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INTRODUCTION
The liver is a vital organ that plays a crucial role in 

maintaining overall health and well-being. It is responsible 
for a wide range of biochemical reactions and is often 
referred to as the “metabolic engine room of the body.” The 
liver is responsible for monitoring, recycling, modifying, 
and distributing all of the various compounds absorbed from 
the digestive tract. Additionally, it plays an important role in 
removing toxic compounds such as pharmaceutical drugs 
or chemicals. However, due to the non-stop biochemical and 

xenobiotic action in this organ, it is also a common room for the 
free radical generation. These free radicals can damage cellular 
macromolecules and contribute to hepatocellular injury when 
produced in excess [1].

There are over 200,000 synthetic chemicals in 
existence that can harm the environment. The liver is the 
main organ responsible for breaking down these chemicals. 
Carbon tetrachloride (CCl4) is a commonly used laboratory 
reagent that is known for its toxicity and ability to cause 
liver damage and fibrosis. It has been widely used in liver 
research studies [2]. Lipid peroxyl radicals are created by 
adding molecular oxygen to carbon-centered radicals (R) 
during the lipid peroxidation (LPO) process (ROO). Then, 
under the catalysis of transition metal complexes, these 
peroxyl radicals disintegrate to produce alkoxyl (RO) or 
hydroxyl (HO) radicals. Following that, these radicals take 
part in a series of processes that result in the abstraction 
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MATERIAL AND METHODS

Animal care and housing
This study was conducted with the approval of the 

Institutional Animal Ethical Committee (Meenakshi Medical 
College Hospital and Research Institute, REG No. 765/03/
ca/ Committee for the Purpose of Control and Supervision 
of Experiments on Animals CPCEA) and in compliance with 
the CPCEA. Wistar rats with a weight range of 150–200 g 
were obtained from the Biogen Laboratory Animal Facility, 
Bangalore, Karnataka. The animals were kept in polypropylene 
cages and kept in a controlled environment at a temperature 
of 23°C ± 2°C and a relative humidity of 50%–70% on an 
alternating 12-hour light/dark cycle. The rats were fed a regular 
pellet meal from M/s. Hindustan Lever Ltd., Mumbai, India, 
and had unlimited access to water. The rats were allowed to 
acclimate to the lab environment for a week before the trial 
began.

Experimental design
The study involved dividing the animals into six 

different groups, each containing six animals. The first 
group, referred to as the control group, did not receive any 
treatment (Group I). The second group received twice-weekly 
intraperitoneal injections of 50% CCl4 in olive oil for nine 
weeks as their CCl4 exposure (Group II). In addition to the CCl4 
injections as explained for group II, the third and fourth groups 
received Liv-52 and vitamin D dissolved in distilled water at 
doses of 500 IU and 1 ml/kg body weight, respectively. The fifth 
group received CCl4 injections coupled with a combination of 
Liv-52 and VD. Group VI, the last group, received the vitamin 
D and Liv-52 combination without any CCl4 injection.

Samples and parameters
At the end of the experimental period, the blood 

was collected without EDTA for the separation of serum to 
determine LPO and various indicators of lipid profiles. The 
presence of lipid peroxides was determined using the technique 
developed by Hiroshi et al. [8]. The amount of total cholesterol 
present was calculated using the method established by Parekh 
and Jung [9]. The levels of triglycerides (TGLs) and very low-
density lipoproteins (VLDL) were measured using the method 
created by Rice et al. [10]. Lastly, the quantity of high-density 
lipoproteins (HDL) was determined using the method of Rice 
et al. [10].

Data analysis 
The analysis of data in this study was conducted using 

the statistical package for social sciences for Windows version 
21.0 software. To compare the group means, Duncan’s Multiple 
Range Test and the one-way ANOVA approach were utilized. A 
p-value of 0.05 or less was considered statistically significant.

RESULTS
The results in Table 1 show the effects of different 

treatments on LPO levels in the serum of animals. The 
hepatotoxic group II animals had significantly higher levels 
of LPO in the serum compared to the control group I animals 

of hydrogen and the continuation of the LPO process. The 
generation of organic hydroperoxides from the creation of 
peroxyl radicals also results in the removal of hydrogen from 
other polyunsaturated fatty acids (PUFAs). One initial hit in 
this reaction can cause the conversion of several PUFAs to 
lipid hydroperoxides, which is known as propagation. Alkyl, 
peroxyl, and alkoxyl radicals are used in this procedure in that 
order. Through rearrangement into a conjugated diene, which 
keeps more stable byproducts including hydroperoxides, 
alcohols, aldehydes, and alkanes, the resultant fatty acid 
radical is stabilised. The first stable byproduct of the LPO 
reaction is lipid hydroperoxide (ROOH) [3]. 

Vitamin D is a collection of compounds known as 
sterols, act like hormones in the body. These compounds bind 
with proteins called Vitamin D receptors (VDR) inside cells. 
The VDR complex then communicates with the DNA in the 
nucleus of the cells, turning on or off certain genes. Vitamin D 
plays an important role in regulating the levels of calcium and 
phosphorus in the body, but it also affects the immune system 
[4], helping the body fight off infections. Studies have shown 
that vitamin D is involved in the processes of cell division, 
growth, and differentiation. Additionally, research is ongoing 
to fully understand the many ways that vitamin D affects the 
body.

Vitamin D has a vital effect on the immune system 
and can lower inflammation and fibrosis. Studies have shown 
that pro-inflammatory indications in liver monocytes and 
macrophages might regulate the local calciferol production, 
leading to an increase in the appearance of CYP27B1 
and the limited production of 25-hydroxycholecalciferol 
(25(OH)D), which helps control excessive inflammatory 
responses. Research suggests that macrophages are found 
in liver hepatocytes, which means that hepatic creation of 
25(OH)D is reduced through inflammatory diseases of the 
liver [5]. High levels of vitamin D receptor are present in 
biliary epithelial cells other non-parenchymal cells and 
macrophages, further emphasizing the important role of 
vitamin D in the liver.

When the body has enough vitamin D, certain 
compounds that contribute to cellular oxidative stress are 
decreased. This is mainly due reduction in the number of 
receptors on the cell surface that respond to certain molecules. 
However, when there is not enough vitamin D in the body, 
the ability to control oxidative stress is compromised, leading 
to increased cellular damage and a higher rate of cell death. 
In addition, vitamin D helps to increase the production of 
an enzyme called glutathione peroxidase, which helps to 
neutralize harmful molecules known as reactive oxygen 
species [6].

Liv.52 is a herbal supplement that has been used 
worldwide since 1955 to support liver health. It works by 
promoting the breakdown of toxins and protecting the liver from 
harmful substances found in food and medication. Liv.52 also 
helps to maintain healthy levels of liver enzymes and markers. 
In addition, it has been found to protect the liver cells by 
reducing the damage caused by LPO. Due to its effectiveness, 
Liv.52 is commonly prescribed for patients with liver disorders 
in many countries [7].
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(p < 0.001). When compared to the hepatotoxic group II 
animals, vitamin D treatment (group III) led to a considerable 
reduction in these levels (p < 0.001). Similar to group II 
animals treated with CCl4, group IV animals treated with Liv-
52 also had a significant decline in LPO levels (p < 0.001). 
When compared to the hepatotoxic group II animals, the group 
V animals that received a mixture of vitamin D and Liv-52 
showed the largest reduction in LPO levels (p < 0.001). The 
protective effects of vitamin D alone (group III) were found to 
be similar to the protection provided by Liv-52 alone (group 
IV), with no significant differences observed between the two. 
Furthermore, there was no discernible change in the levels of 
LPO between the animals in control group I and those in control 
group VI that received both Liv-52 and vitamin D. In our study, 
we conducted a series of experiments to validate our findings 
(see Supplementary Material).

The activity of the serum lipid profile is shown in 
Table 2. The study found that exposure to CCl4 (group II) 
resulted in significantly higher levels of total cholesterol, 
TGL, and VLDL in the rats, while the level of HDL decreased 
compared to the normal control rats (group I). Treatment 
with vitamin D (group III) led to a significant decrease in 
total cholesterol, TGL, and VLDL, while the level of HDL 
increased compared to the CCl4-treated rats (group II). 
Similarly, treatment with Liv-52 (group IV) also caused a 
significant decrease in total cholesterol, TGL, and VLDL, 
while the level of HDL increased compared to the CCl4-
treated rats (group II). However, combining vitamin D and 
Liv-52 therapy (group V) resulted in a much more significant 
reduction in total cholesterol, TGL, and VLDL, while the 
level of HDL increased compared to the CCl4-treated rats 
(group II). The findings suggest that Liv-52 and vitamin D 

both protect the liver. The comparison between groups III and 
IV shows that the protection provided by vitamin D alone is 
similar to that provided by Liv-52 alone. The combination of 
vitamin D and Liv-52 did not have any toxic effects on the 
liver, as evidenced by the lack of a significant difference in 
total cholesterol, TGL, HDL, and VLDL levels between the 
control rats treated with just VD (group I) and the control rats 
treated with just Liv-52 (group VI).

DISCUSSION
The main causes of CCl4 are damage to the liver caused 

by LPO, decreased activity of antioxidants, and the creation of 
free radicals. These effects are due to the presence of high levels 
of PUFAs and transition metals in biological membranes, which 
are constantly exposed to various types of damage. 

Cells need vitamin D to be protected from damaging 
oxidative stress and cellular deterioration. It accomplishes this by 
lowering the blood level of malondialdehyde MDA and raising 
the body’s total antioxidant capacity. Studies have demonstrated 
that both in living things and in laboratory settings, a vitamin D 
shortage can result in an increase in oxidative stress [11]. For 
instance, in rats, a deficiency in vitamin D has been associated 
with reduced levels of the antioxidant enzymes catalase and 
superoxide dismutase (SOD), leading to mild oxidative stress 
in the liver. On the other hand, when vitamin D is given, the 
liver’s SOD activity significantly increases and oxidative stress 
is reduced [11].

Vitamin D has the power to reduce oxidative stress 
in cells and regulate the generation of free radicals. Binding 
to the VDR in the nucleus or using the hydrophobic regions 
of the vitamin D molecule are the two possible mechanisms 
by which this can occur. According to studies, vitamin D can 
shield mature red blood cells—even those without a nucleus—
from oxidative stress and lipid damage. This shows that vitamin 
D’s hydrophobic characteristics are what cause its antioxidant 
action on cell membranes. However, vitamin D inhibits the 
generation of free radicals in the liver cells of diabetic mice via 
binding to the VDR in the nucleus [12].

An alternative text for the manuscripts would be: The 
study by Holick et al. [13] found a correlation between vitamin 
D deficiency and increased levels of both lipid and protein 
oxidation. Specifically, individuals with low vitamin D levels 
had higher concentrations of MDA, a marker of LPO, and 
carbonyl groups, a marker of protein oxidation, compared to 
those with sufficient vitamin D levels. This suggests that vitamin 

Table 1. Effect of vitamin D and Liv-52 on LPO level in the serum of 
control and experimental animals.

Group 
Comparison Mean ± SD p Value Statistical 

Significance

I versus II 1.67 ± 0.1 versus 2.21 ± 0.2 p < 0.001 Significant

II versus III 2.21 ± 0.2 versus 1.65±0.1 p < 0.001 Significant

II versus IV 2.21 ± 0.2 versus 1.61±0.2 p < 0.001 Significant

II versus V 2.21 ± 0.2 versus 1.58±0.1 p < 0.001 Significant

III versus IV 1.65 ± 0.1 versus 1.61 ± 0.2 p > 0.65 Not significant

VI versus I 1.53 ± 0.1 versus 1.67 ± 0.1 p > 0.14 Not significant

Table 2. Effect of vitamin D and Liv-52 on lipid profile in the serum of control and experimental animals.

Group 
Comparison

Parameters (Mean ± SD)

Total Cholesterol TGL HDL VLDL

I versus II 150 ± 9.8 versus 198 ± 13.8 49 ± 4.7 versus 76 ± 4.3 41 ± 5.1 versus 21 ± 3.1 9.8 ± 0.9 versus 15.3 ± 0.8

II versus III 198 ± 13.8 versus 160 ± 10.8 76 ± 4.3 versus 62 ± 5.0 21 ± 3.1 versus 31 ± 2.8 15.3 ± 0.8 versus 12.5 ± 1.0

II versus IV 198 ± 13.8 versus 157 ± 11.0 76 ± 4.3 versus 60 ± 7.0 21 ± 3.1 versus 33 ± 3.7 15.3 ± 0.8 versus 12.0 ± 1.4

II versus V 198 ± 13.8 versus 154 ± 4.9 76 ± 4.3 versus 54 ± 2.3 21 ± 3.1 versus 39 ± 2.7 15.3 ± 0.8 versus 10.9 ± 0.4

III versus IV 1.65 ± 0.1 versus 1.61±0.2 62 ± 5.0 versus 60 ± 7.0 31 ± 2.8 versus 33 ± 3.7 12.5 ± 1.0 versus 12.0 ± 1.4

VI versus I 149 ± 7.5 versus 150 ± 9.8 49 ± 3.9 versus 49 ± 4.7 42 ± 5.2 versus 41 ± 5.1 9.0 ± 0.7 versus 9.8 ± 0.9
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D may play a role in regulating oxidative stress, which is linked 
to various pathological conditions. Baeke et al. [11] conducted 
a study in 2010 to examine the effects of oral vitamin D and 
calcium supplementation on diabetic rats’ LPO and antioxidant 
enzyme activity. The medication reduced LPO levels, which 
suggests that vitamin D and calcium may help reduce the 
oxidative stress brought on by diabetes.

Liv.52’s ability to reduce the presence of harmful 
substances known as peroxides in the body helps protect 
important components of the liver, such as the lipid membrane 
and the cytochrome p-450 enzyme system. This, in turn, 
ensures that the integrity of the cell membrane is maintained, 
allowing the liver to function at optimal levels. By aiding in the 
detoxification process and protecting against toxins from food 
and drugs, additionally, Liv.52 can aid in preserving normal 
liver enzyme levels. Liv.52 is renowned for boosting the liver’s 
inherent capacity to break down lipids and keep the body’s 
metabolism in balance [14].

In this study, it was found that rats treated with CCl4 
had elevated levels of LPO in their blood. However, treatment 
with vitamin D was able to significantly decrease these levels 
by affecting both the immune system and the expression of 
certain proteins. Similarly, treatment with Liv-52 was able to 
decrease LPO by boosting the body’s antioxidant system. When 
both vitamin D and Liv.52 were used together in rats with liver 
fibrosis, the levels of LPO were even further reduced. These 
results suggest that both vitamin D and Liv-52 have a strong 
ability to decrease LPO. 

Damage to intracellular and plasma membranes 
results from the activated metabolites of CCl4 attacking lipids 
more readily [15]. The primary cellular effects of CCl4-induced 
fatty liver include the formation of radicals and lipid oxidation. 
A significant buildup of lipids in the liver is considered a 
pathological condition and can lead to fibrotic changes and 
decreased liver function if left unchecked for a prolonged period. 
In addition, higher levels of cholesterol, TGLs, and free fatty 
acids (FFAs) are observed in plasma and tissue samples. CCl4 
also accelerates the production of fatty acids and triglycerides 
from acetate, potentially due to the increased availability of 
acetate within the liver cells. The production of cholesterol is 
also increased in CCl4 poisoning [15].

Alternatively, CCl4 has been found to inhibit the 
breakdown and oxidation of TGLs, leading to a greater 
availability of fatty acids for storage. Research has also shown 
that during CCl4 poisoning, there is an increase in the transfer 
of fatty acids from adipose tissue to the liver, resulting in fat 
accumulation [16]. Furthermore, CCl4 has been shown to 
decrease the production of apolipoproteins, which in turn 
reduces the formation of lipoproteins. In addition, there is 
evidence that bile acid secretion is also decreased in the 
presence of CCl4.

Previous studies have shown that after 8 weeks 
of CCl4 treatment, there is a significant increase in lipid 
levels, liver enzymes, and markers of oxidative stress, while 
total protein and HDL levels decrease [17]. Microscopic 
examination of the treated rats revealed changes in lipid 
levels and an increase in inflammatory collections, loss of 
normal liver cells, and the formation of fibrous tissue [18]. 

The chronic toxicity caused by CCl4 also affects cardiac 
function, decreasing the activity of antioxidant enzymes 
and the levels of glutathione, while increasing LPO. In 
addition, CCl4 treatment causes DNA fragmentation and 
histopathological abnormalities in rats [19].

Wang, et al. [20] proposed that there is a connection 
between vitamin D and lipid values. They suggested that when 
vitamin D levels are high, it can inhibit the production and release 
of parathyroid hormone (PTH), which in turn can increase the 
absorption of calcium in the intestines. This increased absorption 
of calcium can then decrease the absorption of fats due to the 
formation of insoluble calcium-fatty complexes during digestion. 
In addition, calcium can promote the synthesis of bile acids from 
cholesterol, which can lower serum cholesterol levels. When 
vitamin D levels are not high, PTH levels may not be inhibited, 
leading to an increase in lipogenesis and a decrease in lipolytic 
action, ensuing in a higher level of TGLs. However, in the 
presence of higher vitamin D levels, PTH levels are suppressed, 
leading to an increase in lipolytic activity and a reduction in TGL 
levels. By decreasing TGL production and release in the liver and 
raising the expression of very-low-density lipoprotein (VLDL-C) 
receptors, vitamin D can also alter lipoprotein metabolism. A high 
vitamin D level thus causes a drop in TGL and VLDL-C levels. 

There is a connection between having low levels 
of vitamin D and both cardiovascular risk factors and the 
development of cardiovascular disease. Studies have shown 
that having abnormal levels of lipids, such as high levels of 
TGLs, total cholesterol, low-density lipoprotein cholesterol, 
and low levels of high-density lipoprotein cholesterol, can 
increase the risk of atherosclerosis and heart disease in adults. 
It is believed that a deficiency in vitamin D may contribute 
to this. In addition, studies show that higher vitamin D levels 
are linked to a healthy lipid profile, whereas lower levels are 
linked to an increased risk of atherosclerosis [21].

According to a study by Crouse et al. [22], individuals 
with chronic alcoholism had increased levels of plasma TGLS 
and cholesterol. The reason for this may be due to a decrease 
in the removal of TGL-rich lipoproteins and/or an increase 
in the production of VLDL-TGL. The slowed clearance of 
chylomicron-TGL could be caused by competition for the 
removal of excessive VLDL-TGL and by the development 
of a clearance malfunction. The use of Liv.52 was found to 
effectively prevent alcohol-induced hypertriglyceridemia, 
likely due to its impact on lipid levels [22].

According to recent studies, both vitamin D and 
Liv.52 have been found to have cholesterol-lowering effects. 
This can be brought on by a reduction in cholesterol absorption 
or a rise in HDL cholesterol levels. This suggests that excess 
cholesterol is being moved from other parts of the body to the 
liver. Furthermore, vitamin D has been shown to activate the 
enzyme 7a-hydroxylase, which helps in the removal of biliary 
cholesterol by converting it to bile acids. It is also possible that 
levels of TGLs and phospholipids may have decreased as a 
result of vitamin D’s impact on the synthesis of FFAs, which 
may have suppressed certain FFA-related enzymes [14].

Our research has uncovered strong biochemical 
evidence that high levels of total cholesterol, TGL, and VLDL 
were present, while HDL levels were low. When 500 IU/kg 
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