Artículo: *

ARTICLE INFO

Received on: 20/12/2022
Accepted on: 15/02/2023
Available Online: 04/06/2023

Key words:
Antioxidant, apoptosis, anticancer, cell death, hydrogen peroxide, necrosis.

ABSTRACT

Reactive oxygen species (ROS) trigger oxidative stress (OS) that determines the onset of aging and various disease progressions including cancer. *Macaranga subpeltata* is among medicinal plants, which shows an important source of antioxidant (AO) compounds and has the potency to overcome those problems. Silymarin is a plant-derived flavonolignan with tremendous health benefits as an AO and organ protector. Hydrogen peroxide (H\(_2\)O\(_2\)), an active prooxidant molecule, enables the generation of OS in mammalian cells. This study aims to evaluate the effect of ethyl acetate crude fraction of *M. subpeltata* (EACFM) and silymarin in H\(_2\)O\(_2\)-induced OS of Vero and HepG2 cell lines. The 3-(4,5-dimethyl azole-2-yl)-2,5-diphenyltetrazolium bromide assay was used to evaluate cell viability, while examination of ROS generation and cell death were done using the flow cytometric method. The study revealed that H\(_2\)O\(_2\) induced ROS generation in a dose-dependent manner both on Vero and HepG2 cell lines, and the HepG2 hepatocarcinoma cells were more resistant to H\(_2\)O\(_2\) toxicity than the Vero cells. Silymarin suppressed ROS formation on both H\(_2\)O\(_2\)-treated cell lines with different effects; it alleviated H\(_2\)O\(_2\) intoxication on Vero cells but enhanced the toxicity of H\(_2\)O\(_2\) on HepG2. The EACFM reduced H\(_2\)O\(_2\) intoxications of Vero cells and modulated ROS-mediated cell death of HepG2 cells through either apoptosis or necrosis. The EACFM showed a higher capacity to reduce OS due to H\(_2\)O\(_2\) treatment on Vero cells; however, silymarin showed better anticancer properties.

INTRODUCTION

Free radical production triggered by either internal factors or external exposures is an unavoidable harmful process. Free radicals, atoms, or molecules containing an unpaired electron, are though necessarily needed for the sustainability of cells or organisms since they are substantially involved in signal transduction to cope with harmful microbes and dispel toxins (Uğran and Levent, 2021). Reactive oxygen species (ROS) such as hydrogen peroxide (H\(_2\)O\(_2\)), hypochlorous acid, singlet oxygen (\(^{1}\)O\(_2\)), superoxide (O\(_2^{-}\)), hydroxyl radical (\(^{•}\)OH), nitric oxide (\(^{•}\)NO), and peroxynitrite (ONOO\(^{-}\)) are the byproduct of aerobic metabolism that is a natural cellular process generating energy in living organisms (Nakai and Tsuruta, 2021; Nakamura and Takada, 2021). ROS is among the factors responsible for oxidized molecules (DNA, lipid, and protein), damaged organelles, and harmed other cells’ compartments leading to cell damage and even further tissue injury. A persistence process in which ROS formation exceeds the antioxidant (AO) defense mechanism will lead to oxidative stress (OS), which is considered the causative factor in the onset and progression of aging and various diseases (Uğran and Levent, 2021).

© 2023 Widodo and Rohman. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Intracellular ROS formation can be measured by flow cytometry using 2’,7’-dichlorofluorescein diacetate (DCFDA). After diffusing into the cells, the compound undergoes deacetylation by cellular esterase into 2’,7’-dichlorofluorofluorescein as a nonfluorescent compound; then, it is oxidized by ROS into 2’,7’-dichlorofluorescein (DCF). DCF is a compound with high fluorescence and is quantitatively detectable with a flow cytometer. The profile shift of the fluorescent indicates the number of ROS in cells (Eruslanov and Kusmartsev, 2010).

H$_2$O$_2$ is a cytotoxic compound commonly used for in vitro experiments (Cheong et al., 2016). As one type of ROS, H$_2$O$_2$ may also act as the majority precursor for other molecules of ROS formations, which causes oxidative damage to cells. The detrimental effect of H$_2$O$_2$ depends on the severity, level of exposure, and exposed cell type (Chidawanyika and Supattapone, 2021). H$_2$O$_2$ is an important signaling cascade molecule, and it participates in the various metabolic processes of cells (Zenin et al., 2022). In contrast, it is also crucial to cancer cells, which facilitate the malignancy (proliferation, metastasis, and angiogenesis processes) and survival. Though, at a relatively high concentration, it may induce cancer cell death (Yan et al., 2017). In this examination, we used Vero and HepG2 representing a noncancerous (normal type) and cancerous cell line, respectively.

Both Vero and HepG2 cell lines have been applied extensively in pharmacological studies. Furthermore, HepG2 is a highly proliferative grown cell that is suitable for wide-arrange culture systems (Haryanti et al., 2021).

Nowadays, people rely on AO agents, especially plant-derived molecules to keep healthy and overcome stress-oxidative (SO-)related diseases. Macaranga subpeltata is among the medicinal plants used by Indonesian traditional healers for treating common liver diseases (Widodo et al., 2019). This plant’s leaf extract, especially its ethyl acetate crude fraction [ethyl acetate crude fraction of M. subpeltata (EACFM)], has shown to have high AO properties due to its high content of phenolic compounds; otherwise, pharmacological properties data of the plant are still limited (Widodo et al., 2020). On the other hand, silymarin, a polyflavonoid compound (sildianin, silichristin, isosilibinin, and silybin) from Silybum marianum (L.) Gaertn., has been widely used for alleviating a wide array of diseases due to its cardio-, neuro-, nephro-, and hepatoprotective effects and its activity as a potent AO (Sudrajad et al., 2022). It has been described as a liver protector in folk medicine for almost 2,000 years and has high AO properties due to its high content of phenolic compounds; otherwise, pharmacological properties data of the plant are still limited (Widodo et al., 2020).

Based on the above crosstalk, this study aims to examine the influence of EACFM and silymarin on H$_2$O$_2$-induced OS using normal cell (Vero) and cancerous (HepG2) cell lines. Vero cells derived from the kidneys of adult African green monkeys (Cercopithecus aethiops) have widely been used for cytoprotective testing of AO compounds from a plant extract against SO (Srinivasan et al., 2015). These cells still showed stable growth characteristics during continuous passages, with a doubling time of 24 hours (Rhazi et al., 2021; Sène et al., 2022). HepG2 cell is a well-differentiated cell line immortalized from hepatocellular carcinoma of a 15-year-old Caucasian male (Sefried et al., 2018).

MATERIALS AND METHODS

Sample preparation

Plant material was obtained from Ponorogo district, Central Java Province, and was authenticated by taxonomist of Medicinal Plant and Traditional Research Centre of NIHRD-MOH, Republic of Indonesia (ref. no. YK 01.03/2/377/2021). Methanolic leaves extract of M. subpeltata was prepared by maceration according to Widodo et al. (2019); the fractionation to obtain EACFM was performed using liquid–liquid fractionation following the previous method of Widodo et al. (2020).

Cell line preparation

The cell lines (Vero and human hepatocellular carcinoma (HepG2) ATCC HB-8065) were obtained from the Cancer Chemoprevention Research Centre, Faculty of Pharmacy, Universitas Gadjah Mada. The cells were grown in Dulbecco’s Culture Media Modified Eagle Medium (DMEM, Sigma) [consisting of 2% (w/v) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Sigma), 2.35% (w/v) CHNaO$_2$ (Sigma), 10% (v/v) fetal bovine serum (FBS) (Gibco), 1% (v/v) penicillin-streptomycin (Gibco), Fungizone 0.25% (v/v) (Gibco)] at cell culture plate (Iwaki) in incubator with CO$_2$ 5% and 37°C.

Radical scavenging assay

In vitro radical scavenging assay was performed using 2,2-diphenyl-1-picylhydrazyl (DPPH) and Trolox Equivalent Antioxidant Capacity (TEAC) methods according to a previous study (Widodo et al., 2020).

In vitro assays using cell lines were performed according to CCRC (2019) with little modifications as described in the following.

Cytotoxic test of EACFM on Vero and HepG2 cell lines

Vero and HepG2 8 × 103 cells/100 µl were grown in DMEM at 96-well cell culture plate (Iwaki); afterwards, the cells were incubated for 24 hours (CO$_2$ 5%; 37°C). The confluent cells were treated with EACFM and silymarin (Sigma-Aldrich) at a series concentration of 0–1,000 µg/ml (incubated for 24 hours). The media were discarded, and washed with 1× PBS (Sigma-Aldrich) and adding 0.5 mg/ml 3-(4,5-dimethyl azole-2-yl)-2,5-diphenyltetrazolium bromide [50 mg Thiazolyl Blue Tetrazolium Bromide (Sigma) in 10 ml of 1× PBS] in media, and were incubated for 3–4 hours afterward. The reaction was terminated with 10% (w/v) SDS (Sigma) in 0.01 N HCl (Merck) and was kept overnight in the darkroom. The viable metabolically active cells were measured by reading absorbance at λ 595 nm (Multiskan- Thermo Scientific, Finland). Cell viability was calculated from the percentage of living cells.

\[
\text{% of living cells} = \frac{(A_x - A_o)}{(A_o - A_0)} \times 100\%
\]

Note: A_o: absorbance of control media (media only without cell lines)
Ax_o: absorbance of cell with media without EACFM or Silymarin
Ax_x: absorbance of EACFM or silymarin with EACFM or Silymarin x concentration

The inhibition concentration 50% (IC₅₀) was calculated from a linear regression (% of living cells against compound concentration).

Assessment of ROS production

Vero and HepG2 5 × 10⁴ cells in 500 µl DMEM media in each well were grown on 24-well cell culture plates (Iwaki) for 24 hours. The ROS production test was performed using H₂O₂ (Merck): 0, 500 and 1,000 µM, EACFM, and silymarin (Sigma) on Vero and HepG2. The media were discarded and washed with 1× PBS (pH 7.4). Cell lines were treated with EACFM and silymarin (0, 50, 100, and 150 µg/ml) and maintained for 4 hours in a cell culture incubator. The media was discarded and washed with 1× PBS; afterwards, in each cell line in each well, 500 µl of a freshly prepared solution of 20 µM DCFDA (Sigma) in a 10% supplement buffer (2 ml of PBS plus 18 ml of 1× PBS) was added. The DCFDA solution was discarded and replaced with 500 µl H₂O₂ solution in a 10% supplement buffer according to the desired treatment concentration and was incubated for 2 hours afterwards. H₂O₂ solution was discarded and washed with PBS. Cells were harvested using 0.25% (v/v) Trypsin-ethylenediaminetetraacetic acid (EDTA) (Sigma-Aldrich) without phenol red 100 µl/well and were incubated for 3 minutes; then, 1.0 ml of 10% supplement buffer was added before flow cytometric analysis.

Apoptosis evaluation

Vero and HepG2 cells 5 × 10⁴/ml media were grown for 24 hours in 6-well cell culture plate (Iwaki) until confluence and then were treated with sample tests accordingly. The culture media were discarded and washed with 1× PBS. 1,000 µl of EACFM or silymarin was added according to the concentration applied and was incubated for 4 hours. The cells were treated with H₂O₂ (according to concentrations) and were incubated for 12 hours. The treatment cells were harvested using 150 µl of 0.25% (v/v) trypsin-EDTA and were collected entirely in a separate conical tube each. The remaining cells were taken using 500 µl of PBS and were transferred to the same tube and centrifuged (500 rpm; 4 minutes). The cell pellets were mixed homogeneously with a 100 µl apoptosis reagent (BD PharmingenTM) (consisting of 4 µl FITC annexin V, 4 µl propidium iodide (Pi), and 92 µl annexin buffer) and were placed in the dark for 15 minutes at room temperature. The cell suspensions were transferred to the microtube and added with 400 µl of annexin buffer before flow cytometric analysis.

Flow cytometric analysis

The ROS production analysis using a flow cytometer (BD Accuri C6, USA) indicated by the fluorescence intensities was measured at an excitation of λ 485 nm and emissions of λ 535 nm. The ROS intracellular was obtained from a minimum of 2,500 cells per treatment. The ROS data were presented as a fold of untreated cells obtained from shifting fluorescence mean of the treatment divided by fluorescence percentage mean of the control without treatments. Cell death evaluation was depicted as a plotting profile from a run limit of 20,000 events per sample treatment.

Data analysis

Flow cytometry analysis data were calculated using BD Accuri C6 software and Statistical Package for the Social Sciences version 16.0 for statistical analysis. All experimental studies were done in triplicate, and the data represented mean ± SD. The effect differences among treatments were subjected to analysis of variance (ANOVA; p = 0.05) followed by the Post-Hoc Duncan Multiple Range Test with a significant level of 95%.

RESULTS AND DISCUSSION

OS is a process that initiates various degenerative diseases; the body requires an intake of AOs from the diet to reduce the damaging effects of OS. Moreover, the intake is expected to increase or support endogenous AOs. EACFM had strong AO activity, IC₅₀ DPPH of EACFM was comparable to L-ascorbic acid even better, while silymarin showed lower DPPH radical scavenging activity than EACFM (Fig. 1A). The AO capacity test using TEAC assay showed the same things; EACFM showed a greater capacity to scavenge 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals (Fig. 1B). These better AO properties are supported by the content of flavonoid and phenolic compounds in EACFM (Widodo et al., 2020).

The effect of EACFM and silymarin on cell viability

A recent study revealed that the EACFM has low toxicity (nontoxic) to both the normal cell lines and the cancer cells, especially at low concentrations (<125 µg/ml). When treated with EACFM lower than 125 µg/ml, the Vero cell was more susceptible to cell death than HepG2, whereas silymarin gave a contrary result. Interestingly, via treatment at a low concentration (< 50 µg/ml), silymarin stimulated the viability of Vero cells higher (>100%) than the control. Silymarin demonstrated tissue regenerative properties (Surai, 2015). Wu et al. (2015) reported that silymarin could accelerate the cell cycle, which might enhance hepatocyte proliferation after partial hepatectomy. Moreover, with no less enticing, silymarin at the same concentration inhibited the growth of HepG2 cells, and the cytotoxic activity of silymarin against HepG2 cells was more prominent than the EACFM (Fig. 2).

Silymarin resulted in a lower IC₅₀ both in Vero and HepG2 cells than those of EACFM, and the selectivity index (SI) of silymarin was higher than EACFM, indicating that silymarin was more selective in killing cancer cells and was relatively safer to the normal cell. SI value exhibits a specific degree of any anticancer drug, and the SI value of more than three indicates that the compound has high selectivity toward cancer cells. Doxorubicin, one of the wide-spectrum tumor medication drugs, shows a high SI value; unfortunately, clinical adverse effects are found in the systemic dosing (Haryanti et al., 2021). Therefore, finding a new anticancer is still a challenging task. IC₅₀ states the concentration of the tested compound that causes cell line lives of 50% during the specified incubation time. The IC₅₀ EACFM on HepG2 cells was lower than on Vero cells implicating that it had an anticancer activity (Table 1). However, EACFM is still a fraction that still contains various compounds that may...
have diverse pharmacological activities. Further investigation is needed, especially for compound isolation of EACFM, which is responsible for anticancer activity with higher SI.

At the same concentration, silymarin showed better cytoprotective activity on normal cells (Vero) than EACFM; furthermore, silymarin increased the cytotoxicity of \(\text{H}_2\text{O}_2 \) via OS-induced death to enhanced cancerous cells (HepG2) to die. The SI value of silymarin was 2.15, indicating that silymarin has good anticancer activity. Silymarin significantly increases the apoptosis rate of the cancer cells by inhibiting and blocking nuclear factor kappa B activation, inducing cytochrome C release, activating caspase-3 and caspase-9 and cleavage of poly-adenosine diphosphateribose polymerase, and also downregulating p-ERK1/2 and Bcl-2 expression (Fallah et al., 2021).

Silymarin at low concentration could promote normal cell (Vero) viability (Fig. 2). Milić et al. (2013) explained that silymarin has a stimulatory effect on Vero cells similar to fibroblast. Silymarin increases the synthesis of functional and structural proteins, accelerates DNA synthesis, and thus promotes cell proliferation and organ regeneration (Khazaei et al., 2022). According to Surai (2015), the role of silymarin in blocking SO is to protect the integrity of mitochondrial structure and function, trigger prosurvival signals, optimize the electron transport chain, reduce electron leakage, reduce ROS formation, and directly reduce the activity of ROS-producing enzymes in mitochondria.

The ROS production

The administration of EACFM and silymarin alleviated intracellular ROS generation on Vero and HepG2 cell lines. On Vero cells without SO’s induction (\(\text{H}_2\text{O}_2 \)-untreated cells), the decreasing capacity of EACFM to ROS production weakened as concentration rose. However, the reduction of ROS production by silymarin on Vero cells did not increase or reduce in line with the elevation of silymarin concentration treatment (Fig. 3). \(\text{H}_2\text{O}_2 \) up to the concentration of 1.0 mM increased ROS in a dose-dependent manner both in Vero and HepG2 cells. The EACFM could hamper the increase of ROS-causing SO due to \(\text{H}_2\text{O}_2 \) treatment. The ability of EACFM to reduce ROS on Vero

Figure 1. The IC\(_{50}\) DPPH scavenging activity (A) and TEAC (B). The mean values with the same letter above showed no significant difference according to the DMRT (\(p = 5\% \)).

Figure 2. Viability of Vero and HepG2 cells treated with EACFM and silymarin.
cells was in line with the increase of applied concentration, especially for \(\text{H}_2\text{O}_2 \) 1,000 \(\mu \text{M} \) \text{Fig. 4A})); on the contrary, ROS production by HepG2 elevated with an increase in EACFM’s concentration (3B). In the negative control (without \(\text{H}_2\text{O}_2 \) treatment), both normal (Vero) and cancerous (HepG2) cell lines, treated with EACFM 50 \(\mu \text{g/ml} \), decreased ROS greater than those treated at higher concentrations which were proportional to silymarin at a concentration of 50–100 \(\mu \text{g/ml} \). Silymarin at 150 \(\mu \text{g/ml} \) gave the best ROS reduction, especially on HepG2 cells, while ROS reduction by EACFM was higher on normal cells than on cancerous cells (Fig. 4).

In various cancer cells, the level of ROS and the expression of AO enzymes are higher than in normal cells as a manifestation of adaptive mechanisms to intrinsic SO. ROS plays a double-edged sword in cancer; moderate elevation of ROS plays a role in the initiation, development, and level of cancer cell metastasis. However, an increase in ROS exceeding the defense mechanism threshold of the AO cancer cells can bring about the death of the cells (Kim et al., 2016; Ndombera, 2017; Perillo et al., 2020). Silymarin suppressed the growth of HepG2 cells (Fig. 2) through a decrease in ROS, and up to 150 \(\mu \text{g/ml} \) it still attenuated ROS production (Fig. 4B). A low concentration of EACFM could suppress the growth of HepG2 cells, also indicated by decreasing ROS production. The active cancer cells showed higher basal ROS levels than normal cells as a result of the activation of several oncogenes (Yang et al., 2018). Using a high concentration (150 \(\mu \text{g/ml} \)), the EACFM triggered cell death via an elevation of ROS generation levels over a critical threshold of the cancer cells. In normal cells (Vero), the EACFM treatment did not render an increase in ROS; furthermore, EACFM up to 150 \(\mu \text{g/ml} \) still had an impact on decreasing ROS (Fig. 4A).

Table 1. \(IC_{50} \) and SI of EACFM and silymarin on Vero and HepG2 cell lines.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>(IC_{50}) ((\mu \text{g/ml}))</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vero cell</td>
<td>HepG2 cell</td>
<td></td>
</tr>
<tr>
<td>EACFM</td>
<td>532.88 ± 6.18</td>
<td>1.10</td>
</tr>
<tr>
<td>Silymarin</td>
<td>414.97 ± 5.68</td>
<td>2.17</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>12.80 ± 0.80</td>
<td>16.00</td>
</tr>
</tbody>
</table>

SI was calculated by \(IC_{50} \) Vero cell/\(IC_{50} \) HepG2 cell.

Figure 3. The influence of EACFM and silymarin to ROS production on vero cell line untreated with \(\text{H}_2\text{O}_2 \). The percentage of the treatment plots followed by the same letters above indicated no significant difference (DMRT test; \(p = 0.05 \)).
The effect of EACFM and Silymarin on H$_2$O$_2$-induced cell death cell lines

Evaluating cell death using flow cytometry would acquire four states of three occurring cell deaths, i.e., living cell, early apoptosis, late apoptosis, and necrosis. These phases can be determined by measuring the intensity of annexin V and PI. There are various alterations in cell features that encountered apoptosis or necrosis, one of which is phosphatidylserine (PS) translocation from the inner layer to the outside of the plasma membrane. PS is exposed to the outer surface of the cell membrane that subsequently reacts with Annexin V. On the other hand, PI acts as a necrotic cell death marker since it only binds to nucleic acids, the cells with intact plasma membranes, a condition in which PI could not translocate into the cell and bind to RNA and DNA; cells will give very low or absent fluorescence intensity (Vermes et al., 2000).

Under normal conditions, there was a death in Vero cells either via necrosis (2.95% ± 3.17%) or apoptosis (6.67% ± 3.58%), treatment with H$_2$O$_2$ 1.0 mM for 12 hours stimulated cell deaths up to 24.41% ± 3.12%. The EACFM could reduce H$_2$O$_2$ cytotoxicity, and a concentration of 50 µg/ml had a proportional effect to silymarin 50 µg/ml, which was demonstrated by an increase in living cells of 9.53% while silymarin was 8.09%. A 150 µg/ml of silymarin exhibited a better cytoprotective action in living cell increment (12.54%) than that in EACFM (10.24%) (Fig. 4A).

HepG2 responds to SO in the same mode as primary hepatocyte cells (Liau et al., 2016); therefore, it is representative of an in vitro study. HepG2 cells were more resilient against H$_2$O$_2$ regimen than Vero cells, the same treatment with 1.0 mM H$_2$O$_2$ for 12 hours to HepG2 still resulted in cell viability of 88.42% ± 4.06% while viability of Vero decreased to 75.58% ± 3.11%. The ROS increased in tone with the increases in H$_2$O$_2$ concentration, as seen in the control treatment in Figure 4. Habtemariam and Lentini (2018) explained that ROS generation depended on the type of stimulus and the cell type, and ROS-activated caspase-3 and c-Jun N-terminal kinase as an inductive mechanism to apoptotic cell death. However, at a concentration of 50 µg/ml without H$_2$O$_2$ treatment, HepG2 was more sensitive to EACFM than Vero. The EACFM was more prominent in causing HepG2 cell death than silymarin at the same concentration. Using silymarin at 50 µg/ml, the number of living HepG2 was lower than Vero cells, while at the same concentration, there was an elevated viability of normal cells (Vero). On the other hand, HepG2 hepatocarcinoma cell death increased both through apoptosis and necrosis (Fig. 5B). Without H$_2$O$_2$ treatment, the EACFM was more pronounced in causing necrotic than apoptotic cell death of HepG2 cells, while silymarin was more likely due to apoptosis.

Silymarin consistently reduced ROS formation in the HepG2 cancerous type cell line even in the existent elevation of H$_2$O$_2$; however, it enhanced the HepG2 cell death. Those

![Figure 4](image_url). The influence of EACFM and silymarin to H$_2$O$_2$-induced ROS production on Vero (A) and HepG2 (B) cell lines. The ROS formation represented in fold mean fluorescence compared to untreated cell line. Mean treatments of each cell line type followed by the same letters showed no significant difference (DMRT test; $p = 0.05$).
phenomena implicated silymarin in multiple actions. It might have a synergetic effect with H$_2$O$_2$ to modulate cytotoxicity to cancer cells, and it is not via ROS-dependent intoxication; otherwise, it happens through other pathways. Nakamura and Takada (2021) explained that compounds capable of suppressing intracellular ROS, such as deferasirox, would induce apoptosis of multiple myeloma cells.

In cells treated with H$_2$O$_2$, cytoprotective action of EACFM and silymarin only occurred in Vero cells, while in HepG2 they had the opposite effect, namely, cell death escalating. The existence of H$_2$O$_2$ enhanced the action of silymarin causing HepG2 death, especially when at a concentration of 150 µg/ml while EACFM was more effective in causing HepG2 cell death at a concentration of 50 µg/ml.

CONCLUSION

The EACFM showed a high capacity of AO agent and possessed a potent in vitro AO activity that provided cell protection against H$_2$O$_2$-induced OS. The giving of EACFM increased the toxicity of H$_2$O$_2$ on the HepG2 cell line through the apoptotic and necrotic modulation; however, the fraction decreased H$_2$O$_2$ intoxication in the Vero cells. A low concentration of silymarin (<50 µg/ml) increased Vero cell viability, but it had shown a toxic impact on HepG2, indicating a more potent anticancer activity than EACFM. The EACFM showed a potential anticancer activity, but due to its low SI, further studies are still needed more likely to isolate the compound responsible for anticancer activity with a higher SI. Silymarin reduced ROS formation, either on treated or untreated H$_2$O$_2$ cell lines, which resulted in different motives, and it protected Vero cells from the detrimental effect of ROS-inducing agent (H$_2$O$_2$) but increased the toxicity of H$_2$O$_2$ in HepG2.

ACKNOWLEDGMENTS

The author thanks the Medicinal Plant and Traditional Research and Development Center (MPTMRDC), the NIHJRD, Republic of Indonesia, for providing research materials and equipment.

AUTHORS' CONTRIBUTIONS

Harto Widodo conducted the experiments, analyzed the data, and prepared the initial manuscript. Abdul Rohman monitored the experimental process, interpreted the data, and did manuscript finalization.

CONFLICTS OF INTEREST

The authors declare there are no conflicts of interest in this work.
REFERENCES

