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ABSTRACT 
Mangrove plants are known to produce various secondary metabolites (SMs) such as polyisoprenoids (dolichol and 
polyprenol), emodin, and luteolin to show anticancer, anti-inflammatory, antiviral, and antibacterial activities. This 
study aimed to predict the multiple activities of the SMs of mangroves based on several enzymes that utilize the in 
silico method. The properties of absorption, distribution, metabolism, excretion, and toxicity for emodin, luteolin, 
polyprenol C80, dolichol-17 (C85), and dolichol-20 (C100) displayed variation. Prediction for Lipinski’s rule showed 
that emodin and luteolin have lower molecular weight than polyprenol C80, dolichol C85, and dolichol C100. Emodin 
and luteolin were further docked with cyclooxygenase-2, beta-lactamase, CYP450-dependent 14-alpha demethylase, 
3C-like protease, and P-glycoprotein as protein targets using the Molegro Virtual Docker Ver.5.5 approach. In 
comparison to celecoxib, ketoconazole, clavulanic acid, remdesivir, and verapamil, emodin and luteolin had higher 
rerank scores. The quantitative structure–property relationships depicted that the electronic parameter, highest 
occupied molecular orbital (EHOMO), was the physical chemistry parameter that influenced the total clearance. The 
present findings emphasized that emodin and luteolin from the SMs of mangroves have multiple activities as potent 
inhibitors of cancer cells and bacterial infections.

INTRODUCTION
Currently, computational designs based on the structure 

of the target receptors responsible for a compound’s toxicity and 
activity in the body can aid in the discovery of novel drugs. This 
method of computation is known as “structure-based drug design” 
or “computer-aided drug design” (CADD) (Song et al., 2009). The 
use of CAAD in finding new drug candidates provides informa-
tion on the molecular properties of the active compound (Dara 

et al., 2021). Active compounds as ideal new drug candidates have 
bioavailability (absorption, distribution, metabolism, and elimi-
nation) and toxicological data. The value of oral drug absorption 
depends on the dose, solubility, and permeability according to Lip-
inski’s rule of five. Lipinski’s rule of five aims to determine the 
amount of a compound that is absorbed from the gastrointestinal 
tract through passive diffusion. The fulfillment of Lipinski’s five 
rules for the active compound shows its solubility in water. Solu-
bility in water is related to faster metabolic processes, elimination 
time, and side effects of drug accumulation. The appropriate ac-
tivity test determines if the active compound is sufficiently soluble 
(Duchowicz et al., 2009).

Each active compound has physicochemical properties 
related to its structure. The predictive use of the chemical prop-
erties of the active compound structure has lipophilic, electronic, 
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and steric parameters. In this study, the quantitative relationship 
between the structure and chemical properties was determined us-
ing the quantitative structure–property relationships (QSPR) mod-
el. In addition, the QSPR model can be used to explain chemical 
properties that affect pharmacokinetic values, especially elimina-
tion, which is related to the determination of drug dose values. The 
elimination parameter used in this study was the total clearance 
(CLTOT) of the active compound (Praditapuspa et al., 2021). The 
QSPR model has the advantage of being more economical and 
reducing the need for time-consuming and expensive experiments 
(Duchowicz et al., 2009; Sandfort et al., 2020).

The active site of the protein that binds to the drug 
compound is identified using information from the target protein’s 
structure. Compounds that are expected to bind to the target 
protein and have biological activity can be designed based on the 
prediction of the active site. The target protein’s structure can be 
modeled using crystal structure data obtained from databases such 
as the Protein Data Bank (PDB) or by performing comparative 
modeling to predict the 3D structure of the unknown target 
protein based on its similarity (>40% similarity) with the known 
target protein if the protein structure is not found in the available 
database. The availability of data is critical to the success of drug 
discovery and development campaigns (Song et al., 2009). Drug 
development relies heavily on natural products. Natural products 
have become increasingly popular in pharmacological research 
during the last 20 years, including in antibacterial medication 
development. Terpenes, alkaloids, flavonoids, and phenols are 
only a few of the secondary metabolites (SMs) produced by typical 
plant metabolic processes that have antibacterial properties. By 
enhancing membrane permeability, inhibiting enzyme synthesis, 
or blocking biochemical reactions, natural compounds can address 
multiple bacterial targets at the same time (Guo et al., 2020).

Indonesia is known as the world’s most important 
mangrove area with a diverse range of species (Basyuni et al., 
2022). Several studies have reported, as presented in Table 1, that 
mangrove plants contain SMs, i.e., polyisoprenoids (for example, 

dolichol and polyprenol), anthraquinone (for example, emodin), 
and flavonoids (for example, luteolin). In addition, they provide 
properties that are anticancer, anti-inflammatory, antioxidant, 
antiviral, and antibacterial (Ho et al., 2007; Illian et al., 2018; 
2019, 2021; May Zin et al., 2017; Momtazi-Borojeni et al., 
2013; Odontuya et al., 2005; Qurrohman et al., 2020; Sumardi 
et al., 2018; Wu et al., 2008). The chemical structures of these 
compounds are shown in Figure 1. Due to the wide-ranging 
biological activities of polyisoprenoids, anthraquinone, and 
flavonoids in mangrove plants, these SMs are regarded as potential 
natural resources for pharmacological and other properties  
(Table 1). Thus, these observations in concert prompted us to 
implement the in silico method to predict the activities and value 
of the bond energy between emodin, luteolin, dolichol, and 
polyprenol on the enzymes of cyclooxygenase-2 (COX-2), beta-
lactamase, CYP450-dependent 14-alpha demethylase, 3C-like 
protease (3CL-pro), and P-glycoprotein (P-GP).

MATERIALS AND METHODS

ADMET prediction
The simplified molecular-input line-entry system 

series was used to simulate absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) for emodin, luteolin, di-trans, 
poly-cis-polyprenol (C80), dolichol-17 (C85), and dolichol-20 
(C100) from the SMs of mangrove. The pkCSM (predicting 
small-molecule pharmacokinetic properties using graph-based 
signatures) website (Pires et al., 2015) was used to determine 
the properties of emodin, luteolin, di-trans, poly-cis-polyprenol 
(C80), dolichol-17 (C85), and dolichol-20 (C100). Furthermore, 
the ProTox-II (prediction of toxicity of chemicals) website was 
used to predict compounds’ toxicity. The predictions of the toxicity 
chemical class were segmented into the following categories: 
Class 1 = extremely lethal (lethal dose 50 (LD50) ≤ 5); Class 2 
= fatal (5 < LD50 ≤ 50); Class 3 = toxic (50 < LD50 ≤ 300); Class 
4 = harmful (300 < LD50 ≤ 2,000); Class 5 = possibly hazardous 

Table 1. SMs and their properties from mangrove plants containing polyisoprenoids, emodin, and luteolin.

Mangrove Species Tissue aSMs References Properties References

Avicennia marina, 
Avicennia lanata, 
Avicennia alba

Leaves

Polyprenol (main C80), 
Dolichol (main C85), 
Dolichol (main C100)

(Basyuni et al., 
2016)

Anticancer activity against WiDr 
colon cancer cell lines

(Illian et al., 2018; Illian et al., 
2019; Qurrohman et al., 2020)

Antibacterial activity against E. coli 
and Staphylococcus aureus (Sumardi et al., 2018)

Luteolin (Momtazi-Borojeni 
et al, 2013)

Anti-inflammatory and antioxidant 
activities (Odontuya et al., 2005)

An apoptotic agent against MDA-
MB-231 human breast cancer cell 
lines

(Momtazi-Borojeni et al, 2013)

Lumnitzera racemosa Leaves, 
stems Emodin (Wu et al., 2008)

Preventing interactions between 
ACE-2 receptors and the S-protein in 
SARS-CoV

(Ho et al., 2007; Illian et al., 
2021)

Moderate antibacterial activity against 
the Gram-positive bacteria and strong 
synergistic association with oxacillin 
against MRSA Staphylococcus aureus

(May Zin et al., 2017)

aSMs, Secondary metabolites.
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(2,000 < LD50 ≤ 5,000); and Class 6 = nontoxic (LD50 > 5,000) 
(OECD, 2001).

Prediction for Lipinski’s rule of five
According to “the rule of five” in the discovery setting, 

when there are more than 5 H-bond donors and 10 H-bond acceptors, 
the molecular weight surpasses 500, and when the computed LogP 
surpasses 5, it is more likely that there will be poor absorption 
or penetration (Lipinski, 2004). The physicochemical parameters 
were predicted by the ChemBio 3D Ultra ver.13 software.

Determination of QSPR
The determination of QSPR aimed to determine the 

quantitative relationship between the structure and physicochemi-
cal parameters (Shoombuatong et al., 2017). The physicochemical 
parameters included the lipophilic, electronic, and steric param-
eters. The lipophilic parameters included LogP and LogS. The 
electronic parameters included ETOT, EHOMO, and ELUMO. The steric 
parameters included molecular weight and molecular volume. The 
prediction of CLTOT value as a parameter of drug elimination was 
made by pkCSM. SPSS ver. 26 was used for the determination of 
the QSPR equation.

Preparation for the X-ray structure of the target protein
The protein targets were human COX-2 (PDB ID: 3LN1), 

beta-lactamase (PDB ID: 1LLB, 6W33), CYP450-dependent 
14-alpha demethylase (PDB ID: 1JIP), 3CL-pro (PDB ID: 6LU7), 
and P-GP (PDB ID: 1MV5, 4DGN), which were obtained from 

the Protein Data Bank (PDB) website [Research Collaboratory for 
Structural Bioinformatics (RCSB) PDB].

Preparation of ligands
ChemBioDraw Ultra ver. 13.0 (Cambridge Soft) was 

used to draw the structures of emodin and luteolin. ChemBio 3D 
13.0 was used to convert the compound’s 2D structures to 3D 
structures. The Merck molecular force field (MMFF94) method 
was used to optimize the molecule and minimize the geometry 
of the ligand, and the results were saved in SYBYL.mol2 format, 
which the Molegro Virtual Docker (MVD) software could read.

Molecular docking studies
Molecular docking techniques on MVD Ver. 5.5 (CLC 

Bio) were used to investigate the activities of emodin and luteo-
lin on COX-2, beta-lactamase, CYP450-dependent 14-alpha de-
methylase, and P-GP interaction. Human COX-2 (code 3LN1), 
beta-lactamase (code 1LLB, 6W33), CYP450-dependent 14-alpha 
demethylase (code 1JIP), 3CL-pro (code 6LU7), and P-GP (code 
1MV5, 4DGN) crystal structures were used as protein targets. To 
get the docked posture and root mean square deviation (RMSD), 
the docking process was validated by redocking the ligands of 
3LN1 (Wang et al., 2010), 1LLB (Trehan et al., 2002), 6LU7 (Jin 
et al., 2020), 6W33, 1JIP (Cupp-Vickery et al., 2001), 1MV5, 
and 4DGN (Lolli et al., 2012) into its binding pocket within the 
crystals of COX-2, beta-lactamase, CYP450-dependent 14-alpha 
demethylase, and P-GP. The protocol is effective at recreating the 
X-ray crystal structure in complex forms for further docking in-
vestigations.

Figure 1. The 2D chemical structure of secondary metabolites from mangrove plants used in this study: emodin, luteolin, polyprenol C80, dolichol-17 (C85), and 
dolichol-20 (C100).
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RESULTS AND DISCUSSION

ADMET prediction
The properties of ADMET for emodin, luteolin, di-trans, 

poly-cis-polyprenol (C80), dolichol-17 (C85), and dolichol-20 
(C100) are presented in Table 2 based on the computational 
analysis using pkCSM. In addition, the toxicity class predictions 
for emodin, luteolin, polyprenol C80, dolichol-17 (C85), and 
dolichol-20 (C100) are presented in Table 3.

The pharmacokinetic data in Table 2 revealed that emo-
din and dolichol-20 (C100) do not inhibit CYP3A4 enzymes, 

suggesting that it is safe to use emodin and dolichol-20 (C100) 
with a wide range of CYP3A4 substrates (including alprazolam, 
atorvastatin, vincristine, halothane, hydrocortisone, zidovudine, 
carbamazepine, codeine, cortisol, caffeine, lidocaine, lovastatin, 
midazolam, nifedipine, paracetamol, tacrolimus, tamoxifen, tes-
tosterone, phenytoin, cyclosporine, cyclophosphamide, erythro-
mycin, R-warfarin, and S-warfarin). This is due to the fact that the 
isoenzyme type CYP3A4 is the primary metabolizer of approxi-
mately 75% of all medicines metabolized by CYP (Zhang et al., 
2021). According to a prior study examining the 200 most widely 
prescribed medications in the United States, the CYP isoenzyme  

Table 2. The properties of ADMET: emodin, luteolin, di-trans, poly-cis-polyprenol (C80), dolichol-17 (C85), and dolichol-20 (C100)

Properties Emodin Luteolin di-trans,poly-cis-
polyprenol (C80)

dolichol-17 
(C85)

dolichol-20 
(C100) Unit

Absorption

Water solubility −3.19 −3.09 −2.89 −2.89 −2.89 Numeric (log mol/l)

Caco2 permeability 0.06 0.10 1.08 1.24 1.25 Numeric (log Papp in 10–6 cm/s)

Intestinal absorption (human) 74.49 81.13 75.19 83.98 82.21 Numeric (% Absorbed)

Skin permeability −2.74 −2.74 −2.74 −2.74 −2.74 Numeric (log Kp)

P-glycoprotein substrate Yes Yes No No No Categorical (Yes/No)

P-glycoprotein I inhibitor No No No No No Categorical (Yes/No)

P-glycoprotein II inhibitor No No Yes Yes Yes Categorical (Yes/No)

Distribution

VDss (human) 0.46 1.15 −0.21 −0.22 −0.05 Numeric (log L/kg)

Fraction unbound (human) 0.18 0.17 0.37 0.37 0.38 Numeric (Fu)

BBB permeability −0.73 −0.91 1.37 1.59 1.78 Numeric (log BB)

CNS permeability −2.34 −2.25 1.00 1.06 1.72 Numeric (log PS)

Metabolism

CYP2D6 substrate No No No No No Categorical (Yes/No)

CYP3A4 substrate No No Yes Yes Yes Categorical (Yes/No)

CYP1A2 inhibitor Yes Yes No No No Categorical (Yes/No)

CYP2C19 inhibitor No No No No No Categorical (Yes/No)

CYP2C9 inhibitor No Yes No No No Categorical (Yes/No)

CYP2D6 inhibitor No No No No No Categorical (Yes/No)

CYP3A4 inhibitor No No No No No Categorical (Yes/No)

Excretion

Total clearance 0.34 0.50 1.84 1.81 1.75 Numeric (log ml/min/kg)

Renal OCT2 substrate No No No No No Categorical (Yes/No)

Toxicity

AMES toxicity No No No No No Categorical (Yes/No)

Max. tolerated dose (human) 0.16 0.50 0.44 0.44 0.44 Numeric (log mg/kg/day)

hERG I inhibitor No No No No No Categorical (Yes/No)

hERG II inhibitor No No Yes Yes Yes Categorical (Yes/No)

Oral rat acute toxicity (LD50) 2.12 2.46 2.52 2.52 2.49 Numeric (mol/kg)

Oral rat chronic toxicity (LOAEL) 2.07 2.41 −0.69 −0.73 −1.14 Numeric (log mg/kg_bw/day)

Hepatotoxicity No No No No No Categorical (Yes/No)

Skin sensitization No No No No No Categorical (Yes/No)

T. pyriformis toxicity 0.54 0.33 0.29 0.29 0.29 Numeric (log ug/L)

Minnow toxicity 2.06 3.17 −12.24 −15.06 −18.26 Numeric (log mM)
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type CYP3A4 metabolizes around 46% of pharmaceuticals  
(Sychev et al., 2018).

Another pharmacokinetic predictor is toxicity. Based on 
the Ames test toxicity data, it is known that the five compounds 
are not mutagenic, skin-sensitizing, or hepatotoxic. Emodin 
and luteolin compounds are not inhibitors of hERG I or hERG 
II associated with potassium channels. Meanwhile, polyprenol 
(C80) and dolichol (C85 and C100) compounds are seen from the 
inhibition parameters of hERG (the human Eth-er-ago-go-related). 
These three compounds are known to inhibit hERG II. hERG is 
a gene that encodes a protein potassium channel that contributes 
to heart rate activity. Other parameters, such as the maximum 
tolerated dose, LD50, and LOAEL values, can be classified as 
good and having a low maximum tolerance dose. However, these 
five compounds are known to be toxic to Tetrahymena pyriformis 
(Fadlan et al., 2021).

Based on Table 3, which presents the details about the 
toxicity class prediction of emodin, luteolin, di-trans,poly-cis-
polyprenol (C80), dolichol-17 (C85), and dolichol-20 (C100), it 
was observed that emodin was categorized as Class 5 = possibly 
hazardous (2,000 < LD50 ≤ 5,000), luteolin was Class 5 = possibly 
hazardous (2,000 < LD50 ≤ 5,000), di-trans,poly-cis-polyprenol 
(C80) was Class 4 = harmful (300 < LD50 ≤ 2,000), dolichol-17 
(C85) as Class 6 = nontoxic (LD50 > 5,000), and dolichol-20 (C100) 
as Class 6 = nontoxic (LD50 > 5,000). The LD50 value is a standard 
for determining acute toxicity in mg of compound per kg of body 
weight. The LD50 value, according to Walum (1998), is the dose 
required to kill 50% of the experimental animal population. The 
lower the LD50 dose, the more hazardous the compound. According 
to Lipinski’s rule of five, emodin and luteolin compounds were 
easier to absorb and had higher permeability than compounds 
of di-trans, poly-cis-polyprenol (C80), dolichol-17 (C85), and 
dolichol-20 (C100) (Lipinski, 2004).

Prediction for Lipinski’s rule of five
Table 4 shows that emodin and luteolin have lower 

molecular weights of 270.24 and 286.24 g/mol, respectively, 
than di-trans, poly-cis-polyprenol (C80), dolichol-17 (C85), and 
dolichol-20 (C100), which have molecular weights of 1,107.92, 
1,178.05, and 1,382.41 g/mol, respectively. These data suggested 
that di-trans, poly-cis-polyprenol (C80), dolichol-17 (C85), and 
dolichol-20 (C100) compounds failed to meet Lipinski’s rule 
of five. The LogP revealed that compounds of emodin (1.51) 
and luteolin (0.77) meet Lipinski’s rule of five requirements. 
The number of hydrogen bond acceptors (HBA) in emodin and 
luteolin compounds was 5 and 6, respectively, indicating that 
they satisfied Lipinski’s five-requirement criterion. Emodin and 
luteolin compounds had three and four hydrogen bond donors, 
respectively, demonstrating that they met Lipinski’s rule of five 
requirements.

Determination of QSPR
One of the seven regression equations with the best 

correlation coefficient and significance was chosen (see Table 5). 
The following was considered the best regression equation for the 
review (Widiyana et al., 2016):

1/CLTOT = 0.255 EHOMO + 3.110.

(n = 5, R = 0.985, SE = 0.071, F = 95.555, sig = 0.002)
� (1)

The equation was chosen since it has the best correlation 
coefficient (R = 0.985), the smallest significance of 0.002 (<0.05), 
the smallest standard error (SE = 0.071), and the largest F-value 
(95.555). The physical chemistry parameter that affected the 
CLTOT, according to the equation, was the electronic parameter 
EHOMO (as shown in Tables 5 and 6).

Molecular docking studies
Emodin and luteolin were further docked with beta-

lactamase, CYP450-dependent 14-alpha demethylase, COX-2, 
3CL-pro, and P-GP as protein targets using the MVD Ver. 5.5 
docking simulation approach (Widiyana et al., 2021). Based on 
two criteria, such as ligand-binding position and fitness function 
score comparison, this algorithm determined the best docking 
score. The RMSD was used to determine the most optimal ligand-
binding location. Table 7 presents the interactions of emodin 
and luteolin with COX-2, beta-lactamase, CYP450-dependent 
14-alpha demethylase, 3CL-pro, and P-GP.

Molecular docking is a computer simulation of a ligand 
binding to a receptor that aids in predicting the protein target (in 
which the molecule will form a bond) and assessment of the binding 
affinity. Furthermore, the pose organizer can rotate the hydrogen 
molecules in both the receptor and the ligand to their ideal position. 
It is also possible to utilize it to rerank the ligands (using a rank 
score). The middle panel enables the recalculation of scoring 
functions, including the MolDock score, binding affinity score, 
and reranking score, while analyzing docking data. If the poses are 
imported from an MVD results file, these scoring function values 
have already been computed. Recalculating the scores for each of 
the three metrics is done by pressing the “recalculate energies” 
button (using the coefficients specified in the files for the binding 
affinity and reranking scores). Using a more computationally 
sophisticated scoring algorithm than the one used during docking, 
it is feasible to rerank poses. Numerous components (such as van 
der Waals forces, electrostatic interactions, and solvent terms) can 
be manually adjusted in this reranking score function. In MVD, the 
MolDock, MolDock GRID, and rerank scores are not expressed in 
chemically meaningful units. However, the MVD can provide an 
approximation estimate of the binding affinity (Piramanayagam 
and Lisina, 2014).

Table 3. The toxicity prediction of emodin, luteolin, di-trans, poly-cis-polyprenol (C80), dolichol-17 (C85), and dolichol-20 (C100).

Parameters Emodin Luteolin di-trans, poly-cis-polyprenol (C80) Dolichol-17 (C85) Dolichol-20 (C100)

Predicted LD50 5,000 mg/kg 3,919 mg/kg 1,190 mg/kg 5,600 mg/kg 5,600 mg/kg

Predicted toxicity class Class 5 Class 5 Class 4 Class 6 Class 6

Average similarity 80.50% 80.53% 100.00% 87.37% 87.37%

Prediction accuracy 70.97% 70.97% 100.00% 70.97% 70.97%
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In numerous types of activity, the proteins mentioned 
above are shown to be overexpressed. Since the target molecules’ 
X-ray crystallographic structures are known, structure-based 
rational drug design methodologies can be used to build novel 
lead compounds based on them. The active site of the target 
compounds was discovered and molecular docking was performed 
using ChemBio 3D 13.0 containing 3D structures of chemicals 
obtained from marine systems. MVD handles every step of the 
docking procedure, from preparing the compounds to determining 

the target protein’s probable binding sites and predicting the 
ligands’ binding modes. MVD provides high-quality docking by 
combining a revolutionary optimization technique with a user 
interface that prioritizes usability and efficiency. The computational 
experiment yielded the identification of a 5-second metabolite that 
docked perfectly into the target’s active site. For each ligand, a 
visual evaluation of the top-ranking molecules (hits) generated a 
list of roughly five small molecules. The docked postures were 
listed along with the rerank scores that correlate with them. The 

Table 4. Prediction for Lipinski’s rule of five.

Rules Emodin Luteolin di-trans, poly-cis-polyprenol (C80) Dolichol-17 (C85) Dolichol-20 (C100)

MW < 500 270.24 286.24 1,107.92 1,178.05 1,382.41

Hydrogen bond donors < 5 3 4 1 1 1

HBA < 10 5 6 1 1 1

LogP < 5 1.51 0.77 19.79 21.92 25.70

Table 5. Regression analysis between physical and chemical properties with 1/CLTOT.

No. Independent Variable R SE F Sig. Equation

1 LogP 0.962 0.112 36.932 0.009 1/CLTOT	 =	�  −0.029 LogP + 0.403

2 LogS 0.961 0.114 35.985 0.009 1/CLTOT	 =	�  0.038 LogS + 0.476

3 ETOT 0.959 0.116 34.499 0.010 1/CLTOT	 =	�  −0.002 ETOT + 0.439

4 EHOMO 0.985 0.071 95.555 0.002 1/CLTOT	 =	�  0.255 EHOMO + 3.110

5 ELUMO 0.611 0.324 1.791 0.273 1/CLTOT	 =	�  −0.015 ELUMO + 0.060

6 MW 0.713 0.287 3.111 0.176 1/CLTOT	 =	�  2.173 10–5 MW − 0.113

7 MR 0.982 0.078 79.668 0.003 1/CLTOT	 =	�  0.009 MR − 0.252

Table 6. Data of chemical descriptor.

Compounds
Lipophilic Electronic Steric

hCLTOT
Log (1/
CLTOT)aLogP bLogS cETOT

dEHOMO
eELUMO

fMW gMR

Emodin 1.51 –2.96 33.53 –10.30 –7.33 270.24 71.28 0.34 0.47

Luteolin 0.77 –2.75 29.96 –11.20 –3.83 286.24 73.53 0.50 0.30

di-trans,poly-cis-polyprenol (C80) 19.79 –16.90 282.80 –13.03 0.62 1107.92 0 1.84 –0.26

Dolichol-17 (C85) 21.92 –18.53 269.09 –12.98 0.29 1178.05 0 1.81 –0.26

Dolichol-20 (C100) 25.70 –21.80 348.88 –13.47 0.88 1382.41 0 1.75 –0.24

aLogP: Partition coefficient, bLogS: Solubility, cETOT: Minimum energy (kcal/mol), dEHOMO: Highest occupied molecular orbital (eV), eELUMO: Lowest unoccupied 
molecular orbital (eV), fMW: Molecular weight (g/mol), gMR: Molar refractivity (cm3/mol), hCLTOT: Clearance total (log ml/minute/kg).

Table 7. The binding energy of emodin and luteolin.

Activities Mechanism of action PDB-ID
Re-rank score

Standard Emodin Luteolin

Antibacterial Beta-lactamase inhibitor
1LLB

Clavulanic acid
−74.04 −85.78 −88.47

6W33 −79.53 71.18 −82.83

Antifungal CYP450-dependent 14-alpha demethylase 
inhibitor 1JIP Ketoconazole −135.08 −71.62 −73.81

Anti-inflammatory COX-2 inhibitor 3LN1 Celecoxib −137.80 −85.02 −106.84

Antiviral 3CL-pro inhibitor 6LU7 Remdesivir −128.35 −83.99 −96.22

Anticancer P-GP inhibitor
1MV5 Verapamil −74.28 −77.94 −73.94

4DGN −80.97 −92.56 −101.57
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MolDock score calculated for “hits” was significantly higher than 
the MolDock score calculated for the original ligand–protein 
docking. According to the energy principle, the lowest score was 
used since a molecule is most stable at the lowest energy level. As 
a result, it was worthwhile to test the actual binding affinities of 
these small molecules to the target protein to see if the computer 
predictions corresponded to the biological scenario (Widiyana, 
2021; Zhang et al., 2021).

The receptor structure used in this study was obtained 
from the Research Collaboratory for Structural Bioinformatics 
(RCSB) PDB. Each protein provides information about the active 
site and the composition of the secondary metabolite–protein 
binding space as well as the opportunity to use the enzyme or 
protein in a functional conformation. In the current investigation, 
we tested five activities, including antibacterial activity with a beta-
lactamase inhibitor mechanism, antifungal activity with a CYP450-
dependent 14-alpha demethylase inhibitor mechanism, anti-
inflammation activity with a COX-2 inhibitor mechanism, antiviral 
activity with a 3CL-pro inhibitor mechanism, and anticancer 
activity with a P-GP inhibitor mechanism (Puspaningtyas, 2013). 
The validation stage was carried out to calibrate the docking 
method in silico by repeating the prediction of the native ligand’s 
binding ability to proteins and then comparing it with the position 
of the original native ligand, which is innate to the receptor on 
the ligand-binding site pocket. The assessment parameter used 
to provide an assessment of validity was the RMSD value. The 
RMSD value was close to zero, indicating that the position of the 
copy ligand after the superimposition was approaching that of the 
native ligand, implying that the method utilized would be more 
precise. Validation was carried out at the pocket ligand-binding 
site with 10 replications. To ensure that the orientation of the 
ligand matches the behavior in the ligand–receptor binding model 
and the position obtained from the docking study using the MVD 
program, the parameters of this docking method first needed to be 
validated by the structure of the receptor used, namely PDB, which 
was replicated 10 times. The rerank score is a value that represents 
the binding energy required to form a bond between the ligand and 
the receptor, and it predicts compound activity. It also improves 
the ligand–receptor interaction. Emodin and luteolin were docked 
as ligands with COX-2, beta-lactamase, CYP450-dependent 
14-alpha demethylase, 3CL-pro, and P-GP as protein targets using 
the MVD Ver. 5.5 docking simulation approach. This algorithm 
determined the best docking score based on two criteria: ligand-
binding position and fitness function score comparison. The lower 
value of the rerank indicated the strength of the ligand–receptor 
bond. The most optimal ligand-binding location was determined 
using the RMSD.

Docking analysis was performed for antibacterial activity 
using the mechanism of inhibition toward beta-lactamase using 
PDB code 1LLB, which contains the inhibitor crystal structure 
of AmpC beta-lactamase from Escherichia coli in a complex 
with ATMO-penicillin (https://www.rcsb.org/structure/1llb), and 
PDB code 6W33, which contains the crystal structure of Class A 
beta-lactamase from Bacillus cereus in a complex with the beta-
lactamase inhibitor of clavulanate acid (https://www.rcsb.org/
structure/6W33). At this point, the test compounds’ interactions 
with the 1LLB and 6W33 receptors were compared to interaction 
with clavulanic acid as the standard. Interactions with the 1LLB 
receptor had a higher rerank score of −74.04 than interaction with 

clavulanic acid (as presented in Table 7), and since emodin and 
luteolin had the lowest rerank scores (−85.78 and −88.47 kcal/
mol, respectively), this indicated that emodin and luteolin have 
higher binding energies than the others. Furthermore, interaction 
with the 6W33 receptor had a higher rerank score of −79.53 than 
interaction with clavulanic acid (see Table 7), and since luteolin 
had the lowest rerank score (−82.83 kcal/mol), luteolin revealed 
higher binding energies than the others. These results predicted 
that emodin and luteolin might have antibacterial activity and are 
related to overcoming beta-lactamase enzyme-mediated multidrug 
resistance through the mechanism of beta-lactamase inhibition.

Docking analysis was carried out for antifungal activity 
using the mechanism of inhibition toward CYP450-dependent 
14-alpha demethylase (PDB code 1JIP), which contains keto-
conazole-induced conformational changes in the active site of cy-
tochrome mammalian P450 enzymes (https://www.rcsb.org/struc-
ture/1JIP). At this point, the test compounds’ interactions with the 
1JIP receptor were compared to interaction with ketoconazole as 
the standard. Interaction with the 1JIP receptor in comparison to 
interaction with ketoconazole had a higher rerank score of −135.08 
(see Table 7), and since emodin and luteolin had the lowest rerank 
scores (−71.62 and −73.81 kcal/mol, respectively), emodin and 
luteolin exhibited lower binding energies than the others. These 
results predicted that emodin and luteolin might lack antifungal 
activity through the mechanism of CYP450 inhibition. Further 
investigation into the antifungal activity of emodin and luteolin 
using the other mechanisms is needed.

Docking analysis was carried out for anti-inflammation 
activity using the mechanism of inhibition toward COX-2 
(PDB code 3LN1), which contains the structure of celecoxib 
bound at the COX-2 inhibitor active site (https://www.rcsb.org/
structure/3LN1). At this point, the test compounds’ interactions 
with the 3LN1 receptor were compared to interaction with 
celecoxib as the standard. Interaction with the 3LN1 receptor had 
a higher rerank score of −137.80 than interaction with celecoxib  
(see Table 7), and since emodin and luteolin had the lowest 
rerank scores (−85.02 and −106.84 kcal/mol, respectively), 
emodin and luteolin exhibited lower binding energies than the 
others. These results predicted that emodin and luteolin might 
lack anti-inflammatory activity through the mechanism of COX-
2 inhibition (Park et al., 2016). Further investigation into the 
anti-inflammatory activity of emodin and luteolin using the other 
mechanisms is needed.

Docking analysis was carried out for antiviral activity 
using the mechanism of inhibition toward the 3CL-pro inhibitor 
(PDB code 6LU7), which contains the crystal structure of 
COVID-19 main protease in a complex with an inhibitor N3 
(https://www.rcsb.org/structure/6LU7). At this point, the test 
compounds’ interactions with the 6LU7 receptor were compared 
to interaction with remdesivir as the standard. Interaction with the 
6LU7 receptor in comparison to interaction with remdesivir had 
a higher rerank score of −128.35 (see Table 7), and since emodin 
and luteolin had the lowest rerank scores (−83.99 and −96.22 kcal/
mol, respectively), emodin and luteolin exhibited lower binding 
energies than the others. These results predicted that emodin and 
luteolin might lack antiviral activity against SARS-CoV-2 through 
the mechanism of 3CL-pro inhibition (Mandal et al., 2021). 
Further investigation into the antiviral activity of emodin and 
luteolin using the other mechanisms is needed.
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Docking analysis was carried out for anticancer activity 
using the mechanism of inhibition toward P-GP using PDB code 
1MV5, which contains the crystal structure of the LmrA ATP-
binding domain (https://www.rcsb.org/structure/1mv5), and PDB 
code 4DGN, which contains the crystal structure of maize CK2 
in a complex with the inhibitor luteolin (https://www.rcsb.org/
structure/4dgn). At this point, the test compounds’ interactions 
with the 1MV5 and 4DGN receptors were compared to interaction 
with verapamil as the standard. Interaction with the 1MV5 receptor 
had a higher rerank score of −74.28 (see Table 7) than interaction 
with verapamil, and since emodin had the lowest rerank score 
(−77.94), emodin exhibited higher binding energies than the 
others. However, luteolin, which had a rerank score of −73.94, can 
show anticancer activity since it has a value similar to the rerank 
score of verapamil. Furthermore, interaction with the 4DGN 
receptor had a higher rerank score of −80.97 (see Table 7) than 
verapamil, and since emodin and luteolin had the lowest rerank 
scores (−92.56 and −101.57 kcal/mol, respectively), emodin and 
luteolin exhibited higher binding energies than the others. These 
results predicted that emodin and luteolin might show anticancer 
activity and are related to overcoming P-GP-mediated multidrug 
resistance through the mechanism of P-GP inhibition.

CONCLUSION
The present study suggested that emodin and luteolin 

have lower toxicity than the standard, while the standard has a 
higher affinity for protein enzymes than emodin and luteolin. The 
findings emphasized that these compounds may show multiple 
activities as potent inhibitors of cancer cells as well as bacterial 
infections. Therefore, for further investigation to ascertain the 
effectiveness against cancer cells and bacterial infections as well 
as fungal and viral infections, synthesis and in vitro evaluation are 
required.
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