoid A, and (+)-sydonol. 
These compounds show antibacterial activity with MIC values 
ranging from 1.25 to >20 μM against some bacteria (Table 1). 
All compounds showed weak cytotoxic effects (IC50 >50 μg/
ml) against human promyelocytic leukemia HL-60 and human 
lung carcinoma cell A-549. None of the compounds showed 
cholinesterase inhibitory activity. 

Sponge Chelonaplysilla sp., which was isolated from 
12 fungi-associated were Aspergillus oryzae, Phomompsis 
sp., Penicillium simplicissimum, Beauveria bassiana, and 
Aspergillus mellinus [46]. The extracts of A. oryzae and 
A. mellinus were more sensitive to S. aureus and E. coli, 
demonstrated by a diameter clear zone ranging from 8.54 to 
16.88 mm. The cytotoxic effect is shown by extracts from the 
fungus Phomompsis sp. with an IC50 value of 83.69 μg/ml. 
It was concluded that the fungus associated with the sponge 
Chelonaplysilla sp. can be utilized as a novel antibacterial and 
anticancer therapeutic agent. The fungal strain Aspergillus 
clavatus MFD15 yielded the compound 1H-1,2,4 Triazole 
3-carboxaldehyde 5-methyl, which exhibited antibacterial 
properties against Staphylococcus epidermidis and E. coli [47] 
with the MIC values of more than 500 μg/ml The strains showing 
MIC values exceeding 500 μg/ml indicated low efficacy. 

Prenylated phenylbutyrolactone group compounds, 
namely aspulvinone R, S, T, isolated from the fungus Aspergillus 
flavipes KUFA1152 associated with the sponge Mycale sp. 
from Samasean Island, Gulf of Thailand, Chonburi Province. 
Aspulvinone R (8) and aspulvinone S (9) exhibit potential as 
novel drugs for their antibacterial activity against E. faecalis 
ATCC 29212, S. aureus ATCC 29213, E. faecalis B3/101 (VRE), 
and S. aureus 66/1 (MRSA) evidenced by their MIC values 
ranging from 4.0 to 16.0 μg/ml [48]. Aspergillus stellatus KUFA 
2017 was also reported to be associated with the Mycale sp. The 
presence of 5[(3E,5E)-nona-3,5-dien-1-yl]-benzene (10) in the 
fungal extract has antibacterial activity against E. faecalis ATCC 
29212, E. faecalis B3/101 (VRE), S. aureus ATCC 29213, and 
S. aureus 74/24 (MRSA) with MIC values ranging from 16.0 to 
64.0 μg/ml. It also significantly inhibited nitric oxide production 
in lipopolysaccharide-induced raurine macrophage RAW264.7 
cells and was found to contain antibiofilm activity [49].

Genus Penicillium
Penicillium has been widely acknowledged and proven 

as an antibiotic since its discovery by Fleming [50]. Research 
on this genus has continued to expand the understanding of its 

activity against bacteria B. subtilis, Staphylococcus epidemidis, 
Salmonella typosa, and E. coli. It also has cytotoxic activity 
against shrimp larvae, with an LC50 value of 58.56 ppm. The 
compound class of the fungus A. flavus IBI 141 is phenolics and 
terpenoids [37]. 

Several fungi were isolated from the sponge S. 
flabelliformis, including T. reesei strain JCM 2267, A. flavus 
strain MC-10-L, Penicillium sp, and Aspergillus fumigatus 
[38]. Extracts from the fungus were tested for antibacterial 
ability against S. aureus ATCC 25923, E. coli ATCC 25922, 
Enterococcus faecalis ATCC 29212, and B. subtilis ATCC 6633. 
The MIC values of A. flavus fungal extract strain MC-10-L and 
A. fumigatus are presented in Table 1. The antibacterial activity 
of A. flavus and A. fumigatus fungi is found to be moderate. The 
cytotoxic ability of A. flavus strain MC-10-L extract against 
T47D tumor cells was shown with an IC50 value of 550 (mg/ml). 
Based on analysis with GC-MS, ethyl acetate extract from the 
fungus contains cyclohexanone, which requires further research. 

The compound preussin (4), as a class of hydroxy 
pyrrolidine alkaloids, was isolated from the fungus Aspergillus 
candidus KUFA 0062 associated with the sponge Epipolasis sp. 
originates from coral reefs in Similan Island National Park in 
Phang-Nga province, Southern Thailand. This preussin showed 
better inhibitory activity than its analogues, namely preussin 
C against bacteria S. aureus ATCC 29213, E. faecalis ATCC 
29212, MRSA, and vancomycin-resistant enterococci (VRE). 
Another activity shown by preussin was inhibited by almost 
50% biofilm formation from E. coli ATCC 25922 (42.8% ± 
32.7% control), S. aureus ATCC 29213, and E. faecalis ATCC 
29212 at concentrations equal to above MIC (Table 2), when 
preussin was combined with vancomycin antibiotics, oxacillin, 
and colistin showed a relatively strong synergistic effect. The 
cytotoxic effect of preussin can reduce the viability of colon 
cancer cells (6.4% and 8.6% in HCT116 and HT29). The 
presence of the N-methyl group on the pyrrolidine ring in 
preussin provides an antibacterial effect and cytotoxic activity. 
It can serve as a candidate for new antibiotics and anticancers. 
Other compounds isolated from this fungus are chrysophanic 
acid and petromurin C [39]. 

The p-terphenyl alcohol group, 4-O-methylcandidusin 
A, which was isolated from the fungus A. candidus 
OUCMDZ-1051, showed a potent and selective cytotoxic effect 
against MDA-MB-468, BT474, and A431 cancer cells. Its 
ability to inhibit the growth of E. coli bacteria is demonstrated 
by the MIC value of 10.0 µg/ml using the dilution method. 
Hence, it can potentially be developed as an anticancer and 
antibacterial [40]. Natural p-terphenyls have been widely 
reported, where the structural diversity is due to variations in 
ring B, position, and number of hydroxy groups [41,42]. The 
16-O-propionyl-16-O-deacetylhelvolic acid (5), 6-O-propionyl-
6-O-deacetylhelvolic acid (6), and helvolic acid (7) isolated 
from the fungus A. fumigatus HNMF0047 effective against 
Streptococcus agalactiae even though the MIC value was 
lower than tobramycin as a control. The 6-O-propionyl-6-O-
deacetylhelvolic acid has more potent antimicrobial effects than 
helvolic acid because propionyloxy replaces the acetoxy group 
at C-6 in helvolic acid [43]. Ethyl acetate extract from the fungus 
Aspergillus sydowii ZSDS1-F6 fermented using oligotropic 
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Table 2. Summary of research on sponge-associated fungi and their antibiofilm activity.

Fungi 
species Sponge source Compound Against bacteria Concentration 

(µg/ml)
Inhibition 

biofilm formation (%) Refs

Penicillium sp. F37 Axinella corrugata Dipeptide cis-cyclo 
(Leucyl-Tyrosyl

Staphylococcus 
epidermidis

ATCC 3598

0.25 60.0 [108]

0.5 65.0
1.0 85.0

Penicillium sp. 
SCSGAF 0023

Unidentified Eemodin Staphylococcus aureus 
ATCC 6538

12.5 91.00 ± 6.12 [111]

Citrinin 59.67 ± 8.05
Secalonic acids B 96.27 ± 0.96
Secalonic acids D 98.07 ± 1.12
Citreorosein 71.95 ± 1.45
Penicillixanthone A 91.25 ± 1.43

Aspergillus candidus 
KUFA0062

Epipolasis sp Preussin Staphylococcus aureus 
ATCC 29213 

Enterococcus faecalis 
ATCC 29212

32.0 42.8 ± 32.7 [39]

Penicillium 
erubescens 
KUFA0220.

Neopetrosia sp. GKK1032B Enterococcus faecalis 
ATCC 29212

NA NA [58,59]

Erubescenoic acid Pseudomonas 
aeruginosa  
ATCC 27853

NA NA

Staphyllococus aureus 
ATCC 29213 

NA NA

Enterococcus faecalis 
ATCC 29212

NA NA

Neosartorya spinosa 
KUFA 1047 

Mycale sp. Tenellic acid C Escherichia coli ATCC 
25922

64.0 16.11 [65]

Enterococcus faecalis 
ATCC 29212

64.0 24.11

Staphylococcus aureus 
ATCC 29213 

64.0 15.54

Neospinosic acid Escherichia coli ATCC 
25922

64.0 16.11

Staphylococcus aureus 
ATCC 29213 

64.0 44.0

Aspergillus flavipes 
KUFA1152

Mycale sp Aspulvinones B’ Enterococcus faecalis 
ATCC 29212

64.0 93.36 [48]

Staphylococcus aureus 
ATCC 29213 

64.0 100.0

Aspulvinones H Enterococcus faecalis 
ATCC 29212

64.0 96.6

Staphylococcus aureus 
ATCC 29213 

64.0 100.0

Aspulvinones R Enterococcus faecalis 
ATCC 29212

16.0 94.51

Staphylococcus aureus 
ATCC 29213 

16.0 96.77

Aspulvinones S Enterococcus faecalis 
ATCC 29212

16.0 87.87

Staphylococcus aureus 
ATCC 29213 

16.0 100.0

Aspergillus stellatus 
KUFA 2017

Mycale sp. 5[(3E,5E)-nona-3,5-dien-
1-yl]benzene

Enterococcus faecalis 
ATCC 29212

32.0 >90 [49]

Staphylococcus aureus 
ATCC 2921

32.0 >90

This table arrangement by the earliest year. NA = no activity.
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was also unable to inhibit biofilm formation against P. 
aeruginosa ATCC 27853, S. aureus ATCC 29213, E. faecalis 
ATCC 29212 (Table 2) [58,59].

Genus Neosartorya
Fungi belonging to the Neosartorya genus contain 

numerous metabolites, such as indole alkaloids, peptides, 
meroterpenes, and polyketides, with various biological 
activities, such as antimicrobial, anticancer, and so on [60,61]. 
Below is an overview of a study on the Neosartorya fungus and 
its antibacterial effect (Table 1). Mycale sp. sponge-associated 
with the fungus Neosartorya glabra KUFA 0702 originating from 
Samasean Island, Gulf of Thailand, contains cyclotetrapeptides 
group compounds, namely sartoryglabramides A (16), 
sartoryglabramides B (17), and new fellutanine A. In addition, 
this research reported that the compounds have never been 
isolated before from the genus Neosartorya associated with 
a sponge. Despite the lack of antibacterial activity against E. 
coli and S. aureus (MIC >256.0 μg/ml), it is important to note 
that these compounds may possess other significant biological 
properties. Several cyclopeptides have been shown to have 
antifungal and antibacterial activities. However, their potencies 
depend on the stereochemical configurations of the amino acid 
constituents [62,63].

Another fungus associated with Mycale sp. is 
Neosartorya spinosa KUFA1047 reported by de Sá [64] contains 
penipurdin A, tenellic acid C, neospinosic acid, spinolactone 
(18), vermixocin (the anthraquinones group). However, only 
spinolactone showed a bacteriostatic effect against E. faecalis 
B3/101, although lower than ceftazidime antibiotics. Paecilin 
E (19) and dankasterone A (20) compounds were isolated from 
supernatant extracts of the fungus Neosartorya fennelliae KUFA 
0811 in association with the sponge Clathria reinwardtii. Both 
showed antibacterial activity against S. aureus ATCC 29213 
and E. faecalis ATCC 29212, although the antibacterial effect 
of paecilin E was better than dankasterone A based on the 
MIC values. This study also assessed the impact of these two 
compounds on biofilm formation. The findings indicated that 
neither of these compounds exhibited an inhibitory effect on 
biomass production in the tested bacterial strains. In the future, 
it is necessary to test other biological activities to determine the 
pharmacological effects of these two compounds [65].

Genus Trichoderma 
Many species of Trichoderma produce metabolite 

compounds with various activities depending on the strain. 
This genus is widely recognized as a biological control agent 
against microorganisms either directly or indirectly. The volatile 
compounds, such as 1,2-Benzenedicarboxylic acid dibutyl ester, 
2H-Pyran-2-one, and palmitic acid produced by Trichoderma 
asperellum are known to serve as effective pesticides [66]. 
Another potential of Trichoderma species is for enhanced growth 
of plants, which is commonly used for agricultural purposes 
[67–69]. Trichoderin A (21), A1 (22), and B (23) (new amino 
lipopeptide) isolated from Trichoderma sp. 05FI48 exhibited 
potent antimycobacterial against Mycobacterium smegmatis, 
Mycobacterium bovis BCG, and Mycobacterium tuberculosis 
H37Rv according to the MIC values (under aerobic and hypoxic 

potential benefits on medication. Penicillium species provide 
a wide range of metabolite compounds and their biological 
activities either from terrestrial or marine environments [51]. 
Several publications regarding the antibacterial activity of the 
genus Penicillium fungi associated with sponges are listed in 
Table 1. Some studies summarized in this review did not isolate 
and identify the structure. Hence, which chemicals are involved 
in the pharmacological activity is still unclear, and additional 
investigation is required. 

The citrinin (11) was isolated from the fungus 
Penicillium sp. FF001 association with sponge Melophus 
sp., showing potent antibacterial activity against antibiotic-
resistant bacteria, such as MRSA ATCC 10537, rifampicin-
resistant S. aureus, and Vancomycin-resistant Enterococcus 
faecium [52]. Another potential of citrinin is antifungal 
activity against Cryptococcus neoformans (MIC 3.90 μg/
ml) and cytotoxic to shrimp larvae (LD50 96 μg/ml [52]. 
Penicillium crysogenum also produces citrinin and shows 
potent antibacterial against gram-positive and Gram-negative 
bacteria, and antifungal activity [53,54]. The fungal strain 
Penicillium adametzioides AS-53 was cultivated using Potato 
Dextrose Agar, resulting in two novel bisthiodiketopiperazine 
compounds, namely adametizines A (12) and B (13). 
Concurrently, the metabolites isolated from cultivation in 
rice media showed novel acorane sesquiterpenes, namely 
adametacorenols A and B. Adametizines A potential were 
developed as a novel antibacterial activity based on the 
MIC values, which were less than 16 μg/ml against bacteria 
S. aureus, Aeromonas hydrophilia, Vibrio harveyi, Vibrio 
parahaemolyticus, and Gaeumannomyces graminis. Cl 
substitution in C-7 enhances the cytotoxic effect on shrimp 
larvae and their antimicrobial activity [55]. Quinazolin 
group compounds, including Lapatins B, glyantrypine, and 
verruculogen were also isolated from these fungi [56].

Two citrinin-derived compounds, namely 
Penicitrinone A (14), were isolated and identified from Suberea 
sp. and found to be inhibited by Mycobacterium smegmatic 
ATCC607 bacteria (MIC 32 μg/ml). In contrast, Penicitrinol 
J (15) indicated the MIC values 16, 16, and 32 μg/ml for B. 
subtilis JH642, Bacillus megaterium DSM32, M. smegmatic 
ATCC607 [57]. Based on the MIC values, all compounds 
were classified as moderate. The presence of phenolics in 
the structure of penicitrinol increases its potential as an 
antibacterial. Penicillium erubescens KUFA0220 associated 
with sponge Neopetrosia sp. contains several metabolites 
including GKK1032B, citromycin, 12-methoxycitromycin, 
myxotrichin D, 12-methoxycitromycetin, anhydrofulvic 
acid, myxotrichin C, penialidin D, penialidin F, SPF-3059-
30, and secalonic acid A. Only the GKK1032B demonstrated 
the potential to serve as bacteriostatic against E. faecalis 
ATCC 29212 vancomycin-resistant E. faecalis (VRE) 
B3/101, E. faecium ATCC 19434, and E. faecium 1/6/63 
(VRE) with the MIC values between 8 and 16 mg/ml. A 
novel polyketide, namely erubescensoic acid, was also 
isolated from this fungus. The compound was also tested for 
inhibiting bacterial growth against Gram-negative, Gram-
positive, and MDR strains from the environment. The results 
showed that this compound had no activity. This compound 
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(31) isolated from Phoma sp.135 [83]. The indole alkaloid 
compound, namely 1-(4-hydroxybenzoyl)indole-3-carbaldehyde 
isolated from the fungus Engyodontium album (IVB1b) associated 
with the sponge Ircinia variabilis [84]. The isocoumarin 
derivative, known as 3-(3-chloro-2-hydroxypropyl)-8-hydroxy-
6-methoxy-isochromen-1-one was also isolated from the fungus 
Rhinocladiella sp. (IO2) with association with the sponge Ircinia 
oros. However, none of above mentioned showed antibacterial 
activity against E. coli, S. aureus, Vibrio alginolyticus, Vibrio 
anguillarum, V. harveyi, V. parahaemolyticus, Alternaria 
brassicae, and Fusarium graminearum. Inactive compounds 
against certain bacteria may have a different effect on other 
bacteria, which could be attributed to the compound’s ability to 
provide antibacterial effects due to many factors, such as genetic 
differences between every bacteria, concentration, and polarity of 
the compound tested [85,86]. 

Data from Table 1 indicates that the bacteria used 
in this study to determine the antibacterial effect of sponge-
associated fungi were Gram-positive and negative bacteria, 
both from reference strains and clinical isolates. Staphylococcus 
aureus (Gram-positive bacteria) and E. coli (Gram-negative) 
were the most common bacteria, which mainly caused 
nosocomial and many infectious diseases [87,88]. Antibiotic-
resistant microorganisms, such as MRSA, multidrug-resistant 
E. coli, and vancomycin-resistant enteroccocus (VRE) are 
known to increase the incidence of infections. This condition 
encourages researchers to look for new antibiotic agents using 
these bacterial species to solve the resistance problem.

Some methods are commonly used to examine 
antibacterial agent potential, such as dilution, diffusion, or 
others [89,90]. Each method has its own advantages and 
limitations, thus making it necessary to determine the most 
appropriate to use, depending on various factors, such as 
the availability of equipment and facilities, amount, and 
characteristics of the samples. The data on the diameter of 
the inhibition zone obtained from the diffusion method may 
not be able to determine the bactericidal and bacteriostatic 
effects compared to the microdilution method. However, it 
is revealed to be more convenient, more affordable, more 
applicable to many different microorganisms, and more 
easily interpreted [91,92]. It is necessary to recognize that 
different types of bacteria in bacterial testing can affect 
antibacterial potential, which is normally categorized based 
on the MIC value or inhibition diameter marked by the 
appearance of a clear zone. MIC is the lowest concentration 
that may inhibit any growth of microorganisms. On the basis 
of these values, the antibacterial activity is categorized as, 
i.e., 50–500 μg/ml is vigorous; 600–1,500 μg/ml is moderate; 
and >1,500 μg/ml indicates weak or inactivity [93,94]. 
Based on diameter inhibition, there are several categories of 
antibacterial strength. If the diameter is less than 8 mm, the 
organism is resistant. The diameter zone between 9 and 14 
mm is classified as sensitive, 15 to 19 mm is very sensitive, 
and more than 20 mm is deemed as extremely sensitive 
[95,96]. The compounds showed potent antibacterial activity 
from marine sponges associated with fungi shown in Figure 
4. Figure 4 shows that marine derive-fungi contain various 
compounds and have potential as antibacterial agents.

conditions). The mechanism of trichoderin A inhibits Adenosine 
triphosphate (ATP) production of bacteria [70,71], which may 
serve as a promising antidormant mycobacterial drug. The study 
conducted on Trichoderma atroviride NF16 associated with the 
sponge Axinella sp. from the eastern Mediterranean coast, Israel, 
showed the antibacterial potential of Trichorzianines (peptaibol 
group) against Staphylococcus albus and B. subtilis. Peptaibol is 
a linear peptide consisting of 5–20 amino acids, such as alpha-
aminoisobutyric acid. A large amount of peptide is found in the 
genus of Trichoderma and plays an essential role in the activity 
of Trichoderma spp as a biocontrol agent [72–75]. The furan 
derivatives, namely hypofurans A (24) and B, together with 
cyclopentanon derivatives, namely N-isobutyl-2-phenylacetamide 
(25), citrantifidiol (26) were extracted and isolated from the fungus 
Trichoderma koningii PF04 associated with the sponge Phakellia 
fusca originating Yongxing Island in the South China. Except for 
hypofurans B, all substances showed antibacterial activity with 
moderate potential against S. aureus ATCC25923 [76].

Sponge Cinachyrella sp. from the Panjang island, 
Central Java, Indonesia, was found to be associated with the 
fungus T. asperellum BK261A and T. reesei KU377472.1 showed 
antibacterial activity against MDR E. coli based on the diameter 
inhibition zone. Another sponge Cinachyrella sp., collected 
from Pandang Island, North Sumatra, Indonesia, associated with 
nine fungi, one of which is T. reesei MG547722.1 showed its 
potential in inhibiting clinical isolate bacteria, including ESBL 
E. coli, Staphylococcus haemolyticus strain MDR, MRSA and 
the highest antibacterial potential against Salmonella enterica 
ser. Typhi [77,78]. Some fungi from the genus of Trichoderma, 
such as T. reesei TV221 and T. reesei JCM 2267, associated 
with sponge S. flabelliformis showed antibacterial activity with 
various categories from moderate to weak based on MIC and 
DOI values [38,79] (Table 1). Unfortunately, all the above-
mentioned research did not report the isolated compounds 
responsible for the antibacterial activities.

Another genus
The screening articles related to sponge-associated 

fungi reported that fungi from genera other than those mentioned 
above showed antibacterial activity (Table 1). Ethyl acetate 
extract from Curvularia lunata associated with Niphates olemda 
sponge from Bali Bata National Park, Indonesia, produced 
a potent antrakinon, namely lunatin (32) and cytoskyrin A 
(bisanthraquinone) to serve as antibacterial activity against 
S. aureus, E. coli, and B. subtilis although it may not show 
potential antifungal activity against Candida albicans [80]. The 
aspiron-derived compounds known as Chlorohydroaspyrones A 
(27) and B (28) were proven to inhibit the growth of S. aureus 
and MRSA bacteria with MIC values of 62.5 and 125 μg/ml 
[81]. This fungal organism also produces polyketide substances 
such as aspirin, asperlactone, and penicillin acid, although 
their activity is not well reported. Fusaripyridines A and B 
(dimeric alkaloids) isolated from Fusarium sp. LY019 denoted 
antifungal activity against C. albicans at MIC 8.0 μM, but their 
antibacterial activity was classified as moderate which could 
serve as a guide for finding new drugs [82]. 

Other compounds that develop potential as antibacterial 
agents are cryptophomic acid (29), crytotriol (30), and cryptodiol 
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Tenellic acid C and neospinosic acid, both isolated from 
N. spinosa KUFA 1047, are potentially developed as antibiofilm 
agents due to their ability to suppress biofilm production of E. 
coli ATCC 25922 and S. aureus ATCC 29213. Neospinosic acid 
particularly showed the most potent inhibition, up to 44% for S. 
aureus ATCC 29213 biofilm formation (Table 2), and the viability 
of biofilm decreased by 98% after 8 hours of incubation, even 
though after 24 hours, the decrease in viability was only 10%. 
This phenomenon may occur because bacteria adapt genetically 
and phenotypically [65]. The prenylated phenylbutyrolactones, 
identified as Aspulvinones B’, Aspulvinones H, Aspulvinones 
R, Aspulvinones S, and Aspulvinones T isolated from A. 
flavipes KUFA1152 showed antibiofilm activity to E. faecalis 
ATCC 29212 and S. aureus ATCC 29213 bacteria (Table 2). 
The presence of prenyl substituents in ring A of compounds 
Aspulvinones R and Aspulvinones S may be responsible for 
antibacterial activity and inhibition of biofilm formation. 
Nevertheless, none of the compounds exhibited synergistic 
effects with antibiotics against multidrug-resistant bacteria. 

Another strain was isolated from Mycale sp, A. 
stellatus KUFA 2017, contains 5[(3E,5E)-nona-3,5-dien-1-yl]
benzene can inhibit biofilm formation almost 99% on E. faecalis 
ATCC 29212 and S. aureus ATCC 2921 [48,49] (Table 2). 
These compounds may develop as new drugs for antibacterial 

Sponge-associated fungi as a source of antibiofilm 
Superbugs have become a global health issue and 

contribute to morbidity and mortality rates. Superbugs are 
described by the increased immunity of microbes to several 
types of antibiotics. It may occur naturally in bacteria when 
their genes evolve. Another reason for increasing resistance 
is biofilm formation, which makes treating infectious diseases 
more difficult, and thus makes it necessary to develop 
strategies to eradicate superbugs effectively [97–100]. Biofilm 
is microorganism communities that adhere to the surface and 
form an extracellular matrix known as extracellular polymeric 
substance (EPS) consisting of polysaccharides, various proteins, 
lipids, and DNA [101–103, 1]. Biofilm morphology depends on 
its constituent bacteria and conditions for biofilm formation. 

The cycle growth of biofilm formation begins with 
the initial attachment phases. Planktonic bacteria attached to a 
surface or devices initiate reversible or irreversible attachment. 
Microorganisms have specific signals to start biofilm formation. 
They prefer hydrophobic surfaces because they reduce the 
repulsive force between the bacteria and the surface, resulting 
in stronger adhesion. The next phase is microcolony formation, 
characterized by bacteria multiplying and biofilm EPSs 
production [2,104–106]. In the mature phase, biofilms develop 
entirely and, eventually multilayers. The cell density reaches 
a peak and forms a typical 3-D biofilm structure. After the 
biofilm reaches complete maturity, the dispersal step begins 
by releasing bacteria into the environment. The dispersal stage 
is essential in the biofilm life cycle because it promotes new 
biofilm initiation at other sites [1,107]. The biofilm life cycle is 
presented in Figure 5. In recent years, biofilm-related research 
has attracted many researchers, although studies on exploring 
marine-associated fungi and their potential as antibiofilm are 
still rare. The summarized data of sponge-derived fungi and their 
potential to serve as antibiofilm is shown in Table 2. A cis-cyclo 
(Leucyl-Tyro-syl) dipeptide was successfully isolated from 
Penicillium sp. associated with the sponge Axinella corrugata. 
The compound effectively inhibited biofilm formation of S. 
epidermidis ATCC 35984 up to 85% at a concentration of 1 mg/
ml and fully inhibited at 2 mg/ml. Observation of the biofilm 
structure by Scanning Electron Microscope (SEM) showed 
that the sample group treated with 1.0 mg ml dipeptide showed 
less intense EPS formation [108]. Diketopiperazines have 
many biological activities, such as antitumor and antiviral. 
Bacterial signaling systems, including quorum-sensing (QS), 
can be influenced by diketopiperazine [109,110]. Secalonic 
acid D (SAD) and B isolated from Penicillium sp. SCSGAF 
0023 effectively inhibits biofilm formation >90% at 6.25 µg/
ml against S. aureus ATCC 6538, although there is no effect 
on the P. aeruginosa PAO1 on the concentration up 100%. 
SAD showed a biofilm eradication effect at level 12.5 µg/
ml. The biofilm architecture of S. aureus, also influenced by 
SAD, showed a decrease in biofilm biomass and thickness by 
the dose-dependent. SAD can regulate the transcription level 
of biofilm-related genes. Nonetheless, other genetic studies are 
needed to clarify the mechanism of SAD inhibition of S. aureus 
biofilm formation [111], which concludes that SAD has the 
potential to develop as an antibiofilm agent.

Figure 4. Structure compounds from marine sponge derived-fungi with potent 
antibacterial activity [33,34,70,76,80,81,83,65,72,39,43,49,52,55,57,62,65].
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fungi with promising potential to develop as antibacterial or 
antibiofilm, including anthraquinones, sterigmatocystin analog, 
hydroxy pyrrolidine alkaloids, helvolic acid derivatives, lactones, 
prenylated phenylbutyrolactones, citrinin and derivatives, 
bisthiodiketopiperazine, cyclotetrapeptides, dihydrochromone 
dimer, amino lipopeptide, furan derivatives, aspiron-derivatives, 
halogenated metabolites, and alkaloids. Thorough research 
is required to determine the reliable mechanism of bioactive 
compounds, considering that the interaction between bacteria 
in biofilms is challenging to treat. Hence, exploring new 
antibacterial and antibiofilm agents derived from marine natural 
products has considerable value to drug development as a way to 
solve problems related to sponge availability. 
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