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INTRODUCTION

Due to its potential effects on health, oxidative stress 
(OS) has recently attracted a lot of attention. Reactive oxygen 
species (ROS) concentrations perpetually and continuously rise 

in oxidative stress (OS) [1]. Many diseases, including cancer, 
neurological disorders, hypertension, arteriosclerosis, diabetes, 
and infertility, are associated with OS [2,3]. Male infertility has 
been identified as one of the end products of OS in about 50% 
of the identified cases [4]. The reproductive system in males, 
especially the tissues in the testes, is prone to attacks from the 
invasion of OS because of the increased level of cell division that 
occurs as well as the demand placed on oxygen demand from 
the mitochondria [5–7]. The exposure of the sperm cells and the 
tissues in the testes to oxidative attack is made possible because 
of the increased content of unsaturated fatty acid, especially when 
the integrity of the antioxidant is been put at risk [8–11]. Excessive 
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ABSTRACT
There are various derivatives of cinnamic acid with pharmacological significance. Sodium 3-phenylpropanoate 
(KAD 1), a derivative of cinnamic acid, has also been synthesized and it is important to investigate its effects on 
iron-induced testicular injury in an ex vivo study. Evaluations were done on KAD 1’s l, l-diphenyl-2-picrylhydrazyl 
(DPPH) free radical scavenging activity, ferric-reducing antioxidant power, and iron chelating potential. Through 
the ex vivo incubation of tissue supernatant and 0.1 mM FeSO4 for 30 minutes at 37°C and various concentrations of 
KAD 1, oxidative testicular damage induced was treated. The scavenging property of KAD 1 increases significantly 
(p < 0.05) as the concentration increases when compared with the standard quercetin. The malondialdehyde, catalase, 
ATPase, as well as ENTPDase activities, were reduced when testicular damage was induced (p < 0.05). A significant 
rise in glutathione level was observed. Therefore, KAD 1 has the potential to treat and protect against oxidative 
testicular toxicity, as revealed by its capacity to control nucleotide hydrolysis and reduce oxidative stress. Thus, KAD 
1 may be a suitable potent modality, which can help treat testicular injury.
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Ex vivo studies

Experimental rats and organ preparation
We obtained healthy male Wistar rats (10–12 weeks 

old) from the Animal House, Bowen University, Iwo, Nigeria, 
weighing 250–300 g each. At room temperature (20°C–25°C), all 
animals were kept in cages with a 12/12–hour light-dark schedule. 
Softwood shavings were used as bedding inside the cages to absorb 
animal waste, and it was replaced frequently. Throughout this study, 
they had unrestricted access to water and constant food pellets 
(provided by Ladokun Feeds Nig. Ltd.). Before beginning the 
experimental methods, animals underwent a minimum of 1 week 
of acclimatization. The Guide for the Care and Use of Laboratory 
Animals’ guidelines were followed when conducting the exercise. 
All relevant national, institutional, and/or foreign regulations for 
the handling and use of animals were adhered to. In addition, 
the experiment was approved by the Institutional animal Ethics 
Committee at Bowen University, Iwo (BUI/BCH/2022/0002). Ten 
rats were euthanized with halothane, as described by Slott et al. 
[41], after being fasted the night before, and their testicles were 
then excised and homogenized in 1% Triton X-100 in 50 mM 
phosphate buffer. At a temperature of 40°C, the homogenate was 
centrifuged at 15,000 rpm. The supernatants were obtained in plain 
tubes for ex vivo research and were stored at −40°C. 

Testicular injury induction
The technique described by Ojo et al. [35,36] was 

used on injured testicles ex vivo with a few minor modifications. 
In essence, 100 μl of 0.1 mM FeSO4 and varied KAD 1 
concentrations (30, 60, 120, and 240 g/ml) were added to 
200 μl of the organ supernatant. The samples were used for 
biochemical examinations after being incubated for 30 minutes 
at 37°C. The positive control used reaction mixtures with only 
the organ supernatant, and the negative control used reaction 
mixtures with only the tissue supernatant and FeSO4.

Measurement of antioxidant activities

Level of glutathione (GSH)
600 ml of the tissue lysates were deproteinized with 10% 

trichloroacetic acid, according to Salau et al. [42]. The mixture 
was then centrifuged for 10 minutes at 3,500 rpm. 100 ml of the 
Ellman reagent and 500 ml of the sample were put into a clean 
test tube. After incubation for 5 minutes at 25°C, the absorbance 
was measured at 415 nm. The GSH was used as a reference.

Catalase (CAT) activity
The CAT activity analysis for KAD 1 was evaluated 

using the method described by Ojo et al. [35,36] with a minor 
modification. Several KAD 1 concentrations were present in 20 
ml of tissue samples, and 780 μl of 50 mM phosphate buffer was 
added to those samples. Hence, the absorbance was measured 
at 240 nm for 3 minutes at intervals of 1 minute after adding 
300 μl of 2 M H2O2.

Level of lipid peroxidation
KAD 1’s ability to prevent lipid peroxidation was 

evaluated using the procedure outlined by Ojo et al. [35,36]. 100 

Fe2+ in the system leads to testicular damage and hence reduced 
fertility rate [12]. Numerous animal studies have been reported 
involving elevated Fe2+ levels and testicular toxicity which has 
led to OS in the testes of the animals [12–15]. The morphological 
metamorphosis that occurs in the epididymis and sperm cells arises 
from the interaction that occurs between the iron and proteins, 
lipids as well as molecules in the DNA which, most times, results 
in infertility [16,17].

Plants have been identified and proven to be rich 
sources of phytochemicals, which are rich sources of antioxidants, 
preventing OS produced from exposure to Fe2+ [12]. The interest in 
herbal remedies has unexpectedly resurfaced as a result of the drive 
to comprehend and record the knowledge of ancient therapeutic 
systems [18,19]. Recently, due to some circumstances, interest 
in the study of natural product chemistry has increased. Only 
through studying the pharmacology of secondary metabolites from 
medicinal plants can the many therapeutic demands for bioactive 
molecules with few or no side effects be addressed [20]. Therefore, 
there is a pressing need to improve the methods for detecting 
biologically active natural products as well as those for isolating, 
purifying, characterizing, and altering the structural makeup of 
these active components [18,21]. 

The principal antioxidants found in medicinal plants 
are phenolics and flavonoids [3,22,23]. The diphenyl propane 
moiety, which consists of two distinctive aromatic rings linked 
by three carbon atoms and typically forms an oxygenated 
heterocycle, is responsible for their collective structural 
function [24–26]. Anthocyanidins, isoflavones, flavanones, and 
flavonols (or catechins) are the different types of flavonoids 
depending on the type of heterocycle involved [27,28]. Benzoic 
acid and cinnamic acid analogs are examples of phenolic acids 
[29–31]. Cinnamic acid and its derivatives are known for their 
various benefits because of their application in the management 
of different forms of diseases [32]. There are various derivatives 
of cinnamic acid, having a chemical composition of an acrylic 
acid group on an aromatic carboxylic acid [33–36]. Sodium 
3-phenylpropanoate (KAD 1) a derivative of cinnamic acid 
has also been synthesized and it is important to investigate its 
effects in iron-induced testicular injury in an ex vivo study.

MATERIALS AND METHODS

Materials and reagents chemicals
KAD 1 was obtained from the derivatization of 

cinnamic acid (CAS 140-10-3; Merck, Germany) from our 
previous study [37], while quercetin (CAS 117-39-5) was 
obtained from Santa Cruz Biotechnology, Heidelberg, Germany. 
All substances, including solvents, were of analytical grade. A 
spectrophotometer (Spectra Max Plus, Molecular Devices, CA, 
USA) was used to measure all absorbances.

In vitro antioxidant activity
KAD 1’s iron chelating activity was assessed using 

the standard procedure [38], and antioxidant potential via l, 
l-diphenyl-2-picrylhydrazyl (DPPH) was evaluated following 
the procedure described by Ruan et al. [39]. The ferric-reducing 
antioxidant power (FRAP) experiment was done following the 
guidelines provided by Benzie and Strain [40]. 



090 Ogunlakin et al. / Journal of Applied Pharmaceutical Science 14 (03); 2024: 088-094

mg/ml group having the highest CAT potential when compared 
to the other groups. Figure 6 showed that lipid peroxidation was 
induced in negative control with Fe2+. Furthermore, the level of 
malondialdehyde (MDA) in the testicular toxicity damage with 
KAD 1 reduced the lipid peroxidation activity considerably in a 
dose-dependent mode.

μl of tissue lysates with variable concentrations of KAD 1 were 
introduced progressively to 375 μl of 20% acetic acid, 1,000 μl 
of 0.25% thiobarbituric acid, and 100 μl of 8.1% sodium dodecyl 
sulphate (SDS). The reaction mixture was warmed up for 60 
minutes at 95°C (in a water bath). After the mixture had cooled 
to room temperature, the absorbance at 532 nm was measured.

Purinergic activity

Na/K+ ATPase enzyme activity
To measure the Na+/K+ ATPase activity, the procedure 

as described in Erukainure et al. [43] was slightly modified. In 
1.3 ml of 0.1 M Tris-HCl buffer, 200 μl of the organ lysate with 
various KAD 1 concentrations, 200 μl of 5 mM KCl, and 40 ml 
of 50 mM ATP were added. After being vigorously agitated for 
30 minutes at 37°C, the reaction mixture was added to 1 μl of 
distilled water, as well as 1 ml of 1.25% ammonium molybdate. 
After that, 1 ml of 9% ascorbic acid was added to the solution, 
which was then left at room temperature for 30 minutes. At 
660 nm, the absorbance was measured.

E-NTPDase enzyme activity
Ojo et al. [35,36] procedure, with some minor 

modifications, was used. 400 μl of a reaction mixture made up of 
1.5 mM CaCl2, 5 mM KCl, 0.1 mM ethylenediaminetetraacetic 
acid (EDTA), 45 mM Tris-HCl, 225 mM sucrose, and 10 mM 
glucose was added to 40 μl of tissue lysates containing different 
doses of KAD 1. After that, the mixtures were incubated for 
a further 10 minutes at 37°C. The solution was then kept at 
37°C using an electric-powered shaker after 40 μl of 50 mM 
adenosine triphposphate (ATP) was added. 400 μl of 10% 
trichloroacetic acid (TCA) was added to the mixture to halt the 
process. After an ice-based incubation period of 10 minutes, the 
absorbance at 600 nm was measured.

Data analysis
Software called Graphpad Prism 9.0.1 was used to 

analyze the data. The descriptive data were represented by the 
mean standard deviation (±SD). One-way ANOVA and Tukey’s 
post hoc analysis, at a significance level of p < 0.05 was used to 
compare the mean.

RESULTS 

Antioxidant activities
Figure 1 shows the DPPH scavenging radical ability 

of KAD 1. It is seen that the scavenging property increases 
significantly (p < 0.05) as the concentration increases when 
compared with the standard quercetin, which also had the same 
trend. KAD 1 displayed the capacity to mop up DPPH radicals 
(Figure 1), while Figure 2 displays the FRAP of KAD 1 and it 
was observed that the compound possesses a certain level of 
FRAP potential in a dose-dependent manner as compared to the 
standard that shows a higher quality in a dose-dependent mode 
significantly. From the highlight of KAD 1 Fe2+ chelating potential 
displayed in Figure 3, a trend was observed in a concentration-
dependent mode significantly when compared to the standard 
control, quercetin. The reduced GSH level is shown in Figure 4. 
The antioxidant CAT result is displayed in Figure 5 with the 30 

Figure 1. DPPH scavenging ability of KAD 1. Data are expressed as mean ± 
SD (n = 3).

Figure 2. KAD 1 impact on FRAP. Data are expressed as mean ± SD (n = 3).

Figure 3. Iron chelating ability of KAD 1. Data are expressed as mean ± SD 
(n = 3).
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ROS tends to endanger the antioxidant capacity of the system 
which ultimately leads to the production of radicals [49,50].

KAD 1 showed its antioxidant potential, displaying its 
potential to scavenge free radicals produced in the system. FRAP 
as well as Fe chelating was also measured in KAD 1 and found that 
it can reduce ferric ions. Previous reports have stated the danger 
observed in the testes after exposure to Fe2+, which has led to the 

Purinergic function
The impact of KAD 1 on ATPase activity is represented 

in Figure 7. This outcome reveals that the treated groups differ 
significantly (p < 0.05) from the negative control. The difference 
observed is the reduction in activity as the concentration of 
KAD 1 increases. ENTPDase activity is shown in Figure 8. 
The activity is shown to increase as compared to the negative 
control. Nevertheless, the group treated with 120 mg/ml shows 
to have the highest activity compared to other treatment groups.

DISCUSSION
Excessive generation of ROS is a major contributor 

to man sterility, and prostrate impotence [44]. Previous studies 
and research reported the importance of phytochemicals 
that act as antioxidants, which are lethal to the toxic ROS 
in the male reproductive organ [45–47]. Fe2+ triggers the 
production of radicals (such as hydroxyl and hydroperoxyl) 
through the contact it has with H2O2 that is manufactured in 
the mitochondria of the Fenton reaction respiratory pathway. 
The occurrence of these dangerous lethal chemicals in the cells 
could bring about a series of reactions that would then produce 
more ROS in the system [48]. Thereafter the increased level of 

Figure 4. KAD 1’s impact on GSH levels in iron-mediated oxidative testicular 
damage. Data are expressed as mean ±SD (n = 3), while * and # are statistically 
significant (p < 0.05) when compared to positive and negative controls, 
respectively.

Figure 5. KAD 1’s impact on CAT enzyme activity in iron-mediated oxidative 
testicular injury. Data are expressed as mean ±SD (n = 3), while *, **, and # are 
statistically significant (* # at p < 0.05 and ** at p < 0.01) when compared to 
positive and negative controls, respectively.

Figure 6. Impact of KAD 1 on MDA concentration in iron-induced testicular 
oxidative injury. Data are expressed as mean ±SD (n = 3), while * and # are 
statistically significant (p < 0.05) when compared to positive and negative 
controls, respectively.

Figure 7. Impact of KAD 1 on ATPase activity in iron-mediated oxidative 
testicular injury. Data are expressed as mean ±SD (n = 3), while * and # are 
statistically significant (p < 0.05) when compared to positive and negative 
controls, respectively.

Figure 8. Impact of KAD 1 on ENDTPase activity in iron-mediated oxidative 
testicular damage. Data are expressed as mean ±SD (n = 3), while * and # are 
statistically significant (* # at p < 0.05 and ** at p < 0.01) when compared to 
positive and negative controls, respectively.
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