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ABSTRACT 
Gemini quaternary ammonium surfactants (GQAS) have a unique structure built of two conventional surfactants 
connected by a spacer group. In previous studies, it has been found that GQAS have potency as antimicrobial agents. 
Thus, we developed a quantitative structure–activity relationship (QSAR) model to predict the antibacterial activity 
of GQAS. A dataset containing 57 GQAS with antibacterial activity against Escherichia coli was chosen from the 
literature. After optimizing all structures of these compounds using the ab initio 6-311G basis sets at the Hartree–Fock 
level theory, the molecular descriptors were calculated using the Mordred program. The genetic algorithm (GA) and 
multiple linear regressions (MLR) were used for generating two QSAR models with different splitting techniques. The 
predictive powers of the obtained models were discussed using the leave-one-out (LOO) cross-validation and external 
test set. The best GA-MLR models were obtained with reliable value of R2 = 0.891, Q2

LOO = 0.851, lack-of-fit = 0.116, 
root mean square error (RMSEtrain) = 0.267, R2

test = 0.834, and RMSEtest = 0.269. The GA-MLR methods were used 
to develop models that possess good predictive ability based on both internal and external validation parameters. The 
design of new molecules was done, and the antibacterial activity could be predicted using the resulting model with 16 
compounds that showed potential as antibacterial agents.

INTRODUCTION
In the last decade, the rapid growth of microbial pathogens 

and their increasing resistance to antimicrobial drugs have become 
a major concern of increasing public health (Piccione et al., 
2019). The high number of antimicrobial resistances encourages 
efforts to find new drugs that have more effective antibacterial 
activity, through either drug synthesis or modification of existing 
antimicrobial drugs (Bari and Haswani, 2017).

Cationic gemini surfactants are an important type of 
surfactant consisting of two quaternary ammonium groups linked by a 
spacer group (Setiawan et al., 2021a). Initiated by Bunton et al. (1971) 

who synthesized the gemini quaternary ammonium bromide surfactant, 
this type of surfactant is receiving increasing attention due to its 
unique properties. The surface properties of gemini surfactants 
are known to be better than those of monomer analog surfactants. 
Besides having excellent surface properties, gemini surfactants are 
also known to act as highly efficient corrosion inhibitors and have 
good antimicrobial activity (Brycki et al., 2019; Shukla and Tyagi, 
2006). The mechanism of inhibition of cationic gemini surfactants is 
by destroying the cell wall so that it can inhibit the growth of bacteria 
(Tyagi and Tyagi, 2014).

The process of developing a new drug is a complex, 
lengthy, and expensive process (Kovalishyn et al., 2018). This 
process includes the initial concept, synthesis, and testing of its 
safety and effectiveness in humans until approval to be brought 
to market. It would take at least 10–15 years and more than £500 
million to develop a new drug (Puzyn et al., 2010). To mitigate 
these limitations, computer-aided drug design (CADD) studies 
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can be used. In recent decades, the CADD approach has emerged 
as a method that plays an important role in the development 
of new drug molecules (Ćirić Zdravković et al., 2019). One of 
the CADD approaches is the quantitative structure–activity 
relationship (QSAR) method (Setiawan et al., 2021b). The QSAR 
method focuses on known ligands by establishing the relationship 
between physicochemical properties (descriptors) and biological 
activity (Roy et al., 2015; Tiwari and Singh, 2017).

In view of the above, the objective of this investigation 
was to construct a statistically significant QSAR model for 
gemini quaternary ammonium surfactants (GQAS) that correlates 
their antibacterial activity against Escherichia coli with their 
physicochemical properties. The resulting model is able to estimate 
the antibacterial activity of the newly designed compound. 

MATERIALS AND METHODS

Dataset
In this study, a dataset containing 57 molecules of 

GQAS with antibacterial activity against E. coli was used for the 
QSAR study (Devinsky et al., 1985, 1987). Antibacterial activity 
in the form of the minimum inhibitory concentration (MIC) value 
(minimum concentration of antimicrobial compounds in inhibiting 
the growth of visible microorganisms) in moles was converted to 
a negative logarithmic value (pMIC) as an independent variable 
for QSAR analysis. The pMIC values of the dataset ranged from 
1.884 to 4.638. The chemical structure and antibacterial activity of 
the compounds used are shown in Figure 1 and Table 1.

Molecular modeling and descriptors
The quaternary gemini ammonium surfactant structure 

was drawn using the Marvin ChemSketch software and saved 
in .mol format. Furthermore, all molecules were geometrically 
optimized using quantum chemical methods at the level of the 
Hartree–Fock (HF) theory and base set 6-311G on the Gaussian 
software. The resulting geometry optimization structure is used as 
the basis for calculating various structural parameters (descriptors) 
such as quantum chemical descriptors, physicochemical 
descriptors, and 1D–3D molecular descriptors. Based on the 
optimized three-dimensional structure obtained from molecular 
modeling at the HF level, 20 descriptors were obtained, including 
highest occupied molecular orbital energy, lowest occupied 
molecular orbital, dipole moment, and atomic net charge. The 
Mordred software was used to calculate 1,825 1D–3D molecular 
descriptors, which were divided into several groups of descriptors 
(Moriwaki et al., 2018). Physicochemical descriptors including 
logP and logS were obtained from SwissADME (http://www.
swissadme.ch/) (Daina et al., 2017). In total, 1,842 descriptors 
were degenerated.

Before the molecular descriptors were used for the 
development of the QSAR model, descriptors were filtered by 
eliminating descriptors with constant values and those with 
correlation values above 0.9. Furthermore, screening was also 
carried out on descriptors that correlated poorly with antibacterial 
activity and descriptors that had a value of zero. In the end, 310 
remaining descriptors were considered for QSAR modeling using 

Figure 1. General structure of GQAS.
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the genetic algorithm-multiple linear regressions (GA-MLR) 
method.

QSAR modeling and validation
In the present work, the QSAR-INSUBRIA (QSARINS) 

software from the Insubria QSAR Research Unit was used to 
carry out MLR in combination with the GA technique for variable 
selection (GA-MLR) (Gramatica et al., 2014, 2013). Two division 
techniques implemented in the QSARINS software were used to 
divide the dataset, namely an ordered biological activity-based 
approach and a structure similarity-based approach (Cassani and 
Gramatica, 2015). In the division based on the order of biological 
activity, the molecules were ordered according to the increasing 
value of antibacterial activity (pMIC), and one out of every 
three molecules was included in the test set. The division based 
on structural similarity was obtained from principal component 
analysis on the available molecular descriptors. Molecules in the 
dataset were ordered by PC1 score, which explained most of the 
total structural variance; then, one out of every three molecules 
was introduced into the test set. Finally, 75% of the compounds as 
the training set (46 compounds) were used for the development of 
the QSAR model, and the remaining 25% (11 compounds) were 
used as the test set for the purpose of validating the QSAR model.

As mentioned above, the QSARINS software was used 
to generate the GA-MLR model. The quality of the model was 
internally determined using the fitting criteria [R2, lack-of-fit 
(LOF), and root mean square error (RMSEtrain)] and robustness 
(Q2

LOO) criteria. The coefficient of determination (R2), Friedman’s 
LOF, and the calibration error of the mean square root (RMSEtrain) 
were used as measures of the goodness of fit for the developed 

model. The cross-validation coefficient (Q2
LOO) was used to verify 

their stability and robustness.
After being internally optimized, stable, and robust, the 

QSAR model was evaluated externally by a test set using different 
external validation parameters such as R2

test, Q
2Fn, and RMSEtest.

Furthermore, Y randomization was conducted to identify 
and exclude models that might have been obtained by chance, 
and applicability domain (AD) analysis was carried out through a 
leverage approach and using William’s plot (Gadaleta et al., 2016; 
Veerasamy et al., 2011). William’s plot that relates the leverage 
value (h) versus the standard residual is used to identify compounds 
that are structural outliers (which have a leverage value greater 
than the threshold value h) and residual outliers (which have a 
predicted response value above the specified standard residual 
limit). The threshold value h (h*) is calculated using the formula:

h* = 3(p + 1)/n,
where p is the number of descriptors in the model and n 

is the number of training set compounds used to build the QSAR 
model.

RESULTS AND DISCUSSION

Obtaining the QSAR-MLR model
In this study, two separation techniques (biological 

activity ordered-based and structure-based) were used to divide 
the dataset (n = 57) into a training set and a test set. In order to 
check the correctness of the training set and test set molecules 
selection, a unicolumn analysis was conducted (Table 2). The 
GA-MLR method was used to select the optimal combination 
of descriptors and build a linear model. The GA is a selection 
technique that imitates the natural selection process in its 

Table 1. Antibacterial activity of GQAS against E. coli expressed as pMIC.

Comp. R pMIC Comp. R pMIC Comp. R pMIC

1b C9H19 4.114 20 C10H21 4.013 39a C12H25 4.319

2a C10H21 4.187 21a C11H23 4.638 40a C14H29 3.963

3 C11H23 4.268 22 C12H25 4.432 41a C16H33 2.595

4 C12H25 4.284 23 C13H27 4.149 42b C18H37 1.884

5 C13H27 4.194 24 C14H29 3.863 43 C8H17 2.772

6ab C14H29 3.384 25 C15H31 3.403 44 C9H19 3.444

7 C6H13 1.844 26ab C16H33 3.116 45 C10H21 3.959

8b C8H17 3.037 27 C6H13 2.691 46 C11H23 4.097

9a C9H19 3.757 28b C8H17 3.039 47ab C12H25 4.110

10 C10H21 4.481 29 C9H19 4.796 48b C13H27 3.873

11 C11H23 4.620 30b C10H21 4.081 49 C14H29 3.147

12 C12H25 4.523 31a C11H23 4.495 50 C15H33 3.085

13 C13H27 4.357 32 C12H25 4.523 51 C7H15 2.857

14 C14H29 3.854 33 C13H27 4.357 52a C8H17 2.928

15 C16H33 3.284 34 C14H29 4.155 53 C9H19 4.069

16 C6H13 1.924 35 C16H33 3.410 54 C10H21 4.262

17 C7H15 2.123 36 C6H13 2.006 55 C11H23 4.182

18 C8H17 2.903 37 C8H17 3.148 56b C12H25 3.595

19 C9H19 3.167 38 C10H21 4.495 57 C14H27 2.928

a Test set compounds for Model 1.
b Test set compounds for Model 2.
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processes, such as inheritance, mutation, selection, and crossover. 
The GA parameters used a 100 population size, 500 iterations, and 
a 25% mutation rate. As a result, we obtained the best model with 
biological activity ordered-based dataset splitting (Model 1) and 
the best model with structure similarity-based splitting (Model 
2). Equations (1) and (2) correspond to the best GA-MLR with 
different splitting techniques (Model 1 and Model 2, respectively) 
as follows:

pMICEC = 0.211 AATS5m − 12.854 MATS8m + 0.210 
PNSA3 + 5.452 IC5 − 18.136 AMID_N − 20.435,

 (1)
pMICEC = 4.3322 IC5 − 21.5384 MATS2Z − 0.0057 

TIC3 − 15.6399. (2)
Based on the statistical parameters in Table 3, both 

Model 1 and Model 2 have acceptable statistical quality values 
for many parameters, but Model 1 showed a better model than 
Model 2, as indicated by higher values for R2, Q2

LOO, R2
test, and 

Q2Fn and lower value for Friedman’s LOF parameter and error 
parameter in both the training and test sets (RMSEtrain and RMSEtest, 
respectively). Model 1 has an R2 of 0.891, so it has a good degree 
of fit and significance. Moreover, it has a low LOF parameter of 
0.116, which indicates no overfitting in the model. The correlation 
between the descriptors of Model 1 was acceptable (Table 4). The 
model has a small error in training calculations and parameter 
estimation (RMSEtrain = 0.267). The scatter plot of the predicted 
pMIC value versus the experimental antibacterial activity is shown 
in Figure 2. It can be seen that the predicted pMIC values were in 
good agreement with the experimental values.

Based on Equation (1), Model 1 consists of the following 
descriptors: AATS5m, MATS8m, PNSA3, IC5, and AMID_N. 
The descriptor AATS5m is Average Broto-Moreau autocorrelation 
which represents the compounds with larger average molecular 
weights between atoms of five-bond topological distance, with 
neither end of the five-bond atoms being a carbon (Prabhakar 
et al., 2005). The descriptor MATS8m is a 2D descriptor which 
represents Moran autocorrelation of lag 8 weighted by mass 
(Melville and Hirst, 2007). The PNSA3 descriptor stands for atom 
charge weighted negative surface areas. The IC5 is a descriptor 
which represents the information content index (neighborhood 
symmetry of 5-order) from the information indices group (Abadi 
et al., 2016). The last descriptor was AMID_N, which stands for 
averaged molecular ID on N atoms (Kamiya et al., 2021). 

The plot between the standardized residuals versus 
leverage value was used to describe the  AD of the model (Fig. 3). 
Based on William’s plot in Figure 3, all molecules have a leverage 
value that is less than the threshold value h (h* = 0.391), which 
means that they are no outlier compounds.

The results of Y randomization indicate that the resulting 
model was not inferred by luck because the averages values of 
R2Yscr and Q2Yscr are ever lower with respect to the R2 and Q2 values 
of the model  (R2Yscr = 0.113 and Q2Yscr = −0.186). Figure 4 shows 

Table 2. Uni-column analysis for training-set and test-set.

Data set N Minimum Maximum Mean Median Standard deviation

Training set 46 1.844 4.796 3.602 3.868 0.816

Test set 11 2.595 4.638 3.772 3.963 0.676

Table 3. Statistical comparison of Models 1 and Model 2.

Parameters Model 1 Model 2

Number of compounds 57 57

Number of descriptors 5 3

R2 0.891 0.816

RMSEtrain 0.267 0.341

Q2
LOO 0.851 0.760

R2Yscr 0.113 0.067

Q2Yscr −0.186 −0.124

RMSEtest 0.270 0.370

R2
test 0.834 0.824

Q2−F1 0.836 0.745

Q2−F2 0.825 0.737

Q2−F3 0.888 0.783

Table 4. Descriptors correlation matrix of Model 1.

AATS5m MATS8m PNSA3 IC5 AMID_N

AATS5m 1

MATS8m 0.097 1

PNSA3 −0.927 −0.107 1

IC5 0.634 0.493 −0.666 1

AMID_N 0.284 −0.114 −0.008 0.171 1

Figure 2. The scatter plot of the predicted values of pMIC versus the experimental 
values by Model 1 for the training set and test set.
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the values of R2 and Q2 of the model are very far from the averages 
values of Yscr, which indicates that the model is not obtained 
because of a random correlation.

After being validated internally, the model was validated 
externally by using test set compounds.  The external validation 
of the resulted model showed high values of the coefficient of 
determination (R2

test = 0.834) and low values of the error parameter 
(RMSEtest = 0.270), which indicates that Model 1 can be used to 
predict the antibacterial activity of a potential new quaternary 
gemini ammonium surfactant.

Design for new GQAS with antibacterial activity
Relying on the GA-MLR models, based on cationic 

gemini surfactants’ structure from Shukla and Tyagi (2006), 

several new GQAS have been designed to enhance antibacterial 
activity of gemini quaternary ammonium surfactants (Table 5 and 
Figure 5). We designed 30 new GQAS based on 2 factors. First, 
GQAS in the dataset with medium chain lengths, C10−C14, show 
the optimal antimicrobial activity, so we designed new gemini 
ammonium surfactants with chain lengths C10, C12, and C14. 
Second, many research studies have revealed that the antibacterial 
activity of gemini ammonium surfactants depends on the nature of 
the spacers (Andrzejewska et al., 2017; Negm et al., 2014; Pérez 
et al., 2002), so we designed new gemini ammonium surfactants 
with several kinds of spacer group. The newly predicted structures 
1d and 2d showed higher activity (pMIC = 6.630 and 7.425, 

Figure 3. William’s plot for the  AD of the model. Figure 4. Y-scrambling graph in the internal validation. 

Table 5. Chemical structure of newly GQAS and their predicted pMIC based on Model 1. 

Compound
GQAS 1

Compound
GQAS 2

R s pMIC R s pMIC

1a C10H21 s1 4.891 2a C10H21 s1 5.590

1b C12H25 s1 4.765 2b C12H25 s1 4.960

1c C14H29 s1 4.023 2c C14H29 s1 4.021

1d C10H21 s2 6.630 2d C10H21 s2 7.425

1e C12H25 s2 6.347 2e C12H25 s2 6.578

1f C14H29 s2 5.595 2f C14H29 s2 5.595

1g C10H21 s3 6.112 2g C10H21 s3 6.636

1h C12H25 s3 5.521 2h C12H25 s3 6.073

1i C14H29 s3 4.401 2i C14H29 s3 4.108

1j C10H21 s4 3.469 2j C10H21 s4 4.234

1k C12H25 s4 3.188 2k C12H25 s4 3.514

1l C14H29 s4 2.399 2l C14H29 s4 2.426

1m C10H21 s5 1.053 2m C10H21 s5 2.266

1n C12H25 s5 1.167 2n C12H25 s5 1.714

1o C14H29 s5 0.579 2o C14H29 s5 0.890
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respectively) than compound 29 (the most active compound of the 
series pMIC = 4.796). New compounds with spacer group s1–s4 
present high predicted activities, which means that the predicted 
compounds can almost be more effective than the compounds of 
the database.

CONCLUSION
The QSAR study of antibacterial activity data against 

E. coli for 57 GQAS was reported for the first time. Two different 
splitting techniques were used to divide the dataset; consequently, 
two GA-MLR models were generated. The best model has five 
descriptors with good predictive performance with acceptable 
statistic quality (R2 = 0.891, Q2

LOO = 0.851; the prediction R2 = 
0.834, RMSEtest = 0.269). A newly designed compound of 30 
GQAS was predicted by the developed GA-MLR model in this 
study. Sixteen newly designed GQAS with promising antibacterial 
activity have been proposed.
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