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ABSTRACT 
The present work is aimed to identify the inhibitors for insulin-degrading enzyme (IDE) from plant secondary 
metabolites through in-silico studies. IDE is a protease that cleaves insulin and other bioactive peptides such as 
amyloid-β. IDE is the important drug target for diabetes because IDE is the principal insulin-degrading protease in 
vivo, IDE inhibitors should enhance insulin signaling and thus have efficacy in relevant animal models of diabetes 
and also in therapy. The in-silico absorption distribution metabolism elimination screening was carried out to find out 
the drug likeness properties of selected flavonoids. In-silico molecular docking simulations have been performed to 
positional phytoconstituents into the preferred binding site of the protein receptor IDE, to predict the binding modes, 
the binding affinities and the orientation of all ligands. The docking studies revealed that all compounds showed 
good docking score. In-silico molecular docking simulations have been performed to positional phytoconstituents 
into the preferred binding site of the protein receptor IDE, to predict the binding modes, the binding affinities and the 
orientation of all ligands. The docking studies revealed that all compounds showed good docking score. The prediction 
of the binding affinity of a new compound to an identified target is a significant parameter in the development of a 
new drug. It is found that the flavonoids quercetin, genistein, wogonin, isorhamnetin and luteolin had drug like 
properties rutin and Diosmin are in good bioavailability radar and diosmin, wogonin and flavilium elicit a higher 
binding affinity with IDE.

INTRODUCTION 
Diabetes results when the pancreas doesn’t really 

release adequate insulin or if the body does not use the insulin 
that is released (Figs. 1 and 2). Untreated diabetes may cause 
long-term harm to a range of biological systems, including 
blood vessels and neurons. Insulin plays a main role in the 
metabolism of glucose. Insulin-degrading enzyme (IDE) is a 
thiol-sensitive zinc-metallopeptidase that has been linked to the 
development of numerous diseases, including type 2 diabetes. 
In vivo, IDE is the most important insulin-degrading protease, 
and inhibiting it is a simple way to increase insulin activity, 
both experimentally and potentially medically. Regardless of 

the availability of peptide-derived hydroxamic acid inhibitors, 
there is a problem. Because of its large molecular weight (750 
da) and peptidic composition, it is particularly suitable for 
in vivo research (t1/2 of 9 minutes in mice). Despite decades 
of research, there is still a considerable need for powerful, 
selective, and long-lasting small molecule research compounds 
that block IDE with target specificity and high potency. While 
looking for small compounds that inhibit IDEs, we came across 
a variety of flavonoids with anti-diabetic potential, including 
Quercetin, Rutin, Diosmin, Isoflavone, Wogonin, Genistein, 
Flavylium, Luteolin, and Isorhamnetin. Keeping all of the 
aforementioned perspectives in mind, we discovered an IDE 
inhibitor from the chosen flavonoids using structure-based in 
silico research (Fig.4).

METHODS AND MATERIALS
Using the SwissADME and PyRx software, experiments 

were carried out to identify potential flavonoids as IDE inhibitors. 
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This chapter provided the resources as well as their working 
approach (Fig. 3).

Flavonoids selection
An extensive literature search was conducted in order to 

choose the appropriate flavonoids. Nine flavonoids were chosen 
and are displayed in Table 1.

Swiss ADME conducts in-silico absorption distribution 
metabolism elimination (ADME) investigations

Swiss ADME is a free online service that provides 
access to a variety of powerful and quick estimation techniques 
for physicochemical properties, medicinal chemistry friendliness, 
bioavailability radar, pharmacokinetics, and expert techniques 

like the ilogP, BOILED-EGG, and drug likeness. It was carried 
out with the use of a website, http://www.swissadme.ch. The 
acronym ADME stands for absorption, distribution, metabolism, 
and elimination (Gleeson et al., 2011). The Swiss ADME 
programme (www.swissadme.ch) produced by the Swiss Institute 
of Bioinformatics (http://www.sib.swiss) was accessible through 
a web server, and the Swiss ADME Submission page was shown 
in Google. It aids in the calculation of flavonoids’ individual 
ADME behaviors. Simplified Molecular Input Line Entry System 
(SMILES) is used to prepare the list, and the results are provided 
(Mahanthesh et al., 2020; Yi et al., 2018) (Table 2).

Radar structure and bioavailability
Bioavailability radar, which gives a first glimpse, may 

be used to access the drug similarity of desirable compounds. 
The current study is concerned with many physicochemical 
characteristics, such as size, flexibility (nrotb flexibility), 
Polar [topological polar surface area TPSA) polarity], Insolu 
(Insolubility), Lipo (Lipophilicity), acceptors of H-bonds donors 
of H-bonds, molecular reactivity, gastrointestinal (GI) absorption, 
blood–brain barrier (BBB) permeation, CYP2D6 antagonist, 
Lipinski infractions, Pan-assay interference compounds (PAINS) 
warnings, flavonoids’ synthetic accessibility (Table 4).

Figure 1. Pathogenesis of diabetes mellitus.

Figure 2. Structure of human insulin.

Figure 3. Different domains of IDE.

Figure 4. Basic scaffold of flavonoid.
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Table 1. Selected flavonoids for the in-silico study.

S. No. Name of the plant Part of the 
plant

Name of the 
compound Structure Uses

1. Euphorbia guyoniana Aerial leaf Quercetin
a. Antidiabetic 
b. Inhibit the oxidative stress 
in-vitro and in-vivo

2. Euphorbia tirucalli Aerial leaf Rutin a. Antidiabetic 
b. Antioxidant

3. Scrophularia nodosa Root Diosmin
a. Antihypertensive

b. Antidiabetic

4. Glycine max Root and Seeds Isoflavone a. Cardiovascular disease 
b. Antidiabetics

5. Scutellaria baicalensis Root Wogonin a. Anticonvulsant 
b. Anti-hepatitis

6. Genista tinctoria Flowering twigs Genistein a. Antidiabetics 
b. Breast cancer

7. Vaccinium corymbosum Fruits Flavylium a. Anti-oxidant

8. Euphorbia lunulata Whole plant, 
roots Luteolin a. Anti-HBV 

b. Antidiabetics

9. Euphorbia hirta Aerial leaf Isorhamnetin a. Antiviral 
b. Oxidative stress
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Table  2. Molecular properties of selected flavonoids. 

Name of the compound Canonical SMILES Formula Molecular 
weight nrtob H-bond 

acceptors
H-bond 
donors

Molar 
refractivity TPSA

Quercetin C1=CC(=C(C=C1C2=C(C(=O)
C3=C(C=C(C=C3O2)O)O)O)O)0 C15H10O7 302.24 1 7 5 78.04 131.36

Isoflavone C1=CC=C(C=C1)C2=COC3= 
CC=CC=C3C2=O C15H10O2 224.25 1 2 0 65.5 26.3

Genistein C1=CC(=CC=C1C2=COC3=CC 
(=CC(=C3C2=O)O)O)O C15H10O5 270.24 1 5 3 73.99 90.9

Wogonin COC1=C(C=C(C2=C1OC 
(=CC2=O)C3=CC=CC=C3)O)O C16H12O5 284.26 2 5 2 78.46 79.9

Rutin

CC1C(C(C(C(O1)
OCC2C(C(C(C(O2)
OC3=C(OC4=CC(=CC 
(=C4C3=O)O)O)C5=CC 
(=C(C=C5)O)O)O)O)O)O)O)O

C27H32O16 610.52 6 16 10 141.38 269.43

Isorhamnetin
COC1=C(C=CC(=C1)C2=C(C(=O)
C3=C(C=C 
(C=C3O2)O)O)O)O

C16H12O7 316.26 2 7 4 82.5 120.36

Diosmin

CC1C(C(C(C(O1)
OCC2C(C(C(C(O2)
OC3=CC(=C4C(=C3)OC(=CC4=O)
C5=CC(=C(C=C5)OC)O)O)O)O)O)
O)O)O

C28H32O15 608.54 7 15 8 143.82 238.2

Luteolin C1=CC(=C(C=C1C2=CC(=O)
C3=C(C=C(C=C3O2)O)O)O)O C15H10O6 286.24 1 6 4 76.01 111.13

Flavylium C1=CC=C(C=C1)C2=[O+]
C3=CC=CC=C3C=C2 C15H11O

+ 207.25 1 1 0 66.06 13.14

5-Fluro-2-(2-
morpholino-5-
(morpholinosulfonyl)
phenylbenzo[d]
isothiazole-3(2H)-one or 
ML 345

C1COCCN1C2=C(C=C(C=C2) 
S(=O)(=O)N3CCOCC3)N4C(=O)
C5=C(S4)C=CC(=C5)F

C21H22FN3 
O5S2

479.5 4 7 7 126.4 117.7

Limits -- -- >500 >20 >10 >5 40–130 20–200 
AO

Table 3. Pharmacokinetic properties of selected flavonoids.

Name of the compound XLOGP3 ESOL Class GI 
absorption

BBB 
Permeation

CYP2D6 
inhibitor

Lipinski 
violations

PAINS 
alert

Synthetic 
accessibility

Quercetin 1.54 Soluble High No No 0 1 3.23

Isoflavone 3.07 Soluble High Yes No 0 0 2.86

Genistein 2.67 Soluble High No No 0 0 2.87

Wogonin 3.49 Moderate 
Soluble High No No 0 0 3.15

Rutin −0.33 Soluble Low No No 3 1 6.52

Isorhamnetin 1.87 Soluble High No No 0 0 3.26

Diosmin 0.14 Soluble Low No No 3 0 6.48

Luteolin 2.53 Soluble High No No 0 1 3.02

Flavylium 3.39 Soluble High Yes No 0 0 2.78

5-Fluro-2-(2-morpholino-
5-(morpholinosulfonyl)
phenylbenzo[d]isothiazole-3(2H)-
one or ML 345

1.64 Soluble High No No 0 0 3.79

Limits −0.7 to 5 -- -- -- -- 0 to 1 0 to 10
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Table 4. Results of biological radar for selected flavonoids.

SI. No. Name of the compound Biological radar

1. Quercetin

2. Isoflavone

3. Genistein

4. Wogonin

5. Rutin

Continued
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SI. No. Name of the compound Biological radar

6. Isorhamnetin

7. Diosmin

8. Luteolin

9. Flavylium

Continued
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Spectrum of qualifications
Lipophilicity: XLOGP3 ranging from −0.7 to +5.0
MW ranges between 150 and 500 g/mol.
Polarity: TPSA of 20–130.0,
Solubility: log S less than 6 and
Flexibility: a maximum of nine rotatable bonds (Daina 

et al., 2017).

Molecular weight
It is the area that a molecule takes up in 3D space. The 

volume of any mass is the amount of space it takes up in 3D space. 
The molecular weight of the drug-like molecule is 200–600 g/mol 
(Wildman and Crippen, 1999).

Number of rotatable bonds—flexibility
The number of rotating bonds is the number of bonds 

that can freely rotate around each other. Bonds attached to a non-
terminal heavy atom that is not part of a ring like amides, C–N 
bonds are excluded from the count due to their high rotation 
barrier. The drug-like structure has a total of 15 rotatable linkages 
(Egan et al., 2000).

Polarity (TPSA) 
Polarity is the separation of electrical charge that results 

in an electric dipole moment with an oppositely charged end. 
Reduced TPSA corresponds to a higher permeation rate. The 
TPSA of the drug-like compound is 150 (Lombardo et al., 2003).

Solubility
The solubility is determined by the solvent employed and 

also by the ambient pressure and temperature. When a medicine’s 
maximum dose is soluble in 250 ml or less of aqueous media with 
a pH range of 1–7.5, then it is extremely soluble (Cheng, 2007; 
Yalkowsky and Valvani, 1980).

The Swiss ADME includes the following 
methodologies for predicting water solubility: Each value that is 
predicted is calculated using the log of molar solubility in water 
(log S). In addition, Swiss ADME provides solubility in mg/ml 
and mol/l units as well as qualitative solubility classes (Lipinski 
et al., 2001).

Lipophilicity
Lipophilicity has a major role in drug discovery 

and design and may be measured experimentally as partition 
coefficients (log P) or distribution coefficients (log D). Log P 
represents the partition equilibrium of a unionized solute in the 
presence of an immiscible organic solvent and water. The bigger 
the log p values, the stronger the lipophilicity (Moriguchi et al., 
1994).

The five models supplied by Swiss ADME to obtain the 
lipophilicity character in a chemical are as follows: XLOGP3, 
WLOGP, MLOGP, SILICOS-IT, and iLOGP.

 XLOGP3. It is an atomistic approach that includes 
remedial measures and a knowledge-based library. The 
XLOGP of the drug-like molecule ranges between 2 and 
5.
 WLOGP. It involves the use of a purely atomistic 
technique based on a fragmentary system. 
 MLOGP. It is a topological approach archetypal based 
on a linear connection with 13 molecular descriptors 
incorporated.
 SILICOS-IT. It is a haphazard technique based on 27 
pieces and 7 topological descriptors. 
 ILOGP. It is a physics-based technique that relies on 
solvation-free energies in n-octanol and water derived 
using the generalized-born and solvent-accessible 
surface area model. The mean value anticipated by the 
five recommended approaches is log P o/w (Darvas 
et al., 2002).

Acceptors of H bonds and donors of H bonds
Hydrogen bonds form when a hydrogen atom is 

connected to a tiny, extremely electronegative atom and another 
small, very electronegative atom with an unshared electron 
pair. Aliphatic fluorine, oxygen, and nitrogen are examples of 
H-bond acceptors, while all nitrogens and oxygens with at least 
one hydrogen are examples of H-bond donors. The drug-like 
molecule has a 10 H-bond acceptor and a 5 H-bond donor (Di 
et al., 2012).

SI. No. Name of the compound Biological radar

10

5-Fluro-2-(2-morpholino-
5-(morpholinosulfonyl)

phenylbenzo[d]isothiazole-
3(2H)-one or ML 345
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Molecular reactivity
It is a measure of the overall polarizability of a substance 

that is impacted by the index of refraction, temperature, and 
pressure. The drug-like molecule’s molar refractivity ranges from 
40 to 130 (Brito Sanchez et al., 2015).

Absorption in the GI tract
Drugs are absorbed from the GI tract via active transport 

or passive transport. The most important mechanism is passive 
diffusion, which involves transporting drugs from the mucosa to 
the circulation along a concentration gradient. The rate of transfer 
is influenced by the concentration gradient, molecular-weight lipid 
solubility, molecular weight, and permeability. The epithelial cells 
act as a lipid barrier, allowing lipid-soluble molecules through but 
blocking highly ionized, water-soluble compounds.

Permeation of the BBB
BBB penetration is a statistic for determining if a drug 

crosses the BBB. Most drugs must not cross the BBB if the goal is 
unrelated to the neurological system.

CYP2D6 antagonist 
One of the most significant enzymes responsible for the 

breakdown of xenobiotics in the system is CYP2D6, a component 
of the cytochrome P450 blended oxidase system. It converts and 
eliminates roughly 25% of medically used drugs by adding or 
removing functional groups such as demethylation, hydroxylation, 
and decarboxylation. CYP2D6 also activates a number of 
prodrugs. CYP2D6 in the brain and liver metabolizes and converts 
endogenous chemicals such as neurosteroids, hydroxytryptamines, 
and both m- and p-tyramine into dopamine (Ogu and Maxa, 2000).

Lipinski infractions
Lipinski’s rule of five (RO5) is a thumb rule for identifying 

whether a chemical compound with a certain pharmacological or 
biological activity has the chemical and physical qualities to be an 
orally active medication in humans. It is also known as Pfizer’s 
RO5. According to the rule, most “drug-like” molecules contain 
a molecular weight of 500, 5 hydrogen bonds, log p = 5, and 10 
hydrogen bond acceptors and donors. Molecules that breach more 

than one of these parameters may have bioavailability issues. 
Because the boundary values are 5, 500, 2 × 5, and 5, the rule is 
known as the “Rule of 5” (Lipinski et al., 1997).

PAINS warnings
PAINs are chemical substances that often produce false 

positives in high-throughput screening. Instead of affecting a 
specific target, PAIN frequently responds non-specifically to a 
broad spectrum of biological targets (Baell and Holloway, 2010).

In-silico molecular docking research 

Materials and devices
In modern drug design molecular scenarios, molecular 

docking is used to investigate the connections between target 
components by detecting the relationship between the target lead 
molecules and ligand binding with its protein. In silico research was 
carried out using bioinformatics approaches. Offline programming 
tools are employed: the Marvin sketch, the Protein Data Bank 
(PDB) (www.rcsb.org/pdb), and the PubChem database. The 
molecular docking studies are done with PyRx 0.9, which may be 
found at https://pyrx.sourceforge.io/.

Protein preparation
The offline software PDB was used to get the human 

IDE inhibitor complex (PDB: 3E4A) with a resolution of 2.60 AO, 
and Swiss PDB Viewer was used to save energy (Fig. 5).

Figure 5. 3D structure of protein.

Table 5. Binding energies of selected flavonoids.

Name of the compound Binding energy (kcal/mol)

Quercetin −9.1

Isoflavone −9.1

Genistein −9.1

Wogonin −9.6

Rutin −8.8

Isorhamnetin −8.8

Diosmin −10.3

Luteolin −8.9

Flavylium −9.3

5-Fluoro-2-(2-morpholino-5(morpholinosulfonyl)phenyl)benzo[d]isothiazol-3(2H)-
one or ML 345 (std) −9.2
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Table 6. 2D interactions of selected flavonoids.

SI. No. Name of the compound 2D Interaction

1. Quercetin

2. Isoflavone

3. Genistein

Continued
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SI. No. Name of the compound 2D Interaction

3. Genistein

4. Rutin

5. Isorhamnetin

Continued
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SI. No. Name of the compound 2D Interaction

6. Diosmin

7. Wogonin

8. Luteolin

Continued
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Active site identification
Protein–Ligand Interaction Profile https://plip-tool.

biotec.tu-dresden.de/plipweb/plip/index A Google offline tool is 
used to determine the presence of active amino acids in a protein. 
As a consequence, we find the active amino acid in the protein.

Ligand preparation
Using the Marvin sketch approach, the molecules are 

represented in 2D and 3D. After designing the molecule, the 
structure was optimized in 3D in Marvin Sketch and saved as a 
PDB file.

Simulation of molecular docking
PyRx software was used to conduct molecular docking 

experiments, yielding accurate predictions and conformations for 
ligands and their target receptor proteins, as well as the complexes 
that formed. PDB ID: 3E4A for human IDE inhibitor complex with 
a resolution of 2.60 A0 was obtained. The docking stimulations 
are carried out in accordance with the docking procedure, which 

includes the following steps: Create the binding site and binding 
pocket in a Molecule Project, dock ligands in a molecular table, 
and analyze the docking data. To guarantee the authenticity of 
ligand orientations and sites derived from molecular docking 
research, redocking was utilized to check the docking procedures 
and parameters employed. Hydrogen bonds established with 
amino acids via group interaction atoms and docking scores are 
used to predict the affinities, interaction modes, and location of 
docked flavone derivatives in the protein-receptor active site. 
PyRx 0.9 was used for the docking investigation. PyRx is a 
Python programming language that can run on anything from a 
PC to a supercomputer. PyRx is used for molecular docking and 
determining the affinity of ligands and proteins. PyRx, a docking 
programme based on structure, was employed to detect all nine 
flavonoids for IDE (PDB: 3E4A). Furthermore, energy-saving 
ligands form beneficial interactions. The mmff94 force field was 
used to do the minimization in 200 steps with an root mean square 
gradient of 0.1, and the ligands were changed to Protein Data 
Bank, partial charge (Q) and atom type (T) format. selecting the 

SI. No. Name of the compound 2D Interaction

9. Flavylium

10.

5-Fluoro-2-(2-morpholino-5-
(morpholinosulfonyl)phenyl)

benzo[d]isothiazol-3(2H)-one  or  
ML 345
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“macromolecule” that will establish the protein’s binding location. 
Using bound ligand binding sites, the docking active site was 
generated. Using a molecular window, all generated ligands were 
virtually tested on the chosen active site. The PyRx score was used 
to categorize each ligand’s binding affinity.

RESULTS 

ADME simulations in silico
The drug likenesses of selected phytoconstituents 

were determined by analyzing their physicochemical and 
pharmacokinetic characteristics using Swiss ADME and tabulating 
the findings in Table 1. The water solubility of the medicine 
is regarded as the most essential criterion when assessing its 
bioavailability. The chosen flavonoids were soluble, except 
for wogonin, which is moderately soluble. XlogP3 calculates a 
molecule’s lipophilicity and shows partition co-efficient values 
(logarithms) of compounds in an n-octanol/water system. It is a 
critical parameter that influences drug bioavailability, membrane 
permeability, distribution, and clearance routes. This characteristic 
is also important in the pharmacological and toxicological aspects 
of medicines. All of the produced compounds had XlogP3 values 
that were less than five. The polar surface area of the chemical has 
an inverse association with human intestinal absorption, and all of 
the chosen flavonoids, with the exception of rutin, had values less 
than 200, indicating strong absorption. If the goal is not connected 
to the neurological system, most medications must not cross the 
BBB. The chosen flavonoids, with the exception of isoflavone and 
flavone, would not cross the BBB. The total number of rotatable 
bonds is 1–7, demonstrating the versatility of all of the flavonoids 
chosen. Except for rutin and diosmin, all of the compounds 
followed the Lipinsky RO5.

Radar for chemical structure and bioavailability
The bioavailability radar quickly assesses drug-

likeness. The six physicochemical properties evaluated are 
lipophilicity, solubility, size, polarity, flexibility, and saturation. 
A physicochemical range was set on each axis using descriptors 
derived from references and presented as a pink zone where the 
molecule’s radar plot must fall entirely to be deemed drug-like 
in Table 3. The pink zone denotes the optimal range for each 
property. All of the compounds, with the exception of rutin and 
diosmin, have a high bioavailability.

Molecular docking research
Binding affinity characteristics were used in PyRx to 

choose the optimal “HITS” and compared to the known inhibitor, 
curcumin. The energy of the interaction between the protein and 
the ligand is referred to as “PyRx binding energy.” This number 
clearly shows the amount to which proteins and ligands interact. 
The binding energies of diosmin, wogonin, and flavilium (−10.3 to 
9.6 and −9.3 kcal/mol, respectively) were lower than those of the 
reference compound ML-345 (−9.1 kcal/mol), showing that these 
three compounds had a stronger affinity for IDEs (Table 5). The 
energies of the other compounds were likewise close to those of 
the reference compound, ML-345. The comparative investigation 
of receptor-ligand interactions with the active amino acid residues 
of IDE validated the enhanced binding energies of all drugs. The 
primary non-bonded interactions of these two compounds, such as 

hydrophilic, hydrophobic, and pi-pi interactions, were examined 
and compared to the standard reference ML-345. The findings are 
shown in Tables 6–8.

CONCLUSION
IDE is a protease that degrades insulin as well as other 

bioactive peptides, including amyloid. IDE has been related to 
Alzheimer’s disease and type 2 diabetes in knockout and genetic 
investigations. As the most important insulin-degrading protease, 
IDE is a potential therapeutic target in diabetes.

As we all know, the first step of drug development is 
the characterization of the compounds being investigated as 
possible therapeutic candidates’ ADME, and toxicity (T). Building 
mathematical models, known as “in silico screens,” to predict 
ADMET properties simply from molecular structure is important 
to this attempt to reduce costs and development cycle time. ADME 
screening is used to determine the drug-like characteristics of 
chosen compounds.

To anticipate the binding modalities, binding 
affinities, and orientation of all ligands, in-silico molecular 
docking simulations were used to insert phytoconstituents 
into the preferential binding site of the protein receptor IDE. 
All compounds had an excellent docking score, according to 
the docking studies. The research reported in this publication 
demonstrates the importance of molecular docking techniques in 
the design and development of novel drugs with biological activity. 
The prediction of a novel compound’s (a ligand’s) binding affinity 
to a specified target (protein or enzyme) is an important metric in 
the development of a new medicine. Drug-like effects were found 
in the flavonoids quercetin, genistein, wogonin, isorhamnetin, and 
luteolin. Except for rutin and diosmin, all flavonoids have high 
bioavailability. The flavonoids diosmin, wogonin, and flavilium 
have a greater affinity for IDE.
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