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INTRODUCTION
NAFLD (nonalcoholic fatty liver disease) is considered 

a comprehensive world health problem nowadays (Bellentani 
et al., 2010). It includes fatty liver and steatohepatitis starting 
from liver fatty vacuoles and fibrosis leading to hepatic cancer 
(Hadizadeh et al., 2017). Until now, no known therapy has 
been approved for treating NASH (nonalcoholic steatohepatitis) 
(Sporea et al., 2018). NAFLD in vivo study should be done on 
a suitable animal model that resembles NAFLD pathogenesis 
in humans and is caused by the same risk factors (obesity, fatty 
diet, high sugars, and insulin resistance) (Hadizadeh et al., 2017). 

NAFLD pathogenesis comprises abnormality in liver enzymes and 
lipid profile serum samples, tumor necrosis factor alpha (TNF-α) 
elevation, and fat vacuolation in liver histology with mild to severe 
fibrosis (Hadizadeh et al., 2017; Sporea et al., 2018)

Metformin HCl (C4H12ClN5; 3-(diaminomethylidene)-1, 
1-dimethylguanidine; hydrochloride). It is the hydrochloride salt of 
biguanide antidiabetics with antihyperglycemic activity. Only 50% 
of an orally administered dose is absorbed from the gut. Therefore, 
metformin is a  biopharmaceutics class III.  Furthermore, it helps to 
reduce low-density lipoprotein (LDL), cholesterol, and triglycerides 
(TG) levels. Metformin is not metabolized and is excreted by the renal. 
Its molecular weight is approximately 165, and its water miscible. 
Metformin HCl is the drug of choice in treating diabetes mellitus type 
II (Cicero et al., 2012). Also, recent studies have shown its valuable 
effect on other diseases such as obesity, cancer, circulatory diseases, 
and fatty liver (Salem et al., 2022) (Green et al., 2019; Li et al., 2013).

Different oral formulations were studied for metformin 
HCl (Ng and Gupta, 2020), for instance, traditional tablets, 
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sustained-release tablets (Basak et al., 2008), and floatable 
gastroretentive tablets (Basak et al., 2007). Though severe 
gastritis and poor oral absorption are the significant drawbacks 
of metformin oral administration methods, (Jain and Gupta, 
2009) more studies lead to the possibility of topical delivery of 
metformin HCl through advanced nanodelivery systems (Salem 
et al., 2022). Metformin is known to enhance insulin resistance 
besides its TNF-α suppression ability, so that it can be used in 
treating NAFLD.

Cholate-based nanovesicles are spherical bilayered bile 
salts-based vesicles that are 5–200 nm in size  and can be uni- or 
multilamellar. In general, cholate-based nanovesicles consist 
of two layers; the inner layer consists of hydrophilic drugs and 
(or) antigens, and the outer layer consists of bile salts and (or) 
hydrophobic drugs. Materials used in the formulation of cholate-
based nanovesicles encompass mainly nonionic surfactants and 
bile salts; lipids such as phosphatidylcholine and cholesterol 
are also included. It involves nonionic surfactants and exhibits a 
better quality of transdermal delivery than other nanovesicles (Al-
Mahallawi et al., 2015). Bile salts produce extremely stable vesicles 
for transdermal distribution by acting as electrostatic stabilizers 
and edge activators with fluidizing effects (El Zaafarany et al., 
2010). Cholate-based nanovesicles can be prepared by the solvent 
vaporization method (Al-Mahallawi et al., 2015).Cholate-based 
nanovesicles are advanced vesicles (Ahmed et al., 2020) known 
as liver targeting molecules formed mainly from bile salts and 
surfactants (Al-Mahallawi et al., 2015). Recently, it was studied 
to enhance the permeation of metformin through the skin stratum 
corneum layer and showed stunning results (Salem et al., 2022). So 
incorporating of cholate-based nanovesicles into an emulgel could 
be an advanced delivery system that gives a thixotropic behavior 
with a nongreasy emollient application (Alexander et al., 2013). 

The in vivo study of NAFLD should be done on a suitable 
animal model that resembles NAFLD pathogenesis in humans and is 
caused by the same risk factors (Hadizadeh et al., 2017). Therefore, 
balb-c mice were chosen as animal models for NAFLD. However, 
it is known to resist the change in body weight (Kim et al., 2011; 
Nishikawa et al., 2007). It reflexes a good pathology indication 
in serum analysis, hepatic histology, and liver weight (Hadizadeh 
et al., 2017; Rahmadi et al., 2021; Xie et al., 2015).

Aberration of ALT (transaminases alanine 
aminotransferase) and AST (aspartate aminotransferase) values 
is frequently associated with NAFLD. Through around 60 
transamination reactions, only ALT and AST are clinically 
significant. In copious studies of NAFLD patients, raised levels of 
aminotransferases and diabetes have been ascertained as steadfast 
predictors of fibrosis in patients with a risk of progressing to 
advanced fibrosis (Harrison et al., 2003). 

TNF-α has an indispensable effect on the development 
of NAFLD due to its proinflammatory influence (Hadizadeh et al., 
2017; Jovinge et al., 1998). In addition, it provokes hepatocytes 
apoptosis and proliferation causing liver fibrosis (Galle, 1997; 
Yang and Seki, 2015). Moreover, TNF-α increases the TG serum 
concentrations (Jovinge et al., 1998) and reduces serum HDL-c 
levels and insulin sensitivity (Tacer et al., 2007). In NAFLD, 
the serum levels of TNF-α raises, so standardization of its 
concentration improves insulin sensitivity and NAFLD (Ajmal 
et al., 2014; Hadizadeh et al., 2017).

In this research, metformin cholate-based nanovesicles 
emulgel was prepared and characterized as an approach for 
acceptable level of evidence of effective transdermal treatment of 
NAFLD in balb-c mice through different mechanisms avoiding 
the drastic side effects of metformin.

Metformin HCl was kindly provided by Cid Pharmaceu-
tical Co. (Assuit, Egypt). Span 60 (S60) (sorbitan monostearate), 
Span 80 (S80) (Sorbitan monooleate), and Tween 80 (polysorbate 
80) are purchased from Oxford Laboratory (El-Nasr Pharmaceutical 
Chemicals Co., Sohag, Egypt). Sodium deoxycholate (SDC) is pur-
chased from Acros Organics (El-Nasr Pharmaceutical Chemicals 
Co., Sohag, Egypt). Cholesterol is purchased from Sigma Aldrich, 
Saint Louis, MO.  Methanol and methylene chloride ADWIC are 
purchased from El-Nasr Pharmaceutical Chemicals Co., Sohag, 
Egypt. Carbopol 940 and polyethylene glycol (PEG 400) were pur-
chased from LOBA Chemie, Mumbai, India. Dimethyl sulfoxide 
(DMS), triethanolamine, and ethanol were obtained from El-Nasr 
Pharmaceutical Chemicals Co., Cairo, Egypt. All reagents were of 
analytical grade and were commercially available.

Standard calibration curve
Stock solution (1 mg/ml) of metformin HCl dissolved 

in phosphate citrate buffer pH 4 was used to establish a standard 
calibration curve, and serial dilutions (1 to 8 µg/ml) were prepared. 
Metformin HCl was analyzed using a UV spectrophotometer 
at λ max = 233 nm. The absorbances were plotted against the 
concentrations, and the linear regression equation was calculated.

Formulation of metformin HCl cholate-based bile salts
Metformin HCl cholate-based nanovesicles were 

formulated through the solvent vaporization method with slight 
modification (Salem et al., 2022). Concisely, metformin HCl (600 
mg) and cholesterol (14 mg) were dissolved in a methanol-to-
methylene-chloride (1:2) mixture after addition of 130 mg of span 
60 (as a surfactant) and 8 mg of SDC (as an edge activator). The 
solvents were then completely evaporated by continuous agitation 
on a magnetic stirrer (IKA, C-MAG HS 7 digital, Germany) at 
60°C. The resulting residue was then hydrated with phosphate 
citrate buffer pH 4 to obtain the cholate-based nanovesicles 
suspension. Phosphate citrate buffer pH 4 was used because of the 
metformin HCl tendency to be more soluble in acidic media, while 
the pH of the skin ranges from 4 to 6.(El-Menshawe et al., 2018)

Morphology of metformin HCl cholate-based nanovesicles by 
TEM (Transmission electron microscope)

The vesicles morphology was reconnoitered using high-
resolution TEM (JEOL Co., JEM-1400; Japan) (negative stain 
technique) to ensure the successful formation of the cholate-based 
bile salts. First, the formulation was suitably diluted with distilled 
water; then, a drip was put above a carbon-coated copper grating 
and stained with a phosphotungstic dye at 160 KV fast-tracking 
voltage (El-Menshawe et al., 2018).

Zeta size and potential of metformin HCl cholate-based bile salts
The zeta size and potential of the prepared formulation 

(diluted with 4 ml distilled water) were detected using the dynamic 
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light-scattering technique applied by the zeta seizer (Malvern 
ZetaSizer3000, UK) with a fixed angle of 90° at room temperature 
(25°C) (El-Menshawe et al., 2018).

Preparation of metformin HCl cholate-based nanovesicles 
emulgel

Carbopol 940 (1% w/w) as a gelling agent was kept 
overnight in water at 4°C, then 15% w/v PEG-400 (polyethylene 
glycol-400) was added to get a homogeneous gel. The emulsion 
(o/w type) was prepared by adding the oily phase continuously with 
stirring to the aqueous phase; span 80 was dissolved in castor oil to 
prepare the emulsion oil phase, while Tween 80 was dissolved in 
purified water to prepare the aqueous phase. The oil and aqueous 
phases of the emulsion were separately heated to 75°C and allowed 
to cool to room temperature. The emulsion and the carbopol gel 
were mixed in a 1:1 ratio with mild rousing to obtain the emulgel and 
then triethanolamine (1%) was dropped to maintain the pH. Finally, 
a calculated weight of metformin HCl cholate-based nanovesicles 
equivalent to 600 mg of metformin HCl was incorporated into the 
obtained emulgel (Mohamed et al., 2019).

Characterization of metformin HCl cholate-based 
nanovesicles emulgel

Clarity and homogeneity of metformin HCl cholate-based 
nanovesicles emulgel

The clarity and homogeneity of the prepared cholate-
based nanovesicles emulgel were evaluated visually against 
white and black backgrounds to evaluate the manifestation of 
any aggregation or turbidity. The formulation was stored at room 
temperature (25°C) and reevaluated after 15 days.

The pH of metformin HCl cholate-based nanovesicles emulgel 
The pH meter (Jenway 3510 pH meter; Staffordshire, UK) 

was used to determine the cholate-based nanovesicles emulgel pH. 
Briefly, 1 ml of the prepared cholate-based nanovesicles emulgel 
was suitably diluted with distilled water (10 ml) and allowed to 
equilibrate before dipping the pH meter probe (Vani et al., 2018). 
The pH measurements were implemented in triplicate, and the 
mean was calculated. The formulation was reevaluated after 15 
days of storing at room temperature (25°C).

Rheology study of metformin HCl cholate-based nanovesicles 
emulgel

The viscosity of the prepared emulgel was determined 
over a wide range of speeds (10–100 rpm) to inspect its rheology 
behavior using Brookfield viscometer (HBDV-III Ultra; 
Brookfield Engineering Laboratories, Stoughton, MA) with a 
suitable spindle (CP 40 model HB). The gap between every two 
consecutive measurements was 30 seconds and the test was done 
at room temperature (25°C) (Salem et al., 2021). The hysteresis 
loops and the grade of pseudoplasticity (Farrow’s constant) were 
determined using the trapezoidal rule. Then, the area under the 
down curve was subtracted from the total area under the curve 
to attain the hysteresis loop area. Farrow’s equation (Eq. 1) was 
applied to study the flow performance of the gel base.,

Log G = N Log F – Logη , (1)

where G is the shear rate (second−1), F is the shear stress 
(dyne/cm2), η is the viscosity (cP), and N is Farrow’s constant. 

Spreadability of metformin HCl cholate-based nanovesicles 
emulgel

The formulation spreadability was determined by adding 
0.5 g of the prepared metformin HCl cholate-based nanovesicles 
emulgel between two glass slides with known dimensions (5 × 5 
cm). The sample was placed on a premarked circle with a known 
diameter (1 cm), and the diameter increasing (spreading area) was 
determined after adding a standard load after 1 minute. The diameter 
of the spread circle was determined (Abdallah et al., 2021).

Extrudability of metformin HCl cholate-based nanovesicles 
emulgel

The extrudability of the prepared formulation was 
detected by calculating the amount of emulgel extruded from a 
lacquered aluminum portable tube. The weight of (g) required 
to extrude about 0.5 cm strip of gel within 10 seconds was 
documented. Extrudability is directly proportional to the amount 
of emulgel extruded. Therefore, the extrudability was determined 
by dividing the load weight (g) by the area (cm2). 

Drug content determination of metformin HCl cholate-based 
nanovesicles emulgel

One gram of the prepared cholate-based nanovesicles 
emulgel formulation was transferred to a 100 ml volumetric flask 
and diluted with phosphate citrate buffer (pH 4) to 100 ml and then 
allowed to dissolve in a bath sonicator. After complete dissolving, 
1 ml of the prepared solution was withdrawn and rediluted to 
10 ml with phosphate citrate buffer (pH 4). The sample solution 
was filtered and then scanned on a UV spectrophotometer at λ 
233 nm against phosphate citrate buffer pH 4 as a blank, and the 
absorbance was detected. Drug content was calculated from the 
calibration curve equation (Eq. 2):

y = 0.112x. (2)

In vivo study 

Experimental animals and ethical approval
Thirty male balb-c mice (25 ± 5 g) aged 6 weeks were 

obtained from the Animal Facility of Nahda University in Beni 
Suef, Egypt. The mice were divided into six groups (n = 5), 
housed in separate cages, and maintained on 60% (high-fat diet) 
of standard forage mixed with 4% milk powder and water ad 
libitum barring the normal (undiseased) group that allowed to 
access a standard forage. Mice were kept at room temperature 
maintained at 24°C ± 2°C and 12 hours light (6:00 to 18:00 hours) 
and dark (18:00–6:00 hours) cycles approximately (El-Menshawe 
et al., 2018). The in vivo study protocol was done as stated by 
the guidelines consented by the Pharmacology and Toxicology 
Department, Faculty of Pharmacy at Beni Suef University, Egypt. 
In addition, it was based on the National Institutes of Health 
Guide for Care and Use of Laboratory Animals recommendations 
(publication no. 85–23, revised 1985) (Albash et al., 2019; El-
Menshawe et al., 2018). The animal protocol was approved by 
BSU-IACUC reviewers with approval number 022–351.

Experimental protocol
The six main groups of mice (n = 5) were classified as the 

following: Group I, control diseased; Group II, treated with plain 
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emulgel; Group III, treated with metformin HCl emulgel; Group IV, 
treated with metformin HCl cholate-based nanovesicles emulgel; 
Group V, treated with metformin HCl cholate-based nanovesicles 
emulgel including DMS as a penetration enhancer (2% w/v) and 
Group VI as a normal control. Mice’s abdominal skin area (3 cm2) 
was shaved using a razor (Wu et al., 2009) and then groups (II-V) 
were treated topically (according to each group) once daily for 1 
month (El-Menshawe et al., 2018; Picchi et al., 2011; Popescu et al., 
2013). Statistics was determined using Graph Pad Prism edition 6.0 
for Windows, Graph Pad Software (San Diego, CA).

Measurement of food intake
The amount of mice food intake was estimated weekly 

by subtracting the left-over feed from the total weight of the feed 
given throughout the week for each group. Then, the total average 
food intake per month was calculated (El-Menshawe et al., 2018).

Measurement of average body weight
Mice’s body weight was determined using Mettler 

balance (Toledo Type BD6000, GmbH; Greifensee, Switzerland) 
at the finale of the experiment (after 1 month). The amount of 
weight gain was computed by subtracting the average body weight 
at the finale of the trial from the average body weight on day 1 for 
each group. The percentage of weight change was calculated from 
the following equation (Eq. 3) (El-Menshawe et al., 2018):.

 Weight change %={ (Amount of weight gain after one1  
month) ⁄ (body weight on day 1)}  × 100 %. (3)

Blood collection and biochemical assays
Mice fasted overnight and then blood samples were 

amassed from the retro-orbital plexus vein under inhaled diethyl 
ether anesthesia. Samples were centrifuged via laboratory 
centrifuge (Model SM 902B, Surgifriend Medicals, England, 
UK) at 10,000× g for 20 minutes; then, the supernatant serum was 
seceded and transferred immediately to Eppendorf  tubes (Tan 
et al., 2014).The lipid profile data (cholesterol, TG) and HDL-c 
(high-density lipoprotein) were evaluated from the serum samples 
analysis, while the Friedewald and Iranian LDL-c (low-density 
lipoprotein) were calculated using Equations 4 and 5 (Nauck et al., 
2002), respectively. In addition, the VLDL-c (very-low-density 
lipoprotein) was determined by subtracting the sum of HDL-c 
and LDL-c from the total cholesterol (TC). The coronary risk 
index (CRI = TG/HDL-c) and the atherogenic index (AI =LDL- c/
HDL-c) were also determined (Kwon et al., 2003)

LDL-c =[TC - (HDL-c +  (TG/5))] (4)

 LDL-c (Iranian)=[( (TC/1.19)+( TG/1.19)-  
((HDL-c)/1.1))-38] (5)

The serum samples were analyzed for fasting 
glucose and insulin content. HOMA-IR (homeostatic model 
assessment for insulin resistance) was calculated as )HOMA-
IR= (insulin*glucose)/405 ((Cutfield et al., 2003; Majid et al., 
2017), while quantitative insulin sensitivity check index () was 
determined using Equation 6 (Cutfield et al., 2003) to evaluate the 
insulin resistance ability of the experimental mice. 

QUICKI= ( (1/log glucose+log insulin)) (6)

The liver enzymes and AST and ALT levels were 
determined in addition to TNF-α for all the mice by analyzing the 
serum samples to help diagnosing NAFLD (Neuman et al., 2014; 
Obika and Noguchi, 2011).

Hepatic weight and morphology
Mice were slew under inhaled diethyl ether anesthesia 

by cervical displacement at the end of the trial. Mice’s livers 
were dissected, weighed, and then fixed in a 10% formalin/
saline solution. After that, samples were sectioned, entrenched 
in paraffin, and then stained with hematoxylin and eosin for 
histological evaluation (magnification × 100) (Tag, 2015).

RESULTS Standard calibration curve
The standard calibration curve of metformin HCl in the 

buffer solution (pH 4) displayed a linear relationship between 
the drug concentration and the UV absorption over all the 
concentration ranges (1–8 µg/ml), consistent with Beer-Lambert 
law. The regression equation and the coefficient of determination 
(R2) are exemplified in Figure1. 

Morphology of metformin HCl cholate-based  
nanovesicles by TEM

The vesicles appeared sphere-shaped and self-closed. 
The particles’ surface was coarse, and no agglomeration was 
noticed (Fig. 2).

Zeta size and potential of metformin HCl cholate-based 
nanovesicles

The zeta size of the prepared cholate-based nanovesicles 
formulation was 235 ± 2.7 nm while zeta potential was found (−40 
± 5.54 mV) (Fig. 3). 

Characterization of metformin HCl cholate-based 
nanovesicles emulgel

Clarity, homogeneity, and pH of metformin HCl cholate-based 
nanovesicles emulgel

The cholate-based nanovesicles emulgel of metformin 
HCl was clear, white, and homogenous even after storage for 15 
days at room temperature (25°C); it showed no change in clarity 
or homogeneity. The pH detected was 4 (within the normal skin 
physiological range).

Figure 1. Standard calibration curve of metformin HCl buffer solution (pH 4).
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Rheology study of metformin HCl cholate-based nanovesicles 
emulgel

The cholate-based nanovesicles emulgel of metformin HCl 
showed a perfect pseudoplastic thixotropic behavior (Fig. 4a and b). 
In Figure 4c, by plotting log viscosity versus the log of the shear rate, 
this increased the rate of shear yielded in decreasing the viscosity and 
vice versa (inverse relationship). The hysteresis loop (the area fenced 
between the up and down curve) was almost negligible. The rheology 
parameters of the formulation are clarified in Table 1.

Spreadability of metformin HCl cholate-based nanovesicles 
emulgel

The spreadability of metformin HCl cholate-based 
nanovesicles emulgel was 3.65 ± 0.5 gcmS−1.

Extrudability of metformin HCl cholate-based nanovesicles 
emulgel

The extrusion conduct of the prepared emulgel 
formulation was 5.7 ± 0.31 g/cm2.

Drug content determination of metformin HCl cholate-based 
nanovesicles emulgel

The actual metformin HCl content of the formulation 
was found (98.7%).

In vivo study Measurement of food intake and average body 
weight

The amount of food intake decreased with metformin 
HCl treatment (Table 2), while the total percentage of weight 
gain showed a significant increase (p < 0.0001) in all groups 
compared to the normal group (group VI: 11.67% ± 12.21%), 
whereas only groups IV, V, and VI showed a significant decrease 
(p < 0.0001) compared to the control group (group I: 59.36% ± 
13.23%) (Table 2).

Blood collection and biochemical assays
Despite being the mice treated topically, a valued systemic 

effect was noticed in the serum analysis results. Metformin HCl 
treatment showed no significant enhancement in TC levels (Table 
3) in comparison with the control group (group I) (307.66 ± 25.09 
mg/dl). On the other hand, TG decreased significantly (p < 0.0001) 
for both groups IV (124.17 ± 7.79 mg/dl) and V (121.93 ± 3.55 mg/
dl) in addition to the normal group (VI) (72.95 ± 3.84 mg/dl) in 
comparison with the control group (I) (323.52 ± 39.80 mg/dl) (Table 
3) with significant increase for groups I, II, and III compared to 

Figure 2. TEM of the prepared metformin HCl cholate-based nanovesicles.

Figure 3. Zeta potential of the prepared metformin HCl cholate-based 
nanovesicles.

Figure 4. Rheogram of the prepared metformin HCl cholate-based 
nanovesicles emulgel (a) showing its thixotropic behavior (b) and the 
power law region shear thinning (c).
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group VI (normal). HDL-c showed a significant increase for groups 
IV and V compared to the control group (Fig. 5). 

LDL-c (Friedewald and Iranian) showed a significant 
decrease (p < 0.0001) for groups IV, V, and VI in comparison 
with the control group (group I). While only groups I, II, and III 
showed a significant increase compared with the normal group 
(group VI) (Table 3). On the other hand, VLDL-c showed no 
significance (p > 0.0001) compared with the control and normal 
groups. Increasing HDL-c level leads to an improvement in the 
AI and consequently in the CRI; this matches the results shown 
in Table 3. Briefly, the serum lipid profile data showed an overall 
enhancement after treatment with the cholate-based nanovesicles 
emulgel of metformin HCl (Fig. 5).

Fasting glucose level (mg/dl) showed a significant 
decrease (p < 0.0001) in groups IV, V, and VI compared to group 
I (control group) (Table 3). Fasting insulin level (uIU/ml) showed 
no significant change among all the groups (p > 0.0001) as clarified 
in Table 3.

ALT showed a normal range all over the groups (Table 4) 
(Hadizadeh et al., 2017). AST results showed a significant increase 
(p < 0.0001) for groups I, II, and III regarding the normal group 
(129.12 ± 6.60 U/l), while groups IV, V, and VI showed a significant 

decrease (p < 0.0001) in comparison to the control group (329.90 
± 19.06 U/l). Table 4 displays the calculated AST/ALT ratio of the 
results (Hadizadeh et al., 2017; Sporea et al., 2018). The results 
showed the significant lowering effect of metformin HCl cholate-
based nanovesicles emulgel on the AST enzyme.

Groups I (control group), II, and III presented a significant 
increase (p < 0.0001) in serum TNF-α (1,297.56 ± 25.32 pg/ml) 
compared to the normal group (731.63 ± 9.58 pg/ml) (Table 4) 
that points to the incidence of NAFLD. On the other hand, the 
metformin HCl cholate-based nanovesicles emulgel with and 
without the addition of the penetration enhancer (DMS) showed 
a significant decrease (p < 0.0001) weighed against the control 
group, confirming the topical improvement effect of metformin 
HCl in treating NAFLD.

Hepatic weight and morphology
Histopathology of NAFLD infected liver usually shows 

numerous fat vacuoles with mild to moderate fibrosis (Nakamura 
and Terauchi, 2013; Nascimbeni et al., 2018; Santhekadur 
et al., 2018; Takahashi and Fukusato, 2014). Histopathological 
examination of the studied groups is elucidated in Figure 6a–f. 
Group I and II (control and plain emulgel groups) showed copious 

Table 1. Rheology parameters of metformin HCl bilosomal emulgel at different shear rates and shear stresses. 

Time interval (Second) Shear rate(second−1) Shear stress (Pa) Torque % Speed Viscosity (Cp)

00:30 75.00 443.40 ± 20.45 22.60 10.00 591.20 ± 27.31

00:30 150.00 592.50 ± 7.06 30.20 20.00 395.00 ± 4.71

00:30 225.00 682.80 ± 1.95 34.80 30.00 303.50 ± 0.88

00:30 375.00 799.10 ± 3.01 41.20 50.00 212.20 ± 0.89

00:30 450.00 872.40 ± 4.07 44.50 60.00 193.90 ± 0.91

00:30 750.00 966.30 ± 6.40 51.02 100.00 89.01 ± 0.79

00:30 450.00 860.00 ± 6.86 43.80 60.00 191.10 ± 1.53

00:30 375.00 788.10 ± 4.05 40.20 50.00 210.20 ± 1.09

00:30 225.00 640.90 ± 5.72 32.70 30.00 284.90 ± 2.52

00:30 150.00 548.00 ± 4.56 27.90 20.00 365.40 ± 3.02

00:30 75.00 423.20 ± 5.66 21.60 10.00 564.20 ± 7.55

Values were expressed as mean ± SD, n = 3.

Table 2. Effect of metformin HCl bilosomal emulgel on the body weight, liver weight, and food intake of balb-c mice after 1 month of treatment.

Groups items Control group (I) Plain emulgel 
group (II)

Metformin HCl 
emulgel group (III)

Metformin HCl 
bilosomal emulgel 

(IV)

Metformin HCl 
bilosomal emulgel 
with penetration 

enhancer (V)

Normal group 
(VI)

Initial body weight (g) 25.31 ± 1.77 24.76 ± 2.41 24.29 ± 1.97 24.75 ± 2.44 25.54 ± 2.29 25.23 ± 1.75

Final body weight(g) 40.16 ± 0.87 39.35 ± 2.00 38.69 ± 2.33 33.55 ± 5.02 34.15 ± 4.05 28.04 ± 1.65

Body weight gain (g) 14.85 ± 2.32 14.59 ± 3.84 14.40 ± 2.87 8.79 ± 6.18 8.61 ± 4.78 2.81 ± 2.69

% of weight gain 59.36 ± 13.23a 60.58 ± 22.62a 60.08 ± 15.29a 36.95 ± 27.26a,b 34.59 ± 20.64a,b 11.67 ± 12.21b

Liver weight (g) 3.38 ± 9.01 3.77 ± 8.81 3.82 ± 6.93 2.44 ± 11.02 2.63 ± 0.56 1.95 ± 0.48

Average weekly food 
intake (g) 35.76 ± 5.36 36.33 ± 1.91 34.49 ± 3.04 29.46 ± 4.91 31.69 ± 4.89 29.19 ± 5.08

Values were expressed as mean ± SE, n = 5. 
a has a significant difference at p < 0.0001, when compared with control model (Group I) values. 
b has a significant difference at p < 0.0001, when compared with normal group (Group VI) values.
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fat vacuoles with moderate fibrosis owed to NAFLD (Fig. 6a and 
b). Group I showed congestion of the hepatic blood vessels too. 
Group III (Fig. 6c) exhibits no enhancement in fat vacuoles or 
even fibrosis than the control group (group I).

On the other hand, the groups treated with metformin 
HCl cholate-based nanovesicles emulgel (IV and V) perceived 
a manifest diminution in the number of hepatic fat vacuoles 
alongside fibrosis enhancement (Fig. 6d and e). Still, it is hard 

to say that healthy cells are back to normal as those appearing 
in the normal group (VI) (Fig. 6f) which showed a healthy liver 
confirming the experimental model’s validity. 

DISCUSSION
Cholate-based vesicles are spherical, 5–200 nm in size, 

and can be uni- or multilamellar. In general, it consists of two layers; 
the inner layer consists of hydrophilic drugs and/or antigens, and 
the outer layer consists of bile salts (cholates) and/or hydrophobic 
drugs. Materials used in the formulation of its encompass are 
mainly nonionic surfactants and bile salts; lipids such as cholesterol 
are also included. It involves nonionic surfactants and exhibits a 
better quality of transdermal delivery than other nanovesicles (Al-
Mahallawi et al., 2015). Bile salts produce extremely stable vesicles 
for transdermal distribution by acting as electrostatic stabilizers and 
edge activators with fluidizing effects (El Zaafarany et al., 2010). 
Bilosomes can be prepared by the solvent vaporization method (Al-
Mahallawi et al., 2015).

TEM imaging of metformin HCl cholate-based 
nanovesicles fortified its successful nanospherical configuration 
(64.85 ± 7.14 nm as clarified in (Fig. 2).

A zeta potential of −40 ± 5.54 mV (Fig. 3) reflects the 
vesicle’s stability as zeta potential > ± 30 mV; zeta potential 
value around ±30 mV designates the vesicle’s electric repulsion 
and pleasant stability with no aggregation upon storage (Badria 
and Mazyed, 2020). The bile salt content of the formulation may 
cause the resulting negative charge due to its anionic nature and 
strongly acidic taurine group, which can enhance the cholate-
based nanovesicles skin permeation (Chen-yu et al., 2012).

The clarity, homogeneity, and pH of the prepared 
cholate-based nanovesicles emulgel of metformin HCl declares 
its safety for skin application with no prediction of irritation, 

Table 3. Effect of metformin HCl bilosomal emulgel on the blood sugar and lipid profile in balb-c mice after 1 month of treatment.

Groupsitems Control group 
(I)

Plain emulgel 
group (II)

Metformin HCl 
emulgel group (III)

Metformin HCl 
bilosomal emulgel 

(IV)

Metformin HCl 
bilosomal emulgel 
with penetration 

enhancer (V)

Normal group (VI)

TC (mg/dl) 307.66 ± 25.09b 313.88 ± 34.73b 303.56 ± 50.53b 275.69 ± 26.50b 243.36 ± 22.58b 144.10 ± 13.65a

TG (mg/dl) 323.52 ± 39.80b 303.16 ± 38.48b 259.95 ± 30.05b 124.17 ± 7.79a 121.93 ± 3.55a 72.95 ± 3.84a

HDL (mg/dl) 101.72 ± 8.12 103.20 ± 7.61 111.29 ± 12.76 208.94 ± 37.01a,b 190.02 ± 18.91a,b 94.88 ± 3.70

LDL-c (Friedewald) 
(mg/dl) 141.23 ± 15.01b 150.05 ± 41.51b 140.28 ± 33.75b 41.91 ± 13.03a 28.96 ± 19.26a 34.63 ± 15.87a

LDL -c (Iranian) (mg/dl) 298.33 ± 35.68b 291.50 ± 38.59b 252.74 ± 46.44b 69.07 ± 10.05a 57.94 ± 15.09a 35.23 ± 14.68a

VLDL-c (mg/dl) 64.70 ± 7.96 60.63 ± 7.69 51.99 ± 6.01 24.83 ± 1.56 24.39 ± 0.71 14.59 ± 0.77

AI 2.06 ± 0.21 2.16 ± 0.51 1.69 ± 0.17 0.40 ± 0.13 0.30 ± 0.13 0.54 ± 0.19

CRI 3.06 ± 0.21 3.16 ± 0.51 2.69 ± 0.17 1.40 ± 0.13 1.30 ± 0.13 1.54 ± 0.19

Glucose (mg/dl) 203.98 ± 23.69b 186.62 ± 14.07b 163.45 ± 18.51 115.04 ± 9.44a 115.27 ± 6.73a 109.38 ± 8.40a

Insulin (uIU/ml) 13.92 ± 4.43 10.98 ± 3.99 9.81 ± 3.03 7.69 ± 1.75 7.96 ± 1.48 2.99 ± 0.25

HOMA-IR 7.99 ± 3.10 5.01 ± 1.79 4.48 ± 2.04 2.07 ± 0.39 2.26 ± 0.44 0.82 ± 0.13

QUICKI 0.31 ± 0.03 0.31 ± 0.01 0.32 ± 0.01 0.35 ± 0.01 0.34 ± 0.00 0.40 ± 0.01

Values were expressed as mean ± SE, n = 5. 
TC, total cholesterol; TG, triglycerides; HDL, high-density lipoprotein; LDL-c, low-density lipoprotein cholesterol; VLDL-c, very low-density lipoprotein cholesterol; 
AI, atherogenic index; CRI, coronary risk index; HOMA-IR, homeostatic model assessment for insulin resistance; QUICKI, quantitative insulin sensitivity check index.
a has a significant difference at p < 0.0001, when compared with model control (Group I) values. 
b has a significant difference at p < 0.0001, when compared with normal group (Group VI) values.

Figure 5. Two-way ANOVA of serum analysis for each mice group. a A 
significant difference at p < 0.0001 compared with model control (Group I) 
values. b A significant difference at p < 0.0001 compared with normal group 
(Group VI) values.  TC, total cholesterol; TG, triglycerides; HDL, high-density 
lipoprotein; LDL-c, low-density lipoprotein cholesterol; VLDL-c, very low-
density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment for 
insulin resistance.
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whereas highly basic or acidic pH application on the skin may 
cause extreme irritation, dryness, or even erythema (El-Menshawe 
et al., 2018; El-Ridy et al., 2018; Mohamed et al., 2019).

The rheological conduct of a semisolid pharmaceutical 
preparation is crucial for its quality control (Seoane-Viaño et al., 
2021). It indicates the possible physical or chemical changes 
during and after the formulation process. Figure 4a and b shows 
shear thinning behavior (N < 1) that increases the skin absorption 
area giving a good spreadability to the emulgel (Dhawan et al., 
2014; Mohamed et al., 2019). The negligible hysteresis loop area 
signposted the emulgel rapid recovery after eliminating the shear 
rate (Gupta et al., 2012; Mohamed et al., 2019). 

The large diameter in spreadability determination 
exhibits better skin absorption on a larger skin area (Dhawan 
et al., 2014). The extrusion conduct of an emulgel formulation is a 
worthy feature for patient acceptance and application duration. The 
results verified the appropriateness of the developed formulation 
for topical application. The formulation drug content (98.7%) 
meets the terms of the official necessities (90% to 110% of the 
label claim) (Martins and Farinha, 1998).

NAFLD can be defined as steatosis of the liver deprived 
of liver injuries, such as inflating the hepatocytes or fibrosis. 
It is described as a disorder where >5% of hepatocytes show 
macroscopic steatosis under light microscopy in the privation of 
other causes of liver impairment (Byrne, 2010). It is diagnosed by 
the appearance of liver fat vacuoles, as recognized by imaging or 
histology, in the lack of triggering factors of liver fat deposition. 
Hepatic steatosis, inflammation, and liver cell destruction 
(swelling) with or without fibrosis are all symptoms of NASH 
(Valls et al., 2006). NAFLD is more dominant in males than 
females for unidentified explanations (DiStefano, 2020).

TNF-α partakes in NAFLD progress as it wields many 
proinflammatory possessions and prompts pathogenic pathways. 
TNF-α upsurges the serum TG, lowers the HDL-c, and raises 
cholesterogenic gene expression by suppressing cholesterol 
elimination (Tangvarasittichai et al., 2016). Furthermore, TNF-α 
may correspondingly endorse hepatocyte death aiding in the 
pathophysiology of hepatic fibrosis (Zhang et al., 2013).

Metformin’s HCl role in NAFLD treatment has been 
examined in numerous recent studies, many of which focused on 
the liver’s histology and liver enzymes besides its role in decreasing 
glucose production in the liver (Hundal et al., 2000, Li et al., 
2013; Viollet and Foretz, 2013). Furthermore, metformin HCl 
suppresses TNF-α (Hammad et al., 2021) which was noticeably 
elevated in NAFLD and worsened it (Ajmal et al., 2014; Yang 
and Seki, 2015). In addition, its augmenting effect plummeted the 
crucial risk factors for NAFLD (obesity and insulin resistance) 
(Hundal and Inzucchi, 2003).

The amount of food intake decreased with metformin 
HCl treatment (Table 2) due to its known effect on decreasing food 
appetite (Kim et al., 2016; Lv et al., 2012; Matsui et al., 2010). 
Concerning balb-c mice, the change in body weight is generally 
negligible; it is so-called the obesity-resistant strain (Farrell et al., 
2014; Kim et al., 2011; Nishikawa et al., 2007). Despite that, the 
total percentage of weight gain showed a significant decrease (p < 
0.0001) compared to the control (Table 2).

Table 4. Effect of metformin HCl bilosomal emulgel on the liver enzymes and TNF alpha in Balb-C mice after 1 month of treatment.

Groupsitems  Control group (I) Plain emulgel 
group (II)

Metformin HCl 
emulgel group (III)

Metformin HCl 
bilosomal emulgel 

(IV)

Metformin HCl 
bilosomal emulgel 
with penetration 

enhancer (V)

Normal group (VI)

AST (U/l) 329.90 ± 19.06b 276.69 ± 36.10b 231.79 ± 2.24b 173.69 ± 8.13a 169.08 ± 10.53a 61.12 ± 4.54a

ALT (U/l) 81.79 ± 5.81 83.09 ± 5.27 69.78 ± 9.34 47.98 ± 3.77 47.49 ± 4.59 44.29 ± 2.64

AST/ALT 4.14 ± 0.44 3.33 ± 0.35 3.49 ± 0.38 3.67 ± 0.18 3.75 ± 0.54 1.39 ± 0.12

TNF alpha (pg/ml) 1,297.56 ± 25.32b 1,293.05 ± 21.82b 1,207.68 ± 62.67b 780.73 ± 32.25 a 769.35 ± 32.86a 731.63 ± 9.58a

AST, aspartate aminotransferase; ALT, alanine aminotransferase; and TNF alpha, tumor necrosis factor.Values were expressed as mean ± SE, n = 5. 
a has a significant difference at p < 0.0001, when compared with model control (Group I) values. 
b has a significant difference at p < 0.0001, when compared with normal group (Group VI) values.

Figure 6. Histology micrograph of liver tissue; hematoxylin and eosin 
(magnification × 100). (a) group I (control group); (b) group II (plain 
emulgel treated); (c) group III (metformin HCl emulgel treated); (d) group 
IV (metformin HCl cholate-based nanovesicles emulgel treated); (e) group 
V (metformin HCl cholate-based nanovesicles emulgel including penetration 
enhancer treated); (f) group VI (normal group).
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Despite being the mice treated topically, a valued 
systemic effect was noticed in the serum analysis results. That 
can be attributed to the cholate-based nanovesicles nanosize, 
ultraflexibility (Aziz et al., 2019), and flash permeation ability 
(Aziz et al., 2019; Salem et al., 2022) even without using 
a permeation enhancer that came besides its liver targeting 
characteristics (El-Nabarawi et al., 2021). 

TG decreased significantly as metformin HCl affected 
the TG mainly with a negligible effect on the TC (Sin et al., 2011; 
Wulffele et al., 2004; Xu et al., 2015); also it enhances the lipid 
profile by increasing HDL-C and decreasing LDL-C and VLDL 
(Alkuraishy and Al-Gareeb, 2015; Ghatak et al., 2011). The results 
agreed with this indicating the enhancing effect of metformin HCl 
cholate-based nanovesicles emulgel on HDL-c (Fig. 5). 

Increasing HDL-c level leads to an improvement in the 
AI and consequently in the CRI, matching the results shown in 
Table 3. Briefly, the serum lipid profile data showed an overall 
enhancement after treatment with the cholate-based nanovesicles 
emulgel of metformin HCl (Fig. 5).Insulin resistance is also a 
crucial sign of NAFLD, as it leads to abandoned liver production 
of glucose and lessened glucose uptake (Muoio and Newgard, 
2008). Accordingly, the determination of glucose, insulin, HOMA-
IR, and QUICKI helps in NAFLD assessment (Motamed et al., 
2016). Metformin HCl lowers the glucose level by decreasing 
its intestinal absorption (Viollet and Foretz, 2013), increasing 
its uptake from the blood into the tissues and decreasing its 
production from the liver (Hundal et al., 2000; Viollet and Foretz, 
2013). Metformin also affects the insulin requirements for glucose 
discarding (increasing insulin sensitivity) without affecting the 
serum insulin levels (Gaggini et al., 2013; Hadizadeh et al., 2017).

The optimal limit point (the cut-off point) for HOMA-IR 
in the NAFLD diagnosis is >1.79, while for QUICKI, it is <0.347 
(Salgado et al., 2010). Generally, a higher value of HOMA-IR 
and a lower value of QUICKI increase the insulin resistance risk 
(Motamed et al., 2016). HOMA-IR and QUICKI results revealed 
the metformin HCl enhancement effect on NAFLD by increasing 
insulin sensitivity (Hosono et al., 2010) as clarified in Table 3.

ALT and AST results are shown (Table 4 was as predicted, 
as a marked elevation in ALT level is not common in NAFLD but 
is mainly associated with liver steatosis (Hadizadeh et al., 2017; 
Pearce et al., 2013). AST elevation can be used as an independent 
marker for NAFLD, mainly when the values are twice the normal 
levels (Hadizadeh et al., 2017). Recently, AST/ALT ratio became 
used for NAFLD diagnosis; the more of this ratio (>1.5), the more 
possibility of having fatty liver disease (Hadizadeh et al., 2017; 
Sporea et al., 2018). AST/ALT ratio confirms the formulation’s 
influential role in enhancing NAFLD.

TNF-α, with its proinflammatory effect, plays a pivotal 
role in NAFLD progression (Hadizadeh et al., 2017; Jovinge 
et al., 1998) through different mechanisms as it increases the 
serum levels of TG (Jovinge et al., 1998) and decreases the HDL-c 
levels and insulin sensitivity (Tacer et al., 2007). Besides that, 
TNF induces apoptosis and proliferation in hepatic cells leading to 
liver fibrosis (Galle, 1997; Yang and Seki, 2015). Elevated serum 
levels of TNF-α can be related to NAFLD, and normalization 
of its results enhances insulin sensitivity and NAFLD (Ajmal 
et al., 2014; Hadizadeh et al., 2017). The decreasing effect of the 

prepared metformin emulgel on the TNF-α confirms the topical 
improvement effect of metformin HCl in treating NAFLD.

Nevertheless, the difference in liver weight among the 
groups was insignificant (p > 0.0001) (Table 2), and metformin 
HCl cholate-based nanovesicles emulgel treated groups parades 
an acceptable reduction in the liver weight put side by side with 
the control group. Histopathology of NAFLD-infected liver 
usually shows numerous fat vacuoles with mild to moderate 
fibrosis (Nakamura and Terauchi, 2013; Nascimbeni et al., 
2018; Santhekadur et al., 2018; Takahashi and Fukusato, 2014). 
Histopathological examination of the studied groups is elucidated 
in Figure 6a–f revealing the therapeutic effect of metformin HCl 
cholate-based nanovesicles emulgel in the topical treatment of 
NAFLD and signifying the success of liver targeting by metformin 
HCl cholate-based bile salts (El-Nabarawi et al., 2021).

CONCLUSION
A cholate-based nanovesicles emulgel of metformin HCl 

was fruitfully prepared and assessed to open a new gateway to use 
metformin HCl in the transdermal treatment of NAFLD. The TEM 
imaging verified a successful formulation of nano cholate-based 
bile salts, and its stability was confirmed by the zeta potential result 
and then incorporated into an emulgel. Furthermore, the prepared 
cholate-based nanovesicles emulgel showed suitable clarity, 
homogeneity, pH, spreadability, extrudability, and drug content. In 
addition, the rheology behavior was perfect thixotropic as demanded 
by a transdermal formulation. Furthermore, the in vivo study 
on balb-c mice showed impressive results in treating NAFLD 
transdermally. The overall consequences of these findings highlight 
the cholate-based nanovesicles emulgel as a promising formulation 
for acceptable level of transdermal treatment of NAFLD.

STATISTICAL ANALYSIS
The significance of differences was ascertained by a 

two-way analysis of variance (ANOVA) using Graph Pad Prism 
edition 6.0 for Windows, Graph Pad Software (San Diego, CA). 
The results were stated in mean ± SE, and p-value < 0.0001 was 
deemed statistically significant.
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