
© 2024 Cherdsak Boonyong et al. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License 
(https://creativecommons.org/licenses/by/4.0/).

*Corresponding Author
Cherdsak Boonyong, Department of Medical Sciences, Faculty of Science, 
Pharmacology and Toxicology Unit, Rangsit University,  
Pathum Thani, Thailand. 
E-mail: Cherdsak.b @ rsu.ac.th

INTRODUCTION
P-glycoprotein (P-gp) is one of the ATP-binding 

cassette (ABC) transporters and acts as an efflux pump 
[1]. Encoded by the ABCB1 gene, it is found on the apical 
surface of epithelial tissues in various organs including the 
brain, gastrointestinal tract, liver, and kidney, and plays roles 
in the absorption, distribution, metabolism, and elimination 
of drugs and xenobiotics from cells [2]. In cancer cells, P-gp 

overexpression frequently occurs, resulting in decreased 
intracellular concentrations of chemotherapy drugs leading 
to drug resistance and treatment failure [3]. Some food or 
medicinal substances can inhibit the function of P-gp, causing 
drug-drug or food/herb-drug interactions [4–6], which might 
benefit the therapeutic effects by increasing the accumulation 
of anti-cancer drugs, especially P-gp substrates, and decreasing 
multidrug resistance of cancer cells [7,8]. 

A number of reports showed the effects of chemical 
constituents of herbal medicines and food supplements, such 
as benzophenones, flavonoids, lignans, naphthoquinones, and 
xanthones, on P-gp activity [9–15]. For example, long-term 
use of Ginkgo biloba extracts altered the pharmacokinetics of a 
beta-blocker, talinolol, in healthy volunteers because flavonoids 
in the plant extract could inhibit P-gp function [11]. Several 
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MD). The cells were sub-cultured every 3 days to maintain 
at approximately 70% confluence and were grown in DMEM 
complete medium, supplemented with 10% FBS, 1% non-
essential amino acids, 1% penicillin-streptomycin, and 2 mM 
L-glutamine, in a humidified incubator containing 5% CO2 at 
37°C [28].

Determination of the P-gp function
The P-gp function was determined based on the 

accumulation of substrate-based fluorescent probes using the 
calceine-AM uptake assay [15]. Caco-2 cells (passage no. 
51–65) were seeded at a density of 1.3 × 104 cells/cm2 in 24-
well plates. Fresh medium was supplied to the cells for 1 day 
after seeding and changed every 2 days for 21 days. The cells 
were washed three times with HBSS and then pretreated with 
guttiferone K (1.25–20 µM), oblongifolin C (1.25–20 µM), or 
verapamil (100 µM) for 30 minutes at 37°C. Then, the P-gp 
substrate calcein-AM (0.4 µM) was added and the mixture was 
incubated for another 30-minute period as the pre/co-treatment 
condition. At this step, endogenous esterases were allowed to 
hydrolyze the non-fluorescent calcein-AM into fluorescent 
calcein within the cells. After this incubation period, the cells 
were washed with ice-cold phosphate-buffered saline to stop 
the reaction and lysed with 1% Triton X-100. The fluorescence 
intensity was measured with a microplate reader (Wallac 1420 
VICTOR 3, PerkinElmer Inc., Hopkinton, MA) at wavelengths 
of 485 nm (excitation) and 535 nm (emission).

Prediction of P-gp substrate or P-gp inhibitor
The analysis of determining whether guttiferone 

K and oblongifolin C were P-gp substrate or P-gp inhibitor 
was performed computationally SwissADME and admetSAR 
programs [29,30]. Verapamil was used as a drug reference 
for P-gp substrate and inhibitor. The two-dimensional (2D) 
structures of compounds were drawn using ChemDraw 16 
(PerkinElmer, Waltham, MA) and converted into SMILES files. 
These files were submitted through http://www.swissadme.ch/ 
and http://lmmd.ecust.edu.cn/admetsar2.

Molecular docking
Computational modeling was utilized to investigate 

protein-ligand interactions between NBD1 (amino acid 
positions 398–602) of P-gp (PDB; 4Q9H) and compounds 
including guttiferone K, oblongifolin C, and verapamil [14]. 
Water molecules were removed from P-gp structure, and 
hydrogen atoms were added, followed by the addition of 

flavonoids, i.e., hesperidin, naringin, and quercetin, commonly 
found in fruits, vegetables, and herbal medicine, were studied 
in silico on their possible interference with P-gp function by 
interacting with the ATP-binding site on nucleotide-binding 
domain 1 (NBD1) [14]. St. John’s wort (Hypericum perforatum), 
widely used for its antidepressant effect, could increase P-gp 
expression and its drug efflux function in peripheral blood 
lymphocytes of healthy volunteers [16]. On the other hand, a 
number of food ingredients, including piperine, capsaicin, and 
sesamin, could both increase the mRNA expression and inhibit 
the function of P-gp in vinblastine-resistant colon carcinoma 
(LS-180V) cells [17].

Garcinia plants (family Clusiaceae) are distributed 
in Asia, America, Australia, tropical and southern Africa. In 
Thailand, asam gelugur (G. atroviridis), cowa mangosteen 
(G. cowa), mangosteen (G. mangostana), and ma-dan (G. 
schomburgkiana) have been utilized as medicinal and edible 
plants [18]. They have been used in traditional medicine to treat 
cough, constipation, menstrual disorders, and diabetes. These 
plants contain flavonoids, polyisoprenylated benzophenones, 
and xanthones which displayed anti-inflammatory, antifungal, 
antioxidant, anti-human immunodeficiency virus, antilipidemic, 
and cytotoxic activities [19]. Guttiferone K and oblongifolin C are 
two polyisoprenylated benzophenones isolated from the branches, 
wood, and bark of G. schomburgkiana [18,20–22]. They were 
also found in other Garcinia species, such as the fruits of G. 
yunnanensis [7] and G. cambogia [23]. Although both compounds 
exhibited remarkable anti-cancer properties by inducing apoptosis 
and autophagy in in vitro and in vivo studies [18,24,25]. Their 
effect on the P-gp function has not been investigated. Oblongifolin 
C has been shown to enhance the chemosensitivity of gemcitabine-
resistant pancreatic cancer to the drug [26]. In a previous study, 
both compounds could increase the P-gp expression in Caco-2 
cells [27]. Both compounds might be able to interact with P-gp 
function, and the present study aimed to first demonstrate the 
effect of guttiferone K and oblongifolin C on P-gp function in 
human colorectal adenocarcinoma (Caco-2) cells and utilize the 
computational prediction of P-gp substrate/inhibitor and molecular 
docking to elucidate their mechanism of action.

MATERIALS AND METHODS

Chemicals and reagents
Calcein acetoxymethyl ester (Calcein-AM), dimethyl 

sulfoxide (DMSO), Hank’s balanced salt solution (HBSS), 
non-essential amino acids, penicillin, streptomycin, Triton 
X-100, and verapamil were purchased from Sigma Chemical 
Co. (St.  Louis, MO). Dulbecco’s modified Eagle’s medium 
(DMEM), fetal bovine serum (FBS), and L-glutamine from 
Gibco Life Technologies (Grand Island, NY). Guttiferone K 
and oblongifolin C (Fig. 1) were isolated from the wood of G. 
schomburgkiana as previously described [18]. Stock solutions 
of these two compounds and verapamil were prepared by 
dissolving in DMSO and stored at −20°C before use.

Cell culture 
Caco-2 cell line American Type Culture Collection 

(ATCC®️ HTB-37™️) was obtained from (ATCC, Rockville, 

Figure 1. Chemical structures of guttiferone K and oblongifolin C.
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could be observed at higher concentrations of oblongifolin C 
and guttiferone K (2.5 and 10 µM, respectively). At similar 
concentrations of between 2.5–20 μM, oblongifolin C appeared 
to exhibit stronger inhibitory action on P-gp than guttiferone 
K. Guttiferone K, at 5, 10, and 20 μM, was about half as active 
as oblongifolin C. At the highest concentration of oblongifolin 
C (20 μM), it was able to increase the accumulation of calcein 
within Caco-2 cells to approximately 2 folds higher than that 
by verapamil.

Predicting properties of guttiferone K and oblongifolin C as 
P-gp substrate and P-gp inhibitor

The properties of guttiferone K and oblongifolin C 
as P-gp substrate/inhibitor was predicted computationally by 
SwissADME and admetSAR programs [29,30] in order to 
define their role against P-gp function. Our results (Table 1) 
showed that both of them could be P-gp substrates and P-gp 
inhibitors, similar to verapamil. 

Molecular docking of guttiferone K and oblongifolin C to 
ATP-binding region on NBD1 of P-gp 

The interaction between the P-gp inhibitor and the 
domains of ATP-binding region on NBD1 of P-gp plays critical 
roles in the inference of drug efflux action [14]. In this study, the 
interactions of guttiferone K, oblongifolin C, and verapamil with 
the amino acid residues of the ATP-binding site within NBD1 
were examined in silico [32]. As shown in Table 2, the binding 
free energy (ΔG) to the ATP-binding site on NBD1 of both 
guttiferone K (−6.87 kcal/mol) and oblongifolin C (−6.79 kcal/
mol) indicated their greater affinity than verapamil (−5.46 kcal/
mol). Similarly, both benzophenones displayed lower inhibitory 
constants (Ki) than verapamil by approximately 9–10 folds. All 
compounds could interact with the amino acid residues within 
the ATP-binding site on NBD1 via several intermolecular forces, 
such as hydrogen bond, alkyl-alkyl, pi-alkyl, pi-sigma, and Van 
der Waals interactions (Fig. 3 and Table 2). The best ligand 
was oblongifolin C, which could bind to the largest number of 
amino acids when compared to others by conventional hydrogen 
bonds (GLU472 and PRO473), alkyl-alkyl (VAL433, LEU439, 
and VAL468), pi-sigma (VAL474), and Van der Waals forces 
(GLN434, GLN437, SER470, GLN471, LEU475, GLU522, 
and LYS532). Guttiferone K also bounded to amino acids 
of NBD1 through alkyl-alkyl (CYS427), pi-alkyl (VAL403 
and ILE405), pi-pi T-shaped (TYR397), and Van der Waals 
interactions (AGR400, GLN404, GLY428, GLN434, SER430, 
THR431, and TYP440), whereas verapamil bound to the lowest 
number of amino acid residues within the same binding site 
via alkyl-alkyl interaction (VAL468) and Van der Waals forces 
(GLN437, SER470, and GLU472). 

Gasteiger charge through AutoDoc Suite 4.2.6 (TSRI, La Jolla, 
CA). Three-dimensional (3D) structures of the compounds and 
P-gp were transformed into Protein Data Bank with partial 
charge Q and atom type T format files. The grid box was set 
at a dimension of 100 × 100 × 100 Å to cover the ATP-binding 
region at NBD1. Docking simulation was performed with 
a Lamarckian algorithm by setting default parameters at 50 
times. The lowest binding energy (ΔG) and inhibition constant 
(Ki) were observed after docked simulation. The best ligand-
protein docking was visualized as 2D and 3D intermolecular 
interactions using Discovery Studio 2021 Client (BIOVIA, San 
Diego, CA).

Statistical analysis
Data were expressed as the mean ± SEM of three 

independent experiments. Statistical analysis was performed 
using a one-way analysis of variance, followed by Dunnett’s 
test. p < 0.05 was considered statistically significant.

RESULTS

Effect of guttiferone K and oblongifolin C on P-gp function
The effects of guttiferone K and oblongifolin C on 

P-gp function were evaluated in Caco-2 cells using calcein-AM 
uptake assay to determine the intracellular accumulation of the 
P-gp substrate calcein. The Caco-2 cell has been characterized 
as in vitro intestinal absorption model and used to identify the 
property of chemicals to be a substrate or inhibitor in guidance 
of the U.S. Food and Drug Administration and the European 
Medicines Agency [31]. Under our experimental condition, 
Caco-2 cells treated with the known P-gp inhibitor verapamil 
(100 µM) accumulated calcein at approximately three folds 
higher than in the control (Fig. 2). Both benzophenone-treated 
groups also displayed inhibition of P-gp function in a dose-
dependent manner. Although at a minimum concentration of 
1.25 µM both guttiferone K and oblongifolin C could not inhibit 
P-gp activity, significant inhibitory effect on P-gp function 

Figure 2. Effect of guttiferone K and oblongifolin C against P-gp activity in 
Caco-2 cells. Verapamil (Ver) at concentration of 100 µM was used as positive 
control. *p < 0.05 compared to control (CTR).

Table 1. Predicted properties of guttiferone K, oblongifolin C, and 
verapamil as P-gp substrate and P-gp inhibitor through SwissADME 

and admetSAR programs.

Properties Guttiferone K Oblongifolin C Verapamil

P-gp substrate 

P-gp inhibitor

Yes

Yes

Yes

Yes

Yes

Yes
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DISCUSSION
The polyprenylated benzophenones guttiferone K and 

oblongifolin C are major chemical constituents of the edible 
fruits of several Garcinia species, some of which are employed 
as traditional medicine [7,23,33]. They are also found in the bark 
and twigs of G. schomburgkiana which are utilized in traditional 
Thai medicine [21]. The plant extracts rich in each compound or 

both of them displayed anticancer activities in various cell and 
animal models [18,20–22]. These benzophenones showed high 
potential as chemotherapeutic agents in the future [7,24,34]. 
Nevertheless, their effects on cellular transport proteins such as 
P-gp need to be further investigated.

In this study, we observed inhibition of P-gp function 
by both guttiferone K and oblongifolin C. At the same 

Table 2. Molecular interactions of guttiferone K, oblongifolin C, and verapamil with the ATP-binding region on NBD1 of P-gp.

Parameters Guttiferone K Oblongifolin C Verapamil

Binding energy (ΔG; kcal/mol) −6.87 −6.79 −5.46

Inhibitory constant (Ki; µM) 9.19 10.52 99.44

Types of interactions

Conventional hydrogen bond SER396, SER399, VAL403, ILE405 
GLY426

GLU472, PRO473 SER905

Carbon hydrogen bond ILE897, GLU898

Alkyl-Alkyl TYP397, CYS427 VAL433, LEU439, VAL468, 
ARG901

VAL164, VAL468, LEU906

Pi-alkyl VAL403, ILE405

Pi-donor hydrogen ARG901

Pi-Sigma VAL474

Pi-Pi T-shaped TYR397

Van der Waals ASP160, AGR400, GLY428, SER430, 
THR431, GLN434, GLN404, TYP440, 
AGR901

VAL164, GLN434, GLN437, 
SER470, GLN471, LEU475, 
GLU522, LYS532, ASN899, ILE897, 
GLU898, PHE900, THR902, SER905

GLN437, SER470, GLU472, ASN899, 
PHE900, THR902,

Figure 3. The 3D interaction between NBD1 of (A) P-gp and compounds. (B) The 2D interaction among guttiferone 
K, (C) oblongifolin C, and (D) verapamil and ATP binding site at NBD1 of P-gp.
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CONCLUSION
Two polyprenylated benzophenones, namely, guttiferone 

K and oblongifolin C, which are the chemical constituents of 
several Garcinia species (family Clusiaceae), were able to inhibit 
P-gp function in Caco-2 cells. Both compounds were predicted 
to be both P-gp substrates and inhibitors via SwissADME and 
admetSAR programs. Molecular docking analysis showed that 
they could bind to the ATP binding site of NBD1. Guttiferone K 
and oblongifolin C could thus cause herb-drug interactions when 
Garcinia plant extracts or fruits are co-administered or consumed 
with drugs that are P-gp substrates.
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