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INTRODUCTION
Osteosarcoma (OS) is a bone cancer that begins with 

a tumor secreted by the abnormal growth of osteoid substances 
and immature bone [1]. The overall and event-free survival rates 

over 5 years are approximately 71% and 54%, respectively [2]. 
OS primarily affects adolescents aged 15–19 [3] and elders 
over 65 [4]. Although OS is a rare type of childhood cancer, it 
accounts for 3%–5% of children’s carcinomas and nearly 0.2% of 
all malignant tumors [5]. It has been revealed that 25% of them 
first seek medical help with metastases [6]. For adolescents with 
metastases, the 5-year survival rate drops to 70% and decreases 
to 20%–30% [1]. Due to its recurrence or post-metastasis [7], 
the overall and event-free survival rates over 5 years are 38.1%  
±  6.4% and 25 % ± 5.3%, respectively [8]. Around 15%–20% 
of these cases [9] had the pulmonary metastases tree [8], which 

ABSTRACT
There has been no significant efficacy in treating osteosarcoma (OS) metastasis after nearly four decades of trials. This 
motivates us to elucidate OS therapies using their four bidirectional mutation stages. The historical developments and 
clinical advancements are briefly described to refresh the OS therapy status quo. However, the main issue of metastasis 
remains unresolved, accounting for 90% of pulmonary metastasis deaths. Thus, this metastasis problem is related 
to immune evasion and chemoresistance induced after long-term treatment by immunotherapy for tumorigenesis. 
Therefore, it is rational to discuss the relationship cycles of mutation stages, including tumorigenesis, metastasis, 
immune evasion, and chemoresistance. Even though many combinational and targeted therapies have been developed 
to intensify these mutation treatments, successful clinical translations with higher cure rates are still rare. Through 
this review, an in-depth understanding of the bidirectional relationship between the four OS mutation stages and their 
respective therapies is provided. Herein, we summarise the medicines for treating tumorigenesis, including Collagen 
beta (1-O) galactosyl transferase 2 inhibitors, transformer 2β, and ArfGAP with GTPase domain 1, miR-148a and 
miR-21-5p extracellular vesicles, and the long non-coding RNA leukemia inhibitory factor receptor antisense RNA1. 
Following the medicines for treating metastasis are AXL receptor tyrosine kinase, miR-135a-5p, messenger RNA B-cell 
lymphoma-6, transforming growth factor beta 1, T-cell immunoglobulin, and mucin-domain containing protein-3, 
suppressor of cytokine signalling-5, cancer susceptibility 15, Krüppel-like factor 3 antisense RNA 1, programmed cell 
death 4, autophagy-related gene 5, and Rab22a-NeoF1. Then the medicines for treating immune evasion are N-cadherin, 
ubiquitin-specific peptidase 12 inhibitors, latency-associated peptide domain inhibitors, anti-Wnt2 mAb, anti-αvβ8 
integrin, hexokinase-2-mediated i-kappa-b-alpha, indoleamine 2,3-dioxygenase inhibitor with NO, and TGF-βRII 
with anti-IgG1. Finally, the medicines for treating chemoresistance are Dihydrofolate reductase, folylpoly-γ-glutamate 
synthetase, heat shock protein-90AA1, XCT-790, anlotinib tyrosine kinase inhibitor, and insulin-like growth factors 1. 
As a result, this contribution is expected to serve as a reference and guide for scientists and clinicians.
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each of them to reach a common understanding. Hereafter, their 
intertwined therapies could be discussed individually. Herein, it 
is notable that many clinically relevant therapies nowadays are 
combinational and multifunctional in order to cure the complex 
OS stages. Notably, intertwined therapy is a fact that should 
not be overlooked; however, it is prudent to discuss them 
by reconstructing them to elaborate precisely. Through this 
review, the stages and therapies of OS are precisely defined and 
clearly elucidated, which are expected to serve as guidance for 
scientists and clinicians.

STATUS QUO OF OS THERAPIES

Historical development
The significant discoveries and advancements in OS 

studies are shown as a timeline in Figure 1. The first in vivo test 
was the characteristic investigation of the fresh anterior lobe 
effects in 1922 by Evans and Long [33]. After 42 years, the 
first gene for human growth hormone (HGH) was cloned by Li 
and Liu [34]. In 1978, the first high-dose methotrexate (Mtx) 
for OS treatment was introduced by Jaffe et al. [35]. Later in 
1982, the compliance issue of high dosage for preoperative 
adjuvant chemotherapy was addressed by Rosen et al. [36]. 
After 2 years, the biological and immunological properties 
of OS were investigated by Zapf et al. [37] using insulin-like 
growth factors (IGF). However, the first in vitro test was done in 
1987 by Stashenko et al. [38] who investigated a bone inhibitor 
using Interleukin (IL)-1β. Six years later, the first recombinant 
technology for HGH was successfully developed by Bengtsson 
et al. [39]. In 1997, the first common childhood use of 
combined chemotherapy with etoposide and ifosfamide (EnI) 
was developed by Gentet et al. [40]. McGary et al. [41] were 
the first to use the Tyrosine Kinase Inhibitor STI571 in 2002 
for targeted OS therapy. Further works by Nardin et al. [42] 

causes a mortality rate of more than 90% [10]. As a result, only 
about 20%–30% of such cases live for a prolonged period, 
compared with 65%–70% of localized cases [11]. 

Over nearly four decades, scientists and clinicians 
have attempted to solve the 30% ineffectiveness problem [12] 
for the standard treatments [13,14], such as chemotherapy [15], 
immunotherapy [16], inhibitory therapy [17], and surgery [18], 
resulting in progression to malignant tumors [19]. Even after 
numerous trials, there has been no significant improvement. 
This is due to the immunotherapy on tumorigenesis [20], which 
develops severe immunosuppression and chemoresistance 
after long-term treatments [21–23]. Furthermore, the 
innate and acquired nature of chemoresistance in the tumor 
microenvironment (TME) eventually causes the therapy’s 
progression to stall [24]. Thus, this primary barrier needs to be 
encountered by intensifying more efficacious therapies with 
higher cure rates [25]. However, not much research provides an in-
depth understanding of the relationship between tumorigenesis, 
metastasis, immune evasion, and chemoresistance. As a result, 
the efforts in de-signing an efficacy, long-term use [26], and 
personalized precision medicine [27] for combinational and 
targeted therapy [28–30] remain inadequate [31].

Because the four stages are intertwined and complex 
[32], this review focuses on clarifying their relationship and 
encounter therapies. First of all, the status quo of OS therapies is 
presented, along with their historical development and clinical 
advancements. A comprehensive timeline is drawn to demonstrate 
significant discoveries and advancements in OS studies. 
Besides, the summary of completed years of sarcoma clinical 
trials is tabulated to highlight the seminal discoveries and major 
clinical triumphs. In the content, the bi-directional relationship 
between these four OS mutation stages—tumorigenesis, 
metastasis, immune evasion, and chemoresistance—is clearly 
described. Further, short and precise definitions are given to 

Figure 1. Timeline of significant discoveries and advancements in OS studies.
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used liposomal muramyl tripeptide phosphatidylethanolamine 
in immunotherapy to target and activate macrophages. 
Nevertheless, Tang et al. [43] introduced the stem cell with 
a salinomycin inhibitor in 2011. Finally, the first preliminary 
efficacy and safety drug carrier with a nab-sirolimus was 
introduced in 2019 by Gordon et al. [44].

Clinical advancement
OS research is extremely hard and remains a global 

challenge. Despite the fact that many clinical trials had 
begun, the majority of them could not be completed. For 
the past 20 years, only ten clinical trials with United States 
federal government clinical trial identifiers (GCTI) have been 
successfully completed. Thus, the sarcoma types completed 
their clinical trials in years with active pharmaceutical 
ingredients (API) and primary tests, as shown in Table 1. For all 
these trials, there are only two main types of OS: soft and solid, 
as observed in the table. The following API are appropriate for 
OS: topotecan (Tpt) [45], pazopanib (Pzp) [46], placebo (Plb) 
[47], gemcitabine (Gct) [48], M6620 [49,50], regorafenib (Rgf) 
[51,52], glembatumumab vedotin (GV) [53,54], lenvatinib [55], 
EnI [56], nab-rapamycin (Rpm) [57,58], cyclophosphamide 
(Cfa) [59], simvastatin (Sim) [60], myeloid growth factor 
(MGF) [61], nab-paclitaxel [62,63], Mtx [64], and doxorubicin 
(Dox) [65]. Lastly, only two types of primary tests were 
successfully conducted, such as laboratory biomarker analyses 
[66] and dose escalation studies [67].

OS BIDIRECTIONAL MUTATION STAGES
In all kinds of OS or human carcinoma, the TP53 gene 

is mutated (somatic mutations) in more than 50% of cases. The 
DNA-binding domain is principally mutated. Other than this site, 
20% of cases mutated [68,69] . Thereby, TP53 gene mutations 
have remained prospective diagnostic components, which 
can, to a greater extent, increase the precision of forecasting 
continuity of life and cancer-free longevity among patients 
with carcinoma [69,70]. The carcinogenic activity of mutant 
TP53 is almost indistinguishable in sarcoma and multiple other 

neoplastic diseases [71]. Multiple appraisal techniques were 
applied among OS cases, revealing that the TP53 gene was lost 
in the presence of two different alleles. Consequently, there is 
frequent demand for an up-grade in chemoresistance to achieve 
chemotherapeutic efficacy [72].

OS therapies are difficult because they progress 
and reverse through four mutation stages and are inter-
twined, including TME, metastasis, immune evasion, and 
chemotherapeutic resistance, as shown in Figure 2. The 
bidirectional complexity of progression and reversion in OS 
mutation stages is influenced by the exosomes of a tumor, 
stem, mesenchymal, immune, fibroblast, and endothelial cells 
[73]. There is mounting evidence that signal molecules such 
as neurotransmitters, enzymes, hormones, and nucleic acids 
[74] are involved in the angiogenesis, growth, migration, 
metastasis, and apoptosis of the above-mentioned cells, 
involving intercellular cell communication, body regulation, 
and immune responses [75]. In this cellular communication, 
extracellular vesicles (EV) play a key role [76], which could 
be derived from various cells such as OS cells, mesenchymal 
stem cells (MSC), adipose-derived MSC (ADMSC), cancer-
associated stromal fibroblasts (CAF), and macrophages [77]. 
These EVs regulate the activity of recipient cells, including 
angiogenesis, proliferation, invasion, migration, metastasis, 
chemotherapeutic resistance, and apoptosis, by using their 
cargoes of proteins, DNA, and RNA [78]. These three cargoes 
have distinct metabolic dynamics [79] including a connection 
with the EV components’ biogenesis machinery, a cellular 
homeostasis regulator with cytoplasmic DNA sensor activation, 
and parental cell function efficiency at different states [80]. 
The creation of biomarker vehicles [81] that employ the 
aforementioned protumorigenic components and signaling 
pathways to circulate immune responses from OS cancer 
diseases remains a significant clinical trial challenge [82].

Tumorigenesis
TME is composed of EV secretion cells, MSC, and 

tumor cells. The EV cells are secreted by MSC and immune cells 

Table 1. Summary of completed years for sarcoma clinical trials with their types, API, and primary tests.

No Completed year GCTI Sarcoma type API Primary test Refs.

1 2022 NCT02357810 SSM Tpt and Pzp Laboratory biomarker analysis [45,46]  

2 2021 NCT01532687 Refractory soft Pzp, Plb, and Gct Laboratory biomarker analysis [47,48,146]  

3 2022 NCT03718091 Advanced solid M6620 (VX-970) Laboratory biomarker analysis [49,50]  

4 2022 NCT02048371 Selected subtypes Plb and Rgf Laboratory biomarker analysis [51,52]  

5 2022 NCT02487979 RRS GV in GPNMB carrier Laboratory biomarker analysis [53,54]  

6 2022 NCT02432274 RRS malignancies Lenvatinib, EnI Dose escalation study [55,56]  

7 2021 NCT03190174 Advanced Nab-Rpm in Nvl carrier Dose escalation study [57,58]  

8 2020 NCT02390843 RRS Cfa, Sim, Tpt, and MGF Dose escalation study [59,60]  

9 2019 NCT01962103 RRS Nab-paclitaxel Dose escalation study [61–63]  

10 2005 NCT00180908 Solid EnI, Mtx, and Dox Laboratory biomarker analysis [64,65]  

Abbreviations: SSM, soft and solid metastatic; RRS, refractory and relapsed solid; Pzp, pazopanib; Tpt, topotecan; Gct, gemcitabine; Plb, placebo; Rgf, regorafenib; 
GV, glembatumumab vedotin; GPNMB, Glycoprotein non-metastatic melanoma protein B; EnI, etoposide and ifosfamide; Rpm, Rapamycin; Nvl, Nivolumab; Sim, 
simvastatin; Cfa, cyclophosphamide; MGF, myeloid growth factor; Mtx, methotrexate; Dox, doxorubicin.
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to alter macrophage phenotype-2 (M2) [83] and regulate tumor 
progression via the Wnt signaling pathway [84]. Furthermore, 
the EV cells are the paracrine factors secreted by human bone 
marrow MSC (BMSC), such as osteoclasts, osteoblasts, and 
endothelial cells, to regulate tumor cells via communication with 
the Hedgehog signaling pathway [85]. As a result, the M2 and 
tumor cells regulate TME by EV secretions in order to promote 
angiogenesis, growth, and metastasis [86,87]. Tumorigenesis 
research in TME is concerned with how coexisting cells interact 
and communicate with one another.

Metastasis
The metastasis potential is affected by the 

communication between the stressed MSC and the micro RNA 
(miRNA) content of EV. Tumor cells metastasize in three 
ways: by secreting EV, by influencing TME, and by mediating 
the transformation of distant MSC. Direct EV secretion by 
osteoblasts and CAF can improve migrability. The induction 
of metastasis can be influenced by regulating tumor and MSC 
oncogenic phenotypes in TME. The pro-angiogenic factors 
from endothelial cells can mediate EV transformation to 
modulate cell invasiveness and promote metastasis. Metastasis 
could be activated either by modulating tumor-associated 
macrophage (TAM) cellular signaling to promote the M2 or by 
producing transforming growth factor beta (TGFβ)-2 to create 
an immunosuppressive and pro-TME [88]. As a result, the 
tumor cells could be metastasized by inducing a pro-metastatic 
and tumorigenic phenotype and mediating transformation into 
local or distant cells.

Immune evasion
The immune system is divided into innate and 

adaptive immunizations, which are always related to the bone 
microenvironment [89]. The immune evasion occurred because 
the inefficient immune cells allowed the tumors to evade the 
immune surveillance systems or the host immune checkpoint 
through multiple mechanisms [24]. This inefficiency induced a 
tolerance for the T-cell receptor (TCR), resulting in a dormant 
response to tumor recognition [90]. Therefore, the tumor 
cancer cells in TME escaped immunotherapy. However, this 
peripheral tolerance of host-cell immune responses is protected 

by regulating T regulatory cells (Treg) to prevent autoimmune 
disorders [91]. In fact, two major mechanisms induce immune 
tolerance [92]: T-cell-mediated inflammation suppression and no 
tumor signals received by the major histocompatibility complex 
antigen presentation [93]. Traditionally, the plasma protease 
thrombin cleaves glycoprotein A repetitions predominant in 
tumor immune evasion to release active TGFβ [94]. TGFβ is 
the main coordinator and mediator between both mechanisms 
mentioned in immune evasion [95]. TGFβ increased 
programmed cell death protein (PD) ligand-1 expression 
on TAM [96] to bind with PD-1 (CD279) for cytotoxic T 
lymphocyte-associated anti-gen (CTLA)-4 inhibition. CTLA4 
(CD152) is a membrane glycoprotein of immunosuppressive 
Treg that binds to costimulatory molecules CD80 and CD86 
to inhibit early T cell (CD8+ and CD4+) activation [97]. These 
T cells are anti-tumor cells that respond to CAF for immune 
evasion regulation [98].

Chemoresistance
Chemoresistance is chemotherapeutic resistance, 

resulting in a chemotherapeutic efficacy deficit [99]. It always 
results in cytotoxic agents being minimally delivered or 
severely off-target, destroying therapeutic compliance effects 
[100]. Chemoresistance in cancer cells can be either inherent 
or acquired, with the latter increasing proportionally with the 
duration of the therapy [101]. Chemoresistance is commonly 
known as multidrug resistance (MDR), which is drug resistance to 
Mtx, Dox, and cis-diamminedichloroplatinum (II) (CDDP) drugs 
[102]. Drug accumulation in clones and stem cells altered TME, 
leading to mutation and decreased drug sensitivity [103]. For 
instance, chemoresistance decreased Dox sensitivity, resulting 
in M2 induction, which caused tumor cells to spread without 
responsiveness to Dox [104]. However, the sensitivity of drugs 
can be induced by the transfer of specific bioactive molecules, 
such as non-coding RNA and proteomic signatures [105]. 

RECENT OS THERAPIES
Because there have been numerous OS therapies 

over the last four decades, only the five most recent years are 
considered below. Although many OS therapies have been 
developed, their individual and combinational mechanisms 
are dispersed [106]. Therefore, a schematic is drawn to 
elucidate their recent medicines and therapy mechanisms in 
OS, as shown in Figure 3. Medicines are used to inhibit and 
suppress tumorigenesis, metastasis, immune evasion, and 
chemoresistance via communication mediums [107]. Targeted 
therapies can be developed to intensify the therapies and 
achieve higher cure rates by thoroughly understanding the roles 
of genes in communication axes and signaling pathways [108].

Tumorigenesis therapies
The tumorigenesis therapies are generally medicated 

in connection with suppressive, regulative, and inhibitive 
treatment mechanisms [109]. There is a summary of five recent 
studies that have addressed tumorigenesis with medicines for 
their treatment mechanisms, as shown in Table 2. For instance, 
three studies used suppressive mechanism treatments to halt 
tumorigenesis’ proliferation, migration, and invasion. Collagen 

Figure 2. Schematic of bidirectional OS mutation stages.
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T-cell immunoglobulin and mucin-domain containing protein-3 
(Tim-3) [129,130], and suppressor of cytokine signaling-5 
(SOCS5) [131,132]. These inhibitors interfered with miR-
29a-3p, BMSC-derived exosomal lymphocyte cytosolic 
protein-1 (LCP1), miR-101 EV, CRISPR-associated protein-9 
(Cas9), M2 mediation, and signal transducers and activators 
of transcription (STAT)-1 mediation by suppressing long 
intergenic non-protein coding RNA (linc)-00852 in the jumonji 
and AT-rich interaction domain containing 2 (JARID2) axis; 
neuregulin receptor degradation protein-1 (NRDP1) in the 
Janus kinase-2 (JAK2)/STAT3 signaling path-way; ADMSC-

beta (1-O) galactosyl transferase 2 (COLGALT2) inhibitor 
[110,111], transformer 2β (Tra2B) [112,113], and ArfGAP 
with GTPase domain 1 (AGAP1) [114,115] were used as 
the medicines to suppress ADMSC exosomes, miR-206, and 
miR-1307, respectively. In studies of chondrogenesis like 
osteoclast differentiation and bone resorption activity, the miR-
148a and miR-21-5p EVs were used to increase their genes to 
mimic umbilical vein endothelial cell (UVEC) formation in 
TME [86,116]. Furthermore, long non-coding RNA (lncRNA) 
leukemia inhibitory factor receptor antisense RNA1 (LIFR-AS1) 
inhibitor was used to inhibit miR-29a in the nuclear factor IA 
(NFIA) axis to suppress human peripheral-blood monocytes-
induced macrophage-derived exosomes [115,117]. All 10 studies 
are related to exosomal-derived genes, and these could be used as 
diagnosis and prognosis markers in OS progression [118].

Interfere communication mediators’ therapies
Metastasis is stimulated and controlled by intercellular 

communication in endothelial cells [119]. Both stages can 
be inhibited by interfering with their direct and indirect 
communication mediators against endothelial changes [120]. 
There is a summary of 20 recent studies that have addressed 
metastasis with medicines that interfere with communication 
mediators in signaling pathways, as shown in Table 3. For 
instance, 12 studies interfered with communication mediators 
using inhibitors, including AXL receptor tyrosine kinase (AXL) 
[121,122], miR-135a-5p [123,124], messenger RNA (mRNA) 
B-cell lymphoma-6 (BCL6) [125,126], TGFβ1 [127,128], 

Figure 3. Schematic of recent OS medicines and their therapy mechanisms for tumorigenesis, metastasis, immune evasion, and chemoresistance.

Table 2. Summary of medicines for tumorigenesis with treatment 
mechanisms.

Medicine Tumorigenesis Treatment mechanisms Ref.

COLGALT2 
inhibitor

Proliferation, 
migration, and 
invasion

Suppress ADMSC 
exosome-mediated [110,111]  

Tra2B Suppress BMSC-derived 
exosomal miR-206 [112,113]  

AGAP1 Suppress OS cell-derived 
exosomal miR-1307 [114,115] 

miR-148a and 
miR-21-5p 
EVs

Chondrogenesis Increase genes to mimic 
UVEC formation in TME [86,116]  

LIFR-AS1 
inhibitor Progression Inhibit miR-29a in the 

NFIA axis [115,117]  
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derived miR-101; CAF and α-smooth muscle actin expression 
and fibronectin (ASMAFN) differentiation; IL-10, TGFβ, and 
vascular endothelial growth factor (VEGF) secretions; and 
collagen type VI alpha 1 (COL6A1) from histone3 lysine27 
acetylation (H3K27ac) activated in CAF conversion with IL-6 
and IL-8 secretions; respectively. 

The other eight studies interfered with communication 
mediators using other medicines, such as cancer susceptibility 
15 (CASC15) or Krüppel-like factor 3 antisense RNA 1 (KLF3-
AS1) [133,134], programmed cell death 4 (PDCD4) [135,136], 
autophagy-related gene 5 (ATG5) [137,138], and Rab22a-
NeoF1 fusion protein [139,140]. Other medicines interfered 
with Ras-associated binding 14 (RAB14), extracellular 
signal-regulated kinase-1/2 (ERK1/2) signaling pathway, 
oncogenic autophagy, and M2 with Arginylglycylaspartic 
acid (RGD) peptide internalization in STAT3 by suppressing 
miR-338-3p; miR-208a EV; BMSC-derived EV; and protein 
tyrosine kinase-2 (PYK2) and Ras homolog family member 
A (RhoA); respectively. All of the medicines used in the 20 
studies interfered with communication mediators related to EV 
secretions or protein expression.

Immune evasion therapies
The suppression and communication barriers of 

immune cells allow immune evasion [141]. Tumour cells 

escape being destroyed by the immune system because the 
immune cells, such as neutrophils, monocytes, macrophages, 
dendritic cells, natural killer cells, and B and T lymphocytes, are 
suppressed [142]. Besides, the tumor’s immune responses are 
barred from immune checkpoint activations, thereby causing 
immune evasion [143]. Therefore, immune evasion is eliminated 
by suppressing and inhibiting both mechanisms. There is a 
summary of 20 recent studies with medicines and prevention 
mechanisms for immune evasion, as shown in Table 4. For 
instance, eight studies used medicines to suppress immune 
evasion mechanisms, such as mRNA N-cadherin [144,145], 
ubiquitin-specific peptidase 12 (USP12) inhibitor [146,147], 
latency-associated peptide domain (LAP) inhibitor [148,149], 
and anti-Wnt2 mAb [98,150] . These medicines suppressed 
PD-L1, PD-1, monocytic myeloid-derived suppressor cells 
(M-MDSC), NO synthase, and CAF in order to activate CD8+ 
T cells and TCR. The remaining eight studies used medicines to 
inhibit immune evasion mechanisms, such as anti-αvβ8 integrin 
[151,152], hexokinase-2 (HK2)-mediated phosphorylation of 
i-kappa-b-alpha (IκBα) [153,154], indoleamine 2,3-dioxygenase 
(IDO) inhibitor with NO [155,156], and TGFβ receptor II 
(TGFβRII) with anti-IgG1 (also known as bintrafusp alfa) 
[157,158]. These medicines inhibited the expression of TGFβ, 
TGFβ1, PD-L1, and glycolysis in order to activate CD8+ T cells 
and Treg cells. In all 20 studies, ignoring the immune evasion 

Table 3. Summary of medicines that interfere communication mediators’ therapies.

Medicine Interfere communication mediator in signalling pathway Ref.

AXL inhibitor Interfere miR-29a-3p by suppressing linc00852 in JARID2 axis [126,120]  

miR-135a-5p inhibitor Interfere BMSC-derived exosomal LCP1 by suppressing Nrdp1 in JAK2/STAT3 signalling pathway [127,121]  

BCL6 inhibitor Interfere miR-101 EV by suppressing ADMSC-derived miR-101 [128,129]  

TGFβ1 inhibitor Interfere CRISPR-Cas9 by suppressing CAF and ASMAFN differentiation [130,131] 

Tim-3 inhibitor Interfere the M2 mediation by suppressing IL-10, TGFβ, and VEGF secretions [132,133]  

SOCS5 inhibitor Interfere STAT1 mediation by suppressing COL6A1 from H3K27ac activated in CAF conversion with IL-6 and IL-8 
secretions [134,135]  

CASC15 or KLF3-
AS1 Interfere RAB14 trafficking by suppressing miR-338-3p [136,137]  

PDCD4 Interfere ERK1/2 signalling pathway by suppressing miR-208a EV [138,139]  

ATG5 Interfere oncogenic autophagy by suppressing BMSC-derived EV [140,141]  

Rab22a-NeoF1 Interfere M2 with RGD peptide internalisation in STAT3 by suppressing PYK2 and RhoA [142,143] 

Table 4. Summary of immune evasion medicines with their prevention mechanisms.

Medicine Prevention mechanisms Ref.

mRNA N-cadherin Suppress PD-L1 to reduce immunosuppression and tumorigenesis [147,148]  

USP12 inhibitor Suppress M-MDSC, NO synthase, and PD-L1 to activate CD8+ T cells to stabilise p65 [149,123]  

LAP inhibitor Suppress PD-1 to activate CD8+ T cells with effector molecule phenotypes [150,151]

Anti-Wnt2 mAb Suppress CAF and PD-1 to activate DC-mediated anti-tumour TCR [98,152]

Anti-αvβ8 integrin Inhibit TGFβ or TGFβ1 immunosuppression to activate TCR or Treg cells [153,154]  

HK2 with IκBα Inhibit PD-L1 expression and activate CD8+ T-cell [155,124]  

IDO inhibitor with NO Inhibit glycolysis to increase the functions of CD8+ T-cells and Treg cells [156,157] 

TGFβRII with anti-IgG1 Inhibit TGFβ and PD-L1 [158,159]  
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containing protein 1 (FUNDC1) mediation for mitophagy 
activation to induce apoptosis. Mitophagy is mitochondrial 
removal through autophagy, which allows tumor cells to survive 
cellular stress by clearing damaged organelles and proteins. 
Two studies of P-glycoprotein (PGP) were inhibited by the 
inverse agonist XCT-790 or the anlotinib tyrosine kinase (ATK) 
inhibitor [173,174] for mRNA ATP-binding cassette subfamily 
B member 1 (ABCB1) in the estrogen-related receptor alpha 
(ERRα) axis. Another two studies of ABCB1 in the ERRα axis 
were inhibited by IGF-1 [175,176] in order to reverse metabolic 
disorders. As a result, folate receptors, FUNDC1-mediated 
Ulk1, and ABCB1 in the ERRα axis are the key targets in 
chemoresistance therapies.

Despite the above key targets in chemoresistance 
therapies, the expression of siRNA oncogenes has been popularly 
used recently to interfere with or mute the communication 
pathways or axis [177]. There is a summary of 20 recent studies 
that used siRNA gene knockdown therapies for different types 
of drug resistance and their chemoresistance prevention in OS 
cells, as shown in Table 6. Transmitting circular RNA (circ_) 
is used to prevent the Mtx, Dox, and CDDP drug resistance in 
the 4, 10, and 6 studies, respectively. For Mtx instances, the 
circ_0000073 [178,179] and circ_0081001 [180,181] gene 

due to innate and adaptive immunizations, the medical therapies 
focus on activating immune cells, such as CD8+ T cells, TCR, 
and Treg cells. As a result, immune evasion is prevented by 
checkpoint blockade therapy [159], such as PD-L1, PD-1, IL-4, 
IL-10, M-MDSC, NO synthase, CAF, TGFβ, and TGFβ1 [160].

Chemoresistance therapies
Chemoresistance therapies are always accompanied 

by treatments for severe off-target effects to restore therapeutic 
compliance [161]. The acquired nature of chemoresistance 
in cancer cells will minimize the cytotoxic agent’s delivery 
proportionally to the chemotherapeutic treatment duration 
[162]. Hence, this becomes a primary challenge for therapeutic 
agents and cellular lesions in OS therapy [8]. Drug accumulation 
in cells, intracellular detoxification, apoptosis, DNA repair, 
signal transduction disruption, and tumor stem cell immunity 
all contribute to chemoresistance [163]. Most therapeutic 
approaches involve inhibition of the oncogene’s expression 
to interfere with or mute the communication pathways or axis 
[164]. Some use drug carriers to avoid rapid drug clearance 
and prolong release [165,166] . As a result, chemoresistance 
therapies should focus on oncogene inhibition, drug influx and 
efflux, and drug carriers [167].

Chemoresistance therapies are divided into two types: 
inhibitor therapies and gene knockdown therapies. There is a 
summary of ten recent studies that used inhibitor therapies for 
different types of drug resistance and their chemoresistance 
prevention in OS cells, as shown in Table 5. For instance, there 
are four studies focused on reducing folate receptors for Mtx 
and Dox drug resistance. Dihydrofolate reductase (DHFR) 
[168,169] and folylpoly-γ-glutamate synthetase (FPGS) 
[170,171] inhibitors were used to induce cancer cell apoptosis 
and inhibit the interaction of spindle and kinetochore associated 
complex subunit 1 (SKA1) and RNA polymerase II subunit 
3 (RPB3), respectively. DHFR reduced the affinity of Mtx 
resistance by converting dihydrofolate to tetrahydrofolate in 
order to inhibit purine and thymidine synthesis, resulting in a 
deficit in DNA replication and apoptosis. Another two studies 
of (CDDP or cisplatin) drug resistance used the heat shock 
protein (HSP)-90AA1 gene inhibitor [85,172] to deactivate 
autophagy activating kinase 1 (Ulk1) in FUN14 domain-

Table 5. Summary of inhibitors, drug resistance, and their 
chemoresistance prevention in OS cells.

Inhibitor Resistance Chemoresistance prevention Ref.

DHFR Mtx and 
Dox

Reduce folate receptors to 
induce apoptosis in cancer cells [170,171]  

FPGS Mtx
Reduce folate receptors by 
inhibiting the interaction of 
SKA1 and RPB3

[172,125]

HSP90 CDDP
Inhibit Ulk1 in FUNDC1 
mediation for mitophagy 
activation

[85,173]  

XCT-790 or 
ATK Dox Inhibit PGP for ABCB1 in the 

ERRα axis [174,175] 

IGF1 Dox
Inhibit ABCB1 in the ERRα 
axis to reverse metabolic 
disorder

[176,177]  

Table 6. Summary of gene knockdowns, drug resistance, and their chemoresistance prevention in OS cells.

Gene Knockdown Resistance Chemoresistance prevention Ref.

circ_0000073 Mtx Inhibit N-Ras pathway by sponging miR-145-5p and miR-151-3p [179,180]  

circ_0081001 Mtx Inhibit TGM2 axis by sponging miR-494-3p [105,181]  

circ_0004674 Dox Inhibit fibrillin-1 axis by sponging miR-342-3p [182,183]  

circ_0001721 Dox Inhibit TCF4 axis by sponging miR-758 [184,185]  

circ_SAMD4A Dox Inhibit KLF8 axis by sponging miR-218-5p [186,187]  

circ_0002060 Dox Inhibit ABCB1 axis by sponging miR-198 [188,189]  

circ_0003496 Dox Inhibit KLF12 axis by sponging miR-370 [190,191]

circ_CHI3L1.2 or OPI5-AS1 CDDP Inhibit LPAATβ axis by sponging miR-340-5p [192,193]

circ_TADA2A CDDP Inhibit TRPS1 and YAP1 axis by sponging miR-129-5p [194,195]

circ_103801 CDDP Inhibit MDR-associated protein 1 and PGP [196,197] 
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by miR-208a EV, oncogenic autophagy by BMSC-derived EV, 
and M2 with RGD in STAT3 by PYK2 and RhoA. Immune 
evasion is treated by activating CD8+ T cells and connecting 
TCR and Treg cells for immune checkpoint activations and 
communication checkpoint regulations, respectively. Sixteen 
therapy studies have been conducted using medicines to suppress 
and inhibit immune evasion mechanisms. These medicines 
are mRNA N-cadherin, USP12 inhibitor, LAP inhibitor, anti-
Wnt2 mAb, anti-αvβ8 integrin, HK2-mediated IκBα, IDO 
inhibitor with NO, and TGFβRII with anti-IgG1. Medical 
targets include PD-L1, PD-1, M-MDSC, NO synthase, CAF, 
TGFβ, and TGFβ1. Chemoresistance therapies use oncogene 
inhibition as well as drug carriers for influx and efflux to 
repair immune therapies and disrupt communication pathways. 
There are 30 studies of chemoresistance therapies focused 
on Mtx, Dox, and CDDP drug resistance by using inhibitor 
therapies and gene knockdown therapies. The inhibitors are 
DHFR, FPGS, HSP-90AA1, XCT-790, ATKI, and IGF1. The 
inhibitor targets folate receptors, FUNDC1-mediated Ulk1, and 
ABCB1 in the ERRα axis. Besides, the gene knockdowns are 
circ_0000073, circ_0081001, circ_0004674, circ_0001721, 
circ_SAMD4A, circ_0002060, circ_0003496, circ_CHI3L1.2 
or lncRNA OPI5-AS, circ_TADA2A, and circ_103801. The 
gene knockdown’s targets are miR-145-5p and miR-151-3p in 
the N-Ras pathway, miR-494-3p in the TGM2 axis, miR-342-
3p in the fibrillin-1 axis, miR-758 in the TCF4 axis, miR-218-
5p in the KLF-8 axis, miR-198 in the ABCB1 axis, miR-370 
in the KLF12 axis, miR-340-5p in the LPAATβ axis, miR-129-
5p in the YAP/TRPS1 axis, and the MDR-associated protein 1 
and PGP. In conclusion, all these OS therapies are individually 
elucidated to treat tumorigenesis, metastasis, immune evasion, 
and chemoresistance. However, their OS mutation stages 
are bidirectional and intertwined, resulting in their being 
combinational and multifunctional.

CHALLENGES AND FUTURE
OS is an unusual and complicated malignant tumor 

that necessitates an integrative and interdisciplinary therapeutic 
approach [198–200] . It has been reported that a multidisciplinary 
approach requires collaboration and cooperation between 
pediatric or medical cancer specialists, surgeons, pathologists, 
psychiatrists, radiologists, and radiotherapists [5]. Thus, several 
models of OS neoplasm have diverse clinical outcomes [201], 
making the diagnosis and treatment of OS cancer extremely 
challenging. Thereby, the therapeutic regimen for OS patients 
has not been systematized, harmonized, or standardized [202]. 
It has been reported that thorough surgical eradication of all sites 
of primary and metastatic OS is obligatory, foretelling better 
clinical end results and continuity of quality life [5]. However, 
those OS cases have several primary and metastatic OS disease 
locations that are not manageable for total surgical resection 
and result in impecunious clinical consequences. Furthermore, 
preoperative chemotherapies cause chemoresistance, resulting 
in a two-fold increase in the cisplatin capability of mutational 
load in OS cases [71]. As a result, chemotherapeutic regimens 
for recurring or replacement cases of chemotherapy resistance 
are constantly being improved [203].

knockdowns inhibited the N-Ras pathway by sponging miR-
145-5p and miR-151-3p and the transglutaminase-2 (TGM2) 
axis by miR-494-3p, respectively. For Dox instances, the 
gene knockdowns of circ_0004674 [182,183], circ_0001721 
[184,185], circ_SAMD4A (sterile alpha motif domain) [186,187], 
circ_0002060 [188,189], and circ_0003496 [190,191] inhibited 
the fibrillin-1 axis by sponging miR-342-3p, the transcription 
factor 4 (TCF4) axis by miR-758, the Krüppel-like factor 
(KLF)-8 axis by miR-218-5p, the ABCB1 axis by miR-198, and 
the KLF12 axis by miR-370, respectively. For CDDP instances, 
the gene knockdowns of circ_CHI3L1.2 (chitinase 3-like 1.2) 
or lncRNA OPI5-AS [192,193], circ_transcriptional adaptor 
2A (TADA2A) [194,195], and circ_103801 [196,197] inhibited 
the lysophosphatidic acid acyltransferase β (LPAATβ) axis by 
sponging miR-340-5p, the yes-associated protein (YAP) and 
trichorhinophalangeal syndrome 1 (TRPS1) axis by miR-129-
5p, and the MDR-associated protein 1 and PGP, respectively. 
As a result, the communication pathways of chemoresistance in 
OS cells would be more effectively prevented by the therapies 
targeting oncogene expression with their knockdowns.

CONCLUSION
Despite the innate and acquired nature of OS, its 

progression is intertwined, including cycles of tumorigenesis, 
metastasis, immune evasion, and chemoresistance. Firstly, 
tumorigenesis is the result of M2 alterations, which are 
progressed via signaling pathways by the MSC- and immune 
cell-secreted EV. Secondly, metastasis is potentially affected by 
the communication between the stressed MSC and the miRNA 
content of EV. Thirdly, immune evasion occurred because 
tumor cells evaded the host immune checkpoint through the 
TCR tolerance mechanism, resulting in Treg in autoimmune 
disorders. Finally, chemoresistance causes cytotoxic agents to 
be delivered severely off-target, resulting in a chemotherapeutic 
efficacy deficit. These four stages of progression are treated by 
the combinational and multifunctional therapies listed below. 
Five tumorigenesis therapy studies have been conducted using 
medicines such as COLGALT2 inhibitors, Tra2B, and AGAP1, 
miR-148a and miR-21-5p EVs, and the lncRNA LIFR-AS1 
inhibitor. The mechanisms of tumorigenesis were being 
suppressed, regulated, and inhibited, such as proliferation, 
migration, invasion, chondrogenesis, and UVEC formation. 
Their targets include ADMSC exosomes, miR-206, miR-1307, 
miR-148a, miR-21-5p, and miR-29a in the NFIA axis. Metastasis 
therapies are treated with medicines related to EV secretions 
and protein expression for intercellular communication in 
endothelial cells. There have been 20 therapy studies using 
inhibitor and disruptor medicines to inhibit protumorigenic 
expression and disrupt signaling pathways. AXL, miR-135a-
5p, mRNA BCL6, TGFβ1, Tim-3, and SOCS5 are the inhibitor 
medicines. These medicines inhibit miR-29a-3p and linc-00852 
in the JARID2 axis, LCP1 and NRDP1 in the JAK2/STAT3 
signaling pathway, miR-101 EV, Cas9 in CAF and ASMAFN 
differentiation, IL-10, TGFβ, and VEGF secretions for M2, and 
CAF conversion with COL6A1 and H3K27ac in the STAT1 
signaling pathway. CASC15, KLF3-AS1, PDCD4, ATG5, and 
Rab22a-NeoF1 are the disruptor medicines. These medicines 
disrupt RAB14 by miR-338-3p, the ERK1/2 signaling pathway 



072 Lim et al. / Journal of Applied Pharmaceutical Science 14 (01); 2024: 064-079

factor 3 antisense RNA 1; LAP, latency-associated peptide 
domain; LCP1, lymphocyte cytosolic protein-1; LIFR-AS1, 
leukaemia inhibitory factor receptor antisense RNA1; linc, 
long intergenic non-protein coding RNA; lncRNA, long non-
coding RNA; LPAATβ, lysophosphatidic acid acyltransferase 
β; M-MDSC, monocytic myeloid-derived suppressor cells; 
M2, macrophage phenotype-2; MDR, multidrug resistance; 
MGF, myeloid growth factor; miRNA, micro RNA; mRNA, 
messenger RNA; MSC, mesenchymal stem cells; Mtx, 
methotrexate; NFIA, nuclear factor IA; NRDP1, neuregulin 
receptor degradation protein-1; OS, osteosarcoma; PD, 
programmed cell death protein; PDCD4 programmed cell 
death 4; PGP, P-glycoprotein; Plb, placebo; PYK2, protein 
tyrosine kinase-2; Pzp, pazopanib; Rgf, regorafenib; RAB14, 
Ras-associated binding 14; RGD, Arginylglycylaspartic acid; 
RhoA, Ras homolog family member A; RPB3, RNA polymerase 
II subunit 3; Rpm, Rapamycin; RRS, refractory and relapsed 
solid; SAMD4A, sterile alpha motif domain; Sim, simvastatin; 
SKA1, spindle and kinetochore associated complex subunit 1; 
SOCS5, suppressor of cytokine signalling-5; SSM, soft and 
solid metastatic; STAT, signal transducers and activators of 
transcription; TADA2A, transcriptional adaptor 2A; TAM, 
tumour-associated macro-phage; TCF4, transcription factor 
4; TCR, T-cell receptor; TGFβ, transforming growth factor 
beta; TGFβRII, TGFβ receptor II; TGM2, transglutaminase-2; 
Tim-3, T-cell immunoglobulin and mucin-domain containing 
protein-3; TME, tumour microenvironment; Tpt, topotecan; 
Tra2B, transformer 2β; Treg, T regulatory cells; TRPS1, 
trichorhinophalangeal syndrome 1; Ulk1, autophagy activating 
kinase 1; USP12, ubiquitin-specific peptidase 12; UVEC, 
umbilical vein endothelial cell; VEGF, vascular endothelial 
growth factor; and YAP, yes-associated protein.
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According to a recent study, the genetic framework 
and oncogenesis process of OS are largely unknown, which 
is impeding research efforts. The immune microenvironment 
of OS tumors has been extensively studied. It found that OS 
possesses noticeable diversity and a complicated all-around 
mode of process regarding malignancy continuation and 
metastasis [142]. Another study reported that MDSCs massively 
invade OS tumors and promote anti-cancer immune-suppressive 
activities [142,204,205]. Research studies said that preoperative 
chemotherapy agents, e.g., Dox, CDDP, and ifosfamide, 
effectively brought down the MDSC count in OS cases and, 
after that, augmented both immune sensitivities and the overall 
immune system [206]. Metformin has been shown in studies to 
effectively reduce OS tumor progression and size. Metformin 
also shows substantial activity in reducing polymorphonuclear 
MDSC; nevertheless, no considerable variability was observed 
for M-MDSC [207]. Sodium-glucose cotransporter 2 (SGLT2) 
is a principal intercessor of epithelial glucose transport. It has 
been proclaimed that SGLT2 is vigorously and exaggeratedly 
exhibited in several malignant tumor cells, including OS [208]. 
Antagonizing overexpressed SGLT2 appreciably hinders cancer 
advancement, e.g., breast cancer, cervical cancer, hepatocellular 
cancer, prostate cancer, and lung cancer [209]. Although the 
antimalignant pharmacodynamics of SGLT2 antagonists in 
OS malignancy remain imprecise [208–210]. This narrative 
review advocates more research regarding this malignancy and 
safeguards our children and adults from the atrocities of this 
cancer.
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GTPase domain 1; API, active pharmaceutical ingredients; 
ASMAFN, α-smooth muscle actin expression and fibronectin; 
ATK, anlotinib tyrosine kinase; ATG5, autophagy-related 
gene 5; AXL, AXL receptor tyrosine kinase; BCL6, B-cell 
lymphoma-6; BMSC, bone marrow MSC; CAF, cancer-
associated stromal fibroblasts; Cas9, CRISPR-associated 
protein-9; CASC15, cancer susceptibility 15; CDDP, cis-
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VI alpha 1; circ_, circular RNA; COLGALT2, Collagen 
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ERK1/2, extracellular signal-regulated kinase-1/2; ERRα, 
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2; KLF, Krüppel-like factor; KLF3-AS1, Krüppel-like 
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