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ABSTRACT 
Aldose reductase (AR) is a rate-limiting metabolic enzyme in the polyol pathway which reduces glucose to sorbitol in 
insulin-independent tissues like the heart, liver, kidney, retina, RBC, and brain. This reaction takes place enormously 
during hyperglycemia, resulting in sorbitol buildup in these tissues contributing to microvascular complications. 
Diverse AR inhibitors (ARIs) emerged as therapeutic agents to prevent or minimize these complications which grabbed 
global attention. In an attempt to explore new ARI compounds, we considered 30 diverse sets of reported ARIs as 
query models and procured a total of 418 hit compounds from the ZINCPharmer database. Absorption, distribution, 
metabolism, excretion, and toxicity Absorption, distribution, metabolism, excretion, and toxicity screening of all 
these compounds has been performed using computational tools like SwissADME, ADMETLab2.0, PreADMET, and 
ProTox-II which resulted in 70 potential hits that were further scrutinized by in silico docking analysis (AutoDock4.2). 
The docked protein-ligand interactions were visualized by employing BIOVIA Discovery Studio and AutoDock 
softwares. Amongst the 70 ZINC IDs, compound ZINC89259516 (Butein pharmacophore) exhibited strong affinity 
to AR and displayed the least binding energy (BE) of −11.57 kcal/mol with key amino acid interactions being Trp111, 
Asn160, Cys298, Trp20, Val47, Tyr48, Trp79, Tyr209, Pro211, Ile260, and Lys262 in the binding pocket of AR. 
This was followed by Benzylisoquinoline pharmacophore ZINC13349982 which showed the BE of −11.48 kcal/
mol interacting with amino acid residues Cys303 and hydrophobic interactions with Trp20, Tyr48, Trp79, His110, 
Trp111, Tyr209, Pro211, Leu212, Pro215, Lys262, and Leu300. Overall, the present in silico results revealed that the 
leading compounds ZINC89259516 and ZINC13349982 were ascertained to be safe and promising therapeutic drug 
candidates based on favorable ADME profile, good oral bioavailability and also being non-toxic. These two molecules 
pose as suitable drug-like ARIs which could be further investigated by in vitro and in vivo studies to provide a clear 
insight into treating long-term diabetic complications.

INTRODUCTION
Diabetes mellitus is a global pertinacious endocrine and 

metabolic disorder with a significant escalation in the number 
of new cases leading to increased mortality rates as reported by 
International Diabetes Federation (2021). It is featured by chronic 
hyperglycemia due to the insubstantial insulin secretion from the 
pancreatic beta cells resulting in aberrations in the metabolism of 
lipids, proteins, and carbohydrates, and is further worsened by 
organ damage. The prolonged administration of antidiabetic drugs 
has detrimental effects like gastrointestinal (GI) disorders and 

obesity, prompting researchers to look for newer safe alternatives. 
Aldose reductase (AR) (EC 1.1.1.21) is a prototypical rate-limiting 
monomeric enzyme in the polyol pathway of glucose metabolism. 
The protein is a triose phosphate isomerase structural motif (315 
amino acid residues) that accommodates 10 peripheral α-helical 
segments enclosing an inner barrel of β-pleated sheet segments 
and an active site for catalysis. The cofactor nicotinamide adenine 
dinucleotide phosphate hydrogen (NADPH) is positioned on 
the apex of the β/α barrel structure, which aids the enzyme in 
reducing glucose to sorbitol in the polyol pathway (Grewal et al., 
2016). AR is not found in all mammalian cell types but resides 
in insulin-independent tissues such as the kidney, heart, lens, 
retina, vasculature, Schwann cells of peripheral nerves, placenta, 
RBC, testis, liver, ovary, cardiac, and brain owing to prolonged 
diabetic complications (Alexiou et al., 2006; Grewal et al., 
2016). Under normal conditions (3.8–6.1 mmol/l), the enzyme 
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hexokinase phosphorylates the glucose in the mammalian cells 
into glucose 6-phosphate, which further takes part in glycolysis, 
and this conversion occurs to a larger extent. In contrast, the 
non-phosphorylated glucose enters the polyol pathway only in 
trivial amounts (about 3%). Conversely, under hyperglycaemic 
conditions (>7 mmol/l), exaggerated flux via the polyol pathway 
constitutes beyond 30% of glucose metabolism (Tang et al., 
2012). The hyperglycaemic condition stimulates the activity 
of AR enormously. It thus promotes glucose metabolism by 
activating polyol pathway in target tissues (Tang et al., 2012) like 
nerves, retina (Srivastava et al., 1984), kidney (Ansari et al., 1991; 
Ohta et al., 1991), placenta (Das and Srivastava, 1985; Vander 
et al., 1990), RBC (Das and Srivastava, 1985), liver (Petrash and 
Srivastava, 1982), and heart (Vander Jagt et al., 1990). The resulting 
sorbitol cannot diffuse rapidly through cell membranes because it 
is highly hydrophilic and polyhydroxy alcohol. The gradual build-
up of sorbitol generates osmotic stress in the retina, kidney, and 
sciatic nerves, thereby contributing to the progression of diabetic 
complications like retinopathy, nephropathy, and neuropathy, 
respectively (Grewal et al., 2016). The cofactor NADPH is critical 
for the output of antioxidant glutathione (GSH) intracellularly. 
NADPH is utilized by AR, which brings forth abatement in the 
levels of NADPH, eventually leading to the decline in GSH. 
Consequently, the depleted levels of NADPH/NADP+ ratio and 
reduced NAD+ potentially produce excessive reactive oxygen 
species (ROS) and evokes oxidative stress (Brownlee, 2001). 
Usually, the ROS-generated toxic aldehydes are reduced to 
inactive alcohols by AR. However, during hyperglycemia, AR 
transforms the excess glucose to sorbitol which is further oxidized 
to fructose by succinate dehydrogenase (Brownlee, 2001; Grewal 
et al., 2016).

The aberrant activation of the polyol pathway seems 
to be the plausible mechanism for tissue-based pathologies and 
chronic disorders in diabetic patients. AR plays an influential 
role in these serious predicaments, considering that innumerable 
AR inhibitors (ARIs) have emerged as potential therapeutic 
drug candidates. Moreover, adapting ARIs has been proven to 
be an assured strategy to impede significant complications like 
atherosclerosis, sepsis, asthma, uveitis, ovarian cancer, and colon 
cancer as these inhibitors recede the sorbitol flux in polyol pathway 
of glucose metabolism (Grewal et al., 2016; Lorenzi, 2007; Sever, 
2021). A significant effort has been made over the years to report 
a plethora of ARIs that neutralize the associated pathologies and 
these ARIs were further evaluated in preclinical trials and quite 
a few have been progressed to the late phase of clinical trials. 
Although certain ARIs proved effective in the in vitro studies, 
there are growing concerns about the undesirable effects owing to 
low in vivo efficacy, skin allergic reactions, and hepatic toxicities 
(Meyler, 2016). So, there is an actual need to develop risk-free and 
effective medications. 

Presently, epalrestat (a carboxylic acid derivative) 
is the only commercially available ARI in Japan since 1992 to 
manage diabetic neuropathy and it was recently authorized for 
marketing in China and India (Grewal et al., 2016). Quercetin 
is an effective antioxidant but has low oral bioavailability (BA) 
due to its high hydrophilic nature (Durán-Iturbide et al., 2020). 
Many ARIs were discontinued in the development phase because 
of low clinical efficacy issues and poor pharmacokinetic profiles. 

For instance, tolrestat exhibited poor efficacy in clinical trials 
and was subsequently withdrawn as this compound brought forth 
fatal hepatic necrosis (Lagorce et al., 2017). Though sorbinil was 
reported to be a safe ARI for human use after comprehensive 
in vitro and in vivo tests, it was later taken off the market for 
augmenting hypersensitivity reactions. These challenges have 
prompted us to search for a wide diversity of new ARIs devoid 
of severe adverse impacts. In the present study, we summarized 
the explored ARIs cited in the literature (Grewal et al., 2016) 
and generated their respective pharmacophores. Through in 
silico analysis, we simultaneously validated their absorption, 
distribution, metabolism, excretion, and toxicity (ADMET) 
properties and the best binding affinity of those compounds 
to target AR. In the final analysis, two compounds viz., 
ZINC89259516 (Butein pharmacophore) and ZINC13349982 
(Benzylisoquinoline pharmacophore) have emerged from this 
study which could be quite promising to combat diabetes and 
associated complications.

MATERIALS

Computational tools and database sources
The crystal structure of the AR enzyme was 

retrieved from the RCSB PDB database (https://www.rcsb.org/
structure/1t41). The protein structure was pre-processed, and 
a consequent molecular docking study was performed using 
AutoDock4.2 (MGL tools version 1.5.6) (https://autodock.scripps.
edu/download-autodock4/). The binding affinity of the ligand 
with the target binding site was predicted using this ADT4.2 
software suite. The ligands were obtained from the ZINCPharmer 
database (http://zincpharmer.csb.pitt.edu/pharmer.html), and 
all the desirable ligands were saved in 3D conformer from the 
web-based server Pubchem (https://pubchem.ncbi.nlm.nih.gov). 
Open Babel (https://github.com/openbabel/openbabel/releases/
tag/openbabel-3-1-1) was used to interconvert the chemical file 
formats of ligands from .sdf to .pdb format. Publicly accessible 
online tools like SwissADME (http://www.swissadme.ch/), 
ADMETlab2.0 (https://admetmesh.scbdd.com/), PreADMET 
(https://preadmet.webservice.bmdrc.org/) and ProTox- II (https://
tox-new.charite.de/protox_II/) were used for ADMET profiling by 
incorporating the canonical SMILES (Simplified Molecular Input 
Line Entry System) procured from the PubChem database. The 
2D and 3D visualization of the docked protein-ligand complexes 
and their intermolecular interactions were screened using BIOVIA 
Discovery Studio visualizer v21.1.0.20298 (https://discover.3ds.
com/discovery-studio-visualizer-download) and AutoDock 
softwares.

EXPERIMENTAL 

Generation of pharmacophore models
ZINCPharmer database works on the similarity search 

and produces pharmacophore models to analyze the accurate 
3D structure of the preferred ligand-protein interaction pattern. 
This uses an array of ligand descriptors such as aromatic rings, 
hydrogen bond donors (HBD), hydrogen bond acceptors (HBA), 
hydrophobic areas, and charge transfer. Coordinates define 
ligands, and the interaction of these coordinates with the protein 
of interest signals the best fit for biological activity.
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Table 1. Comparative binding energies (kcal/mol) of the reference compounds and their corresponding ZINC IDs.

Sl.no.  Reference Compounds BE (kcal/mol) Selected compounds 
from ZINCPharmer BE (Kcal/mol) Run

1 (1–(3,5-Difluoro-4-hydroxyphenyl)-1H-pyrrol-3-yl)(phenyl)
methanone –8.9 ZINC32935320 –11.06 22

2 1-[(3-Bromo-2,3-dihydro-1-benzofuran-2-yl)sulfonyl]imidazolidine-
2,4-dione –8.31

ZINC72473216 
ZINC72438556 
ZINC40106812 
ZINC95473531

–10.18 
–10.05 
–9.93 
–9.64

91 
51 
22 
53

3 4-(4-Hydroxyphenylthio)-3-nitrobenzoic acid –8.96 ZINC71905774 –10.28 32

4 Benzylisoquinoline –8.73

ZINC24037960 
ZINC38837683 
ZINC35424949 
ZINC13349982

–9.69 
–8.99 
–10.84 
–11.48

75 
68 
26 
58

5 Butein –9.63 ZINC4671999 
ZINC89259516

–10.32 
–11.57

72 
39

6 Cuminaldehyde –6.47 ZINC02970182 –9.72 42

7 Curcumin –9.64

ZINC4069860 
ZINC8073776 
CID2127035 

ZINC33281125

–9.48 
–10.55 
–10.6 
–9.67

38 
82 
63 
72

8 Danshenol A –9.25

ZINC32809065 
ZINC69654637 
ZINC72437436 
ZINC10271817

–9.02 
–10.01 
–8.43 
–8.69

38 
81 
93 
95

9 Desmanthin-1 –7.8 ZINC15206680 
ZINC15206383

–10.1 
–6.88

28 
99

10 Epalrestat –9.18 ZINC54360596 
ZINC40567597

–9.81 
–10.46

63 
86

11 Epicatechin gallate –8.49 ZINC32066887 –8.18 52

12 Fisetin –8.85 ZINC14762797 8.9 2

13 Ganoderic acid Df –11.2 ZINC35188434 –7.35 76

14 Herbacetin –8.37 ZINC90424177 –9.38 50

15 IDD552 or [5-Fluoro-2-({[(4,5,7-trifluoro-1,3-benzothiazol-2-YL)
methyl]amino}carbonyl)phenoxy]acetic acid –9.12 ZINC23717533 

CID7280467
–8.29 
–9.68

11 
94

16 Isoaffinetin –7.58 ZINC7001916 –9.93 78

17 Isoquercitrin –7.45 ZINC81761659 –9.2 50

18 Kakkalide –8.7 ZINC4073480 –9.27 77

19 Luteolin 7-rutinoside –7.8

ZINC26463385 
ZINC12603519 
ZINC12603553 
ZINC15675167 
ZINC15675177 
ZINC12603557 
ZINC12603470 
ZINC12603528 
ZINC12603479

–7.27 
–7.46 
–8.95 
–8.76

–10.97 
–9.26 
–8.99 
–8.7 

-10.48

20 
90 
63 
74 
42 
82 
82 
54 
14

20 Luteolin –9.37 ZINC72292540 –8.61 67

21 Naringin –8.46

ZINC56405770 
ZINC71795593 
ZINC50099388 
ZINC72152669

–7.7 
–8.63 
–7.15 
–9.11

76 
21 
83 
35

22 Perilloside A –8.07

ZINC15205866 
ZINC32996446 
ZINC32996418 
ZINC32996424 
ZINC32996431 
ZINC32996421 
ZINC32996442 
ZINC32996445

–9.12 
–9.78 
–9.81 
–8.77 
–9.56 
–9.51 
–10.48 
–10.63

35 
19 
2 

100 
67 
15 
69 
32

Continued
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Dataset of ARIs
Thirty diverse ARIs were retrieved from the literature 

(Grewal et al., 2016) (Table 1). We explored 418 hit compounds 
with the extremity of likeness to the query pharmacophores by 
utilizing the ZINCPharmer database. Out of the in silico ADMET 
study, 70 potential hit compounds were selected and further 
considered for docking analysis (Fig. 1).

Prediction of physicochemical, pharmacokinetics, and 
druglikeness features of compounds

ADME profiling
The SMILES notation of 418 desired compounds were 

derived from PubChem and these strings were used to predetermine 
a pool of ADMET parameters cited below. The quantitative 
estimate of druglikeness (QED) and other physicochemical 
descriptors such as the molecular weight (MW), topological polar 
surface area (TPSA), number of hydrogen bond donors (nHBD), 
number of hydrogen bond acceptors (nHBA), solubility (LogS), 
distribution coefficient (LogD), partition coefficient (LogP), 
number of rotatable bonds (nRB), Caco2 permeability, plasma 
protein binding (PPB), clearance (CL), half-life (T1/2) were 
predicted via ADMETlab2.0 web server.

The pharmacokinetic parameters were also predicted 
for the absorption and distribution of drugs inside the body using 
the SwissADME (Swiss Institute of Bioinformatics, Switzerland) 
web tool. These properties include blood–brain barrier (BBB) 
permeation, GI absorption, cytochrome P450 (CYP) isoforms 
inhibition, plasma glycoprotein (P-gp) substrate, molar refractivity 
(MR), skin permeability (Log Kp), and BA score. Other criteria, 
such as plasma glycoprotein (P-gp) inhibitor and human ether-a-
go-go-related gene (hERG) blockers, were estimated using the 
openly accessible PreADMET tool. The selected compounds 
were also evaluated for their compliance with the basic rules like 
Lipinski, Pfizer, Veber, Egan, GSK, and Golden Triangle as a 
general rule of thumb for druglikeness properties.

Toxicity screening by ProTox-II
Toxicity check dominates ADME analysis and turns 

out to be a crucial determining element since toxic drugs 

detrimentally affect the advancement of drugs (Lagorce et al., 
2017; Maliehe et al., 2020). A few significant parameters like 
hepatotoxicity, carcinogenicity, immunotoxicity, Ame’s 
mutagenicity, cytotoxicity, median lethal dose (LD50), and acute 
toxicity class (class 1 to 6) were predicted using an instantly 
available ProTox-II server to evaluate the toxicity profile of the 
selected ligands. The molecular properties and toxicological 
endpoints assessed from all the aforementioned web tools were 
deemed to screen the best drug candidate among the selected 
compounds.

Sl.no.  Reference Compounds BE (kcal/mol) Selected compounds 
from ZINCPharmer BE (Kcal/mol) Run

23 Resveratrol –8.36 ZINC14642684 –8.64 47

24 Semilicoisoflavone B –9.73 ZINC77470465 –8.03 3

25 Sulindac –9.38

ZINC36974555   
CID7167441 

ZINC71789565 
ZINC20665251

–7.77 
–9.17 
–8.15 
–9.98

27 
74 
45 
7

26 Tectoridin –8.55 ]ZINC15206496 –7.09 30

27 Tingenin B –11.45 ZINC00036715 
ZINC72321268

–7.87 
–9.97

76 
43

28 Tolmetin –8.58 ZINC72275001 –7.89 40

29 Trans-Cinnamaldehyde –6.02 ZINC7451154 –10.27 4

30 Valproic acid –5.19
ZINC37420058 
ZINC44792072 
ZINC14186108

–8.41 
–9.25 
–9.03

22 
95 
59

Figure 1. Schematic workflow summarizing the virtual screening process 
implemented in the identification of the best leading compound.
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Table 2. Chemical structures and IUPAC names of the top-scored compounds.

S. No Compounds 2D structures IUPAC names

1 ZINC89259516
2-(1-adamantyl)-5-amino-6-[(3-methoxy-4-
oxocyclohexa-2,5-dien-1-ylidene) methyl]-[1,3,4]
thiadiazolo[3,2-a]pyrimidin-7-one

2 ZINC13349982
ethyl 4-[[2-[10-(4-fluorophenyl)-5-oxo-12-
thia-3,4,6,8-tetrazatricyclo[7.3.0.02,6]dodeca-
1(9),2,7,10-tetraen-4-yl]acetyl]amino]benzoate

3 ZINC32935320 N-(3-hydroxy-2,4-dimethylphenyl)-4-
methylsulfonylbenzenesulfonamide

4 ZINC15675177
N-[[(2R,3S,4R,5S)-3,4-dihydroxy-5-[2-oxo-2-
(pyridin-2-ylmethylamino)ethyl]oxolan-2-yl]
methyl]-4-methoxybenzamide

5 ZINC35424949
N-(5-chloro-2-methylphenyl)-2-[4-(4-
ethylphenoxy)-1-oxo-[1,2,4]triazolo[4,3-a]
quinoxalin-2-yl]acetamide

6 ZINC32996445
N-(4-chloro-2-fluorophenyl)-3-[[2,5-dimethyl-
4-(piperidine-1-carbonyl)-1H-pyrrol-3-yl]
sulfonylamino]propanamide

7 ZINC8073776
N-[2-(5-chloro-2-methoxyanilino)-2-oxoethyl]-
2-(6,7-dimethyl-1-benzofuran-3-yl)-N-
methylacetamide

Continued
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Molecular docking

Protein preparation 
The X-ray crystallographic structure of human AR 

complexed with NADP and IDD552 (PDB ID: 1T41) was retrieved 

in PDB format from the RCSB PDB database. This template was 
additionally formatted using AutoDock and optimized for docking 
studies. The preferred resolution for docking was less than 2 Å. 
The protein structure was refined by deleting water molecules and 
heteroatoms, as retaining them could prove problematic in further 

S. No Compounds 2D structures IUPAC names

8 ZINC12603479
N-[[(2R,3S,4R,5S)-3,4-dihydroxy-5-[[3-[4-
(trifluoromethoxy)phenyl]-1,2,4-oxadiazol-5-yl]
methyl]oxolan-2-yl]methyl]furan-2-carboxamide

9 ZINC40567597
(2R)-2-[(5Z)-5-[[5-(3-carboxyphenyl)furan-
2-yl]methylidene]-4-oxo-2-sulfanylidene-1,3-
thiazolidin-3-yl]pentanedioic acid

10 ZINC4671999
5-amino-3-benzylsulfanyl-6-[(3-hydroxy-4-
oxocyclohexa-2,5-dien-1-ylidene)methyl]-[1,2,4]
thiadiazolo[4,5-a]pyrimidin-7-one

Table 3. Docking results of the best ten compounds ranked based on their lowest to highest binding energies.

S. No. Compounds BE (kcal/mol)
Interacting amino acid residues

H-bond interactions Hydrophobic interactions

1 ZINC89259516 –11.57 Trp111, Asn160, Cys298 Trp20, Val47, Tyr48, Trp79, Tyr209, Pro211, Ile260, 
Lys262

2 ZINC13349982 –11.48 Cys303 Trp20, Tyr48, Trp79, His110, Trp111, Tyr209, 
Pro211, Leu212, Pro215, Lys262, Leu300

3 ZINC32935320 –11.06 Thr19, Trp20, Leu212, Ser214, Lys262, 
Cys298 Tyr48, His110, Trp111, Tyr209

4 ZINC15675177 –10.97 Thr19, Trp20, Lys21, Asp43, Tyr48, 
His110 Phe122, Leu212, Pro215, Trp219, Lys262, Leu300

5 ZINC35424949 –10.84 Cys298 Trp20, Lys21, Trp111, Phe115, Phe122, Pro218, 
Leu300, Cys303

6 ZINC32996445 –10.63 Tyr48, His110, Trp111, Cys298 Trp20, Val47, Phe122, Pro211, Leu212, Trp219, 
Lys262, Leu300, Cys303

7  ZINC8073776 –10.55 Trp111 Trp20, Val47, Tyr48, Phe122, Ala299, Leu300, 
Cys303, Tyr309, Pro310

8 ZINC12603479 –10.48 His110, Trp111, Thr113 Tyr48, Leu300, Cys303, Tyr309, Pro310

9 ZINC40567597 –10.46 Trp20, Lys21, Val47, Leu212, Lys262 Tyr48, Tyr209

10  ZINC4671999 –10.32 His110 Tyr48, Tyr209, Leu212, Pro215, Ile260, Lys262, 
Cys298
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analysis. Polar hydrogen atoms were added because there might be 
higher chances that few H-atoms are missed during protein structure 
determination. This is essential for the accurate computation of 
partial atomic charges and finding the ligand’s binding affinity 
against the protein. Furthermore, Kollman charges were added to the 
protein, missing atoms were repaired, and the protein was assigned 
AD4 type. A target.pdbqt file competent enough for docking was 
generated from the conventional PDB file.

Ligand preparation
A total of 418 hits were selected based on all the query 

pharmacophores by virtual screening via ZINCPharmer. The 70 
compounds filtered in conformity with ADMET study were edited 
in ADT software. Open Babel program was used to convert the .sdf 
format of the 3D conformer ligands (downloaded from PubChem) 
into .pdb format. Gasteiger charges were computed, and the 
number of active torsions was set for each ligand, generating a 
ligand.pdbqt file. 

Protein-ligand docking
The existing target and ligand .pdbqt files were chosen. 

In the best interest of performing blind docking, a grid box was 
set up to enclose the target enzyme’s entire surface to scan for the 
available binding sites. The docking parameters were configured 
by applying the Lamarckian Genetic Algorithm (LGA) to generate 
rigid conformations of the compound. Docking runs were fixed 
to 100 with a population size of 300 individuals and a maximum 
number of 2,500,000 energy evaluations to achieve an ideal 
crystallographic pose of the ligand and accurate outcomes. After 
running the AutoDock program, a docked log file was generated 
comprising root mean square deviation (RMSD)  scores and all 
the binding poses inclusive of their binding affinities. The docking 
pose exhibiting the least binding energy (BE) was considered the 
best pose as it represents a stronger binding affinity to the target 
enzyme. The 2D and 3D visualization and analysis of the docked 
protein-ligand complexes were carried out using the Discovery 
studio visualizer.

RESULTS AND DISCUSSIONS

In silico analysis of physicochemical, pharmacokinetic and 
druglikeness properties

In silico ADMET evaluation is a streamlined approach 
to ensure the potentiality of the selected compounds for further 
exploration of therapeutic drug candidates. A compound is advised 
to be an ideal drug candidate for metabolism if it complies with 
the ADME profile.

Absorption
Analytical drug design is essentially based on Lipinski’s 

rule of five, which estimates the drug-like nature of the molecules. 
All the tested compounds listed in Table 4 were found to hold 
MW < 500, indicative of ameliorated absorption from the GI tract, 
diffused and transported (Daina et al., 2017; Srimai and Ramesh, 
2013). Other molecular descriptors, including nRB (vital filter to 
measure molecular flexibility and good BA), nHBA, nHBD, and 
LogP, have no deviations from the acceptable norms. Compounds 
with TPSA > 140 Å were presumed to be poorly absorbed, while 
those with TPSA < 140 Å suggested good absorption (Table 5). 

The obtained results favor Lipinski’s rule and are assumed to be 
agreeable oral bioavailable agents. All compounds also adhered 
to Pfizer’s and GSK’s rules (Supplementary Table 1). Solubility 
influences the absorption and distribution of active drugs (Lagorce 
et al., 2017; Stegemann et al., 2007). Compounds with high 
aqueous solubility can easily permeate across cell membranes 
and exhibit good absorption (Daina and Zoete, 2016; Srimai 
and Ramesh, 2013). The computed prediction of LogS showed 
that compound 2 (–1.697) and compound 4 (–1.551) have high 
solubility. Compounds 1, 3, 9, and 10 have moderate solubility 
with the recognized values of −3.666, −3.337, −3.052 and −3.662, 
respectively, whereas compounds 5, 6, 7, and 8 were found to be 
poorly soluble (Table 4). We predicted Caco-2 Permeability, P-gp 
substrate, P-gp inhibitor, 20% BA (F20%), and 30% BA (F30%) 
to evaluate the extent of absorption of the compounds. The 
calculated data of Caco-2 permeability implied low to moderate 
permeability, ranging from –4.758 to −6.202 cm/s. 

Distribution
Egan BOILED-Egg (Brain Or IntestinaL EstimateD 

permeation method) is a distinct 2D graphical view displayed 
using SwissADME, which concomitantly prefigure the inhibitors 
permeation in both the GI tract and brain. In an Egan’s egg graph 
(Fig. 5), the yellow (yolk) and white ellipses symbolize the BBB 
permeant molecules and GI permeant molecules, respectively 
(Lynch and Price, 2007). The results signified that all compounds, 
exclusive of compounds 7 and 8, predicted a high potential for 
GI absorption. Only compound 10 exhibited BBB penetration, 
and the rest of the compounds were incapable of passing across 
the BBB, inferring little detrimental impact on central nervous 
system (CNS) (Table 6). Hence, BBB permeant drugs may not 
be recommended for peripheral targets to avert the CNS side 
effects. P-glycoprotein (P-gp) is a membrane-spanning transport 
protein that governs the influx and efflux of miscellaneous drugs. 
Compounds 1, 2, 5, 7, and 10, highlighted in red circles, were 
estimated to be non-substrates for P-gp (Table 6), meaning there 
is no effluence of compounds from the cells, while compounds 3, 
4, 6, 8, and 9, visible in blue dots, act as P-gp substrates (Fig. 5).

Metabolism
Drug metabolism and elimination in the human body is a 

top priority mechanism catalyzed by CYP enzymes predominantly 
sited in the liver and intestine. CYP450 monooxygenase 
isoforms, namely; CYP1A2, CYP2C19, CYP2C9, CYP2D6, and 
CYP3A4, are fundamental determinants in the optimization of 
curative effectiveness and lethality of numerous drug candidates. 
Compounds estimated as non-inhibitors of CYP isoforms have a 
strong probability of getting metabolized and serve as exceptionally 
good oral bioavailable agents. In contrast, CYP isomer inhibitors 
cause metabolic failure and show undesirable adverse effects 
being the cause of poor BA (Srimai and Ramesh, 2013; Lynch and 
Price, 2007). The induction and inhibition of these enzymes by 
multifarious compounds were predicted and tabulated in Table 6. 
All compounds were revealed to be non-inhibitors of CYP1A2 
except compound 1. About 50% of the compounds were non-
inhibitors of CYP2C9, and CYP3A4, and 40% of the compounds 
were inhibitors of CYP2C19, and likewise, CYP2D6 was inhibited 
only by compound 6. The skin permeability (LogKp) parameter 
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evaluates the compounds that might necessitate transdermal 
administration (Srimai and Ramesh, 2013). The LogKp values 
of the selected compounds (Table 6) were in the range of –9.01 
to –6.2 cm/s, which slightly varied from the recommended range 
(−0.7 to −5 cm/s), assumed to be impermeable. 

Excretion
Total CL of the drug is a hybrid parameter that influences 

half-life (T1/2) (along with VD) and BA (along with oral 
absorption), thereby determining the frequency of clinical drug 
dosage to sustain a plateau drug concentration (Berellini et al., 
2012; Lagorce et al., 2017). Compounds 1, 5, 8, and 10 showed 
moderate CL displaying values within the optimum range of 5–15 
ml/minute/kg compared to other compounds that showed poor CL 
of <5 ml/minute/kg (Table 7).

CL = Rate of drug elimination from plasma / Plasma concentration of the drug.

BA of the compounds
It is proposed that the compounds displaying BA score of 

0.55 signify 55% probability of being bioavailable and adhere to 
Lipinski’s RO5 (Lipinski et al., 2001; Srimai and Ramesh, 2013). 
This study screened all compounds as good indicators of active 
drugs with adequate oral absorption (Table 7). The computed QED 
scores of the compounds are provided in Table 7. Amongst the test 
compounds, compounds 1, 3, 10 were interpreted as attractive drug 
candidates (QED score > 0.67), compounds 2, 6, 9 as moderate 
drugs (score 0.54–0.65), and compounds 4, 5, 7, 8 as unattractive 
drugs (score < 0.54).

Toxicological predictions
The toxicity of the compounds is an integral step in the 

drug discovery process as this attribute scrutinizes the organ damage 
(hepatotoxicity) and toxicological endpoints viz; immunotoxicity, 
carcinogenicity, mutagenicity (Ames test), and cytotoxicity 

Figure 3. Wire mesh surface view of the docking interactions of compounds 
generated by Autodock. Portions of AR that are in contact with the ligand are 
shown with space-filling spheres. 

Figure 2. Bar plot of binding energies of the top-scored 10 compounds.

Figure 4. 3D visualization of the best five docking poses of different compounds 
in the binding pocket of AR. Protein residues are depicted in line ribbon form 
whereas the docked ligands are presented in CPK model.

Figure 5. Evaluation of analysed compounds by BOILED-Egg approach.
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(Mishra et al., 2016; Srimai and Ramesh, 2013). The median LD50 
values were computed in mg/kg, and they were interpreted as six 
acute toxicity classes viz., Class I and II—fatal if consumed, Class 

III—toxic if consumed, Class IV—harmful if consumed, Class 
V—perhaps harmful if consumed, Class VI—non-toxic. In this 
present study, we computed these descriptors for all the selected 

Table 4. Parameters evaluated for absorption of the selected compounds.

S. No. Compounds
ADMETlab

MW nHBA nHBD TPSA nRB LogS LogD LogP Caco2 PPB (%) F (20%) F (30%)

1 ZINC89259516 384.03 6 2 89.7 9 –3.666 2.096 2.016 –4.758  93.13 0.004 0.004

2 ZINC13349982 347.1 8 4 128.31 5 –1.697 0.447 –0.288 –5.368 43.15 0.021 0.023

3 ZINC32935320 355.05 6 2 100.54 4 –3.337 0.597 1.479 –6.202 96.75 0.002 0.005

4 ZINC15675177 415.2 9 4 130 10 –1.551 0.45 –0.424 –5.688 38.18 0.011 0.761

5 ZINC35424949 499.14 8 2 105.03 7 –5.946 4.217 4.496 –4.962 99.05 0.019 0.99

6 ZINC32996445 484.1 8 3 111.4 9 –4.15 2.17 2.615 –5.651 93.49 0.005 0.002

7 ZINC8073776 453.11 8 4 119.11 9 –5.313 2.769 2.734 –5.234 96.19 0.001 0.001

8 ZINC12603479 469.1 10 3 140.1 9 –4.545 2.901 2.52 –4.949 99.6 0.002 0.006

9 ZINC40567597 322.1 7 2 93.73 4 –3.052 1.422 1.535 –5.1 52.34 0.004 0.103

10 ZINC4671999  378.12 5 1 66.48 7 –3.662 2.45 2.593 –5.164 81.36 0.002 0.028

Table 5. Predicted druglikeness of the compounds based on Egan and Veber rules.

S. No. Compounds
SwissADME

WLOGP TPSA nRB Egan violations Veber violations

1 ZINC89259516 3.03 117.94 9 0 0

2 ZINC13349982 0.2 136.69 5 0 1

3 ZINC32935320 4.18 117.3 4 0 0

4 ZINC15675177 -0.14 130.01 10 0 0

5 ZINC35424949 4.45 105.03 7 0 0

6 ZINC32996445 4.29 119.75 9 0 0

7 ZINC8073776 4.94 127.49 9 0 0

8 ZINC12603479 2.95 140.08 9 1 1

9 ZINC40567597 0.51 93.73 4 0 0

10 ZINC4671999 4.03 74.86 7 0 0

Egan rule: MW < 500, HBA < 10, HBD < 5, Log P < 5, MR < 140. 
Veber rule: Compounds are toxic if they exhibit LogP > 3 and TPSA < 75.

Table 6. Parameters evaluated for distribution and metabolism of the compounds.

S. No. Compounds
SwissADME

MR GIA BBB  
permeant

P-gp  
substrate

LogKp 
(cm/s)

CYP1A2 
inhibitor

CYP2C19 
inhibitor

CYP2C9 
inhibitor

CYP2D6 
inhibitor

CYP3A4 
inhibitor

1 ZINC89259516 91.82 High No No –6.67 Yes Yes Yes No No

2 ZINC13349982 79.52 High No No –9.01 No No No No No

3 ZINC32935320 88.6 High No Yes –7.01 No No Yes No Yes

4 ZINC15675177 106.2 High No Yes –8.87 No No No No No

5 ZINC35424949 138.71 High No No –6.2 No Yes Yes No Yes

6 ZINC32996445 124.4 High No Yes –7.61 No Yes Yes Yes Yes

7 ZINC8073776 106.36 Low No No –7.43 No No Yes No No

8 ZINC12603479 101.5 Low No Yes –7.23 No No No No Yes

9 ZINC40567597 82.67 High No Yes –7.11 No No No No No

10 ZINC4671999 91.53 High Yes No –7.03 No Yes No No Yes
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compounds using ProTox-II. We tested for compliance with being 
non-toxic which could serve as the basis for appropriate utilization 
as therapeutic drug candidates. Table 8 summarizes the findings 
that remarkably revealed all the test compounds to be non-
mutagenic, non-cytotoxic, non-carcinogenic, non-immunotoxic, 
and non-hepatotoxic. LD50 values were noted to be within 611–
5,000 mg/kg limits. Compounds 1, 2, 3, 7, and 9 were categorized 
as Class V, whereas other compounds 4, 5, 6, 8, and 10 belong to 
class IV (Table 8). The hERG is used to assess the pro-arrhythmic 
risk of novel drug candidates (Srimai and Ramesh, 2013; Yu et al., 
2016). The compounds were revised for another descriptor, hERG 
using an online accessible server PreADMET. All of them were 
presumed safe as they exhibited low to medium risks of blocking 
the hERG channel. This assessed data is tabularized in Table 9.

Molecular docking studies
Molecular docking results in the generation of BE and 

is considered a primary parameter to delineate the strength and 
affinity of the ligand-protein interactions. BE and ligand’s affinity 
for the target protein are inversely correlated. Therefore, if the 
BE is low, it implies a high ligand’s affinity for the target protein 

and vice versa. In our present docking study, we intended to 
quest for the ligand that reveals the least BE thus demonstrating 
the greatest affinity among the test compounds. After successful 
docking of all the test compounds, the generated ligand-protein 
complex models were analyzed with substantive parameters such 
as BE, hydrogen bond interactions, hydrophobic interactions 
(π-π interactions/alkyl/π-sigma/π-alkyl interactions), RMSD of 
binding site residues and orientation of the docked compound 
within the binding site.

As summarized in Table 1, the reference compounds and 
their Zinc IDs represented BE with the target AR ranging between 
−11.57 and −6.88 kcal/ mol. Out of 70 ZINC IDs, the 10 best 
binding affinity compounds (Table 2) were ranked in consonance 
with the docking scores. The intermolecular interactions between 
AR and the top 10 compounds were analyzed (Table 3) and 
their binding energies are comprehensively illustrated in a bar 
graph (Fig. 2). The docking interactions of the top five scored 
compounds with the target AR are shown in Figure 3. The in 
silico docking analysis evidenced that the top-scored compound 
1 (ZINC89259516) exhibited the least BE score of –11.57 kcal/
mol, which was confirmed to have a strong binding affinity for 
the target AR. This lead compound (ZINC89259516) evinced 
significant hydrogen bond interactions in the binding pocket of 
AR with key amino acid residues viz., Trp111, Asn160, Cys298 
and hydrophobic bonds with Trp20, Val47, Tyr48, Trp79, Tyr209, 
Pro211, Ile260, and Lys262 (Fig. 4a). Compound 2 formed only 
one hydrogen bond with Cys303 and hydrophobic interactions with 
Trp20, Tyr48, Trp79, His110, Trp111, Tyr209, Pro211, Leu212, 
Pro215, Lys262, and Leu300 with docking score –11.48 kcal/mol 
(Fig. 4b) whereas compound 3 displayed hydrogen bonds with 
Thr19, Trp20, Leu212, Ser214, Lys262, Cys298 and hydrophobic 
bonds with Tyr48, His110, Trp111, Tyr209 with docking score 
−11.06 kcal/mol (Fig. 4c). 

As we aimed at identifying the potent pharmacophores 
of the reference compounds targeting AR enzyme, we 
proposed a computational workflow involving the collection 
of pharmacophores, virtual screening, and molecular docking 
study which successfully resulted in the lead molecules; 
ZINC89259516 (Butein pharmacophore) and ZINC13349982 
(Benzylisoquinoline pharmacophore). Finally, based on the 

Table 7. Predicted BA and excretion parameters of the filtered 
compounds.

S. No. Compounds
ADMETlab SwissADME

CL T1/2 QED BA score

1. ZINC89259516 7.64 0.122 0.743 0.55

2. ZINC13349982 1.35 0.189 0.586 0.55

3. ZINC32935320 0.49 0.076 0.876 0.55

4. ZINC15675177 4.851 0.461 0.478 0.55

5. ZINC35424949 8.104 0.215 0.356 0.55

6. ZINC32996445 3.365 0.264 0.559 0.55

7. ZINC8073776 0.653 0.076 0.532 0.55

8. ZINC12603479 6.351 0.221 0.472 0.55

9. ZINC40567597 3.347 0.487 0.639 0.55

10. ZINC4671999 6.004 0.068 0.854 0.55

Table 8. Toxicity prediction of the selected compounds by ProTox II.

S. No. Compounds
ProTox II

LD50 
(mg/kg)

Toxicity 
class

Hepato-
toxicity

Carcino-
genicity

Immuno-
genicity

Muta-
genicity

Cyto-
toxicity

1. ZINC89259516 2,570 5

Inactive

2. ZINC13349982 3,000 5

3. ZINC32935320 5,000 5

4. ZINC15675177 1,600 4

5. ZINC35424949 1,000 4

6. ZINC32996445 611 4

7. ZINC8073776 5,000 5

8. ZINC12603479 940 4

9. ZINC40567597 5,000 5

10. ZINC4671999 1,000 4
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resulting in silico data, we confirm that these two compounds 
impressively attributed to high binding affinity endowed with 
agreeable ADMET profile as compared to the other compounds. 
In this regard, these molecules may be employed as potent anti-
diabetic compounds to inhibit AR, eventually abating diabetic 
complications. These computational findings could justifiably 
serve as a great benefit for further exploration of these lead 
compounds in pre-clinical and clinical trials of the drug discovery 
process.

CONCLUSION
In the current study, we analyzed molecular docking 

results for the selected compounds which do not deviate from 
Lipinski and Pfizer rules. Taking into account the outcome, we 
hereby report two hit molecules that were successfully docked 
with excellent binding affinity to AR i.e., Butein pharmacophore 
ZINC89259516 (–11.57 kcal/mol) followed by Benzylisoquinoline 
pharmacophore ZINC13349982 (–11.48 kcal/mol). Precise 
insight into these two compounds ADMET assessment profiles 
and interaction patterns suggested good oral BA, druglikeness, 
and no toxicity premonitions on the tested criteria. On another 
note, these potential compounds may get authorized as ARIs only 
after subsequent approval by follow-up experiments (in vitro and 
in vivo) on the appropriateness of safe therapeutic antidiabetic 
drug candidates. As discussed earlier, the activated AR pathway 
upregulates numerous glucose toxicity pathways such as PKC, 
HBP, ROS, and AGEs. In this regard, diabetic complications may 
not be prevented by ARIs alone, but they may serve as potential 
adjuvant therapy to annul the furtherance of diabetic complications.
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SUPPLEMENTARY MATERIAL  

Supplementary Table 1. Empirical rules for predicting oral availability and toxicity of the compounds.

Lipinski’s rule: MW < 500, HBA < 10, HBD < 5, Log P < 5, MR < 140
Pfizer’s rule: Compounds are toxic if they exhibit LogP > 3 and TPSA < 75
GSK rule: MW ≤ 400 and LogP ≤ 4
Golden Triangle: MW 50-200, LogD -2 to -5




